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Abstract In this paper, we introduce a new kind of modified Bernstein—Schurer oper-
ators based on the concept of (p, ¢)-integers. We investigate statistical approximation
properties, establish a local approximation theorem, give a convergence theorem for
the Lipschitz continuous functions, we also obtain a Voronovskaja-type asymptotic
formula. Next, we construct the bivariate operators and get some convergence proper-
ties. Finally, we give some graphs to illustrate the convergence properties of operators
to some functions.
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1 Introduction

Recently, Mursaleen et al. applied (p, g)-calculus in approximation theory and intro-
duced the (p, g)-analogue of Bernstein operators in [1]. We mention some of their
other works as [2-6].

In 2011, Muraru [7] introduced a generalization of the Bernstein—Schurer operators
based on g-integers as follows.

B Qing-Bo Cai
gbcai@126.com

School of Mathematics and Computer Science, Quanzhou Normal University, Quanzhou 362000,
China

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s12190-016-0991-1&domain=pdf

2 Q.-B. Cai et al.

m+l
B k
Bui(f:q:x) = Z [mz—l] k(1 — xymH p (&) ’
q

=0 [m]q

foranym € Nand f € C([0, 1+1]),/is fixed. In 2013, Ren and Zeng [8] introduced
the following modified g-Bernstein—Schurer operators which preserve linear func-
tions.

n+l k n+l—k
= N n—+1 [n]yx _ [n]gx %
S"”(f"”x)_z[ k L([n+l]q) (1 [n+llq) f([n]q)’ M

k=0 q

for f e C([0,141]),l e NU{0}isfixed,n e N,0 <g < 1.

In this paper, firstly, we will introduce a generalization of modified Bernstein—
Schurer operators based on (p, g)-integers which will be defined in (2) and investigate
some approximation properties, secondly, we will construct the bivariate type operators
which will be defined in (22) and obtain some convergence properties, finally, we will
give some graphics to illustrate the convergence to some functions.

Before introducing the operators, we mention certain definitions based on (p, q)-
integers, details can be found in [9-13]. For any fixed real number 0 < g < p <1
and each nonnegative integer k, we denote (p, g)-integers by [k], 4, where

[k]pq = u
P—9q

Also (p, g)-factorial and (p, ¢)-binomial coefficients are defined as follows:

g | Epalke=Tlpg o (g, k=12, [ [n]p.q!
rae k ’ pP.q

k] T kg n—klpg!

)

forn > k > 0. The (p, ¢g)-Binomial expansion is defined by

1 n
n

, 0;
x+2(px+gy) ... (P x + 4" 1y), 1

noo_
(-x+y)p,q_< ,2,....
When p = 1, all the definitions of (p, g)-calculus above are reduced to g-calculus.
For f e C(I),I =[0,1+1],1 € Nyp,0 <g < p <1landn € N, we introduce the
(p, q)-analogue of modified Bernstein—Schurer operators as follows:

)’l+[ k n+l—k k]
coann-SI) () () ()
n,Paq(f -x) k;) k pa [n—i—l]p’q [n+l]p7q o .f [n]pyq

@

It is observed that when p = 1, (f; x) becomes to (1).

[
Sn,p,q
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On (p, g)-analogue of modified Bernstein—Schurer operators... 3

2 Auxiliary results

In order to obtain the approximation properties, we need the following lemmas:

Lemma 2.1 Forthe (p, q)-analogue of modified Bernstein—Schurer operators (2), we
have the following equalities

(Lx) =1, ©)
[ . —

Sp.p.g (1 %) = X, 4)
l 2,

Sn.p.q (t ; x)

I—1 n+l—1
pln + ]p,q xz + X ( Q[n]p,qx +1 [n]p,qx ) . 5)
pP.q

[+, ]p.g \[n+11p4 tEYe
[ 3.
Sn.p.q (t ,x)

PPl —1pgln+1-20px>  (p?+2pg) (n+1— 1143

[
Sn,p,q

(n+113 , [n]p.qln +1pq
( q[n]p,qx [n]p,qx )n+12
w (Apa® g _Mpat
[+, i+l ,,
X qz[n]p,qx [n]pqx e
a - : )

S,l”,’q (t4; x)
PoIn+1— 1, 4n+1-21,4n+1-3], 4x*
N n+13,
N (P> +2p%q +3p°¢%) [n+1— 1 4[n +1 =21, 4>
(n]p.qln +113,

-3
» (q["]p,qx 1 [n]p.gx )n
p.a

[n +l]p,q [n +l]p,q
(P’ +3p%q +3pg°) [n +1 = 1]p,4x°
[n]gj’q[n + l]p,q

n+l-2
« (qz[n]p,qx +1 [n]p,qx )
p.q

[n+1p4 (n+1pq
n+l—
N X?) (q3[”]l7’qx L1 [n]p,qx ) + l. -
(n]5.4 \[n+1lpq n+1pq/ ,,

Proof (3) and (4) are easily obtained from (2) and the definition of (p, g)-integrals.
Using (2) and [k]3 , = ¢~ [k]p 4 + plklp 4Lk — 11, 4, we have
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-3 [ +l] ( [y )" (1 Dl )"*’-k (mp,q )2
k=0 k P-4 [n+11pq (n+1]pq P.q [n]p.q

_ nfl |:n +1- 1] ( [n]pqx )k (1 _ [nlpgx )"Hkl 7
[fl]p’q k=0 k P.q [I’l + l]p,q [I’l + l]p’q p.g

pln+1l,gn+1—11,, n+zl_2[n i —2} ( [ )"”
k
k=0 P.q

[n]%,’q (n+1p4
+—2—k
X (1 — —[n]p,qx )"
[n+1pq v
_pln+1— l],,,qx2 N X (q[n]p,qx 1 [n]p,qx )"H1
[n+ l]p,q [n]p,q [n + l]p,q [n + l]p,q P.q

Thus, (5) is proved. Next, from (2) and
(kDS , = P Kl p.glk—11p 4Tk =215 g+ pg" > (p+2q) K] p.glk—11p.g +4> [kl pg.

we get

Sf,yp’q (t3; x)

-3 [n +l} (['l]pqx)" (1 . W)”*’k ([k]p,q)3
k=0 k pg N+ 1pg n+pq/,, (n]p.q

_ Pn+1—11,4n+1—2],4x° N (P* +2pq) [n+1—1], 4x>

[n +l]?),q [n]p,q[n +l]p,q
— -1
( qlnlp.qx - [n]p.q% )Hl *x (qz[n]p,qx t1— [n]p.gx )n+
[n+ l]p,q [n+ l]p,q p.q [n]%;q [n+ l]p,q [n+ l]p,q P.q .

(9) is proved. Finally, since

K1} 4 = POIK]pglk — 11p gLk = 2140k = 3154
+ 926" (12 + 2pg + 307) Kl gk = 1 glk = 21p.q

+ pg** (p2 +3pq + 3q2) (K1p.glk = Upq + ™ 1kl p g,
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and some simple computations, we have
S.pq ( *: x)
1 -
—i["“] ( [n]p.qx )" (1  [nlpgx )"“ "([k]p,q)“
P.q [n+1]pq (n+1pq P [(n]p.q

Pl =1l +1 =21, 4ln+1 3], 4x*

[n+ l]3

N (p° +2p*q +3p3¢?) [n+l—1]pq[n+l—2]pqx (q[n]pqx
1y qln +112, [+ 11,

[np,qx )"+l_3 (P* +3p%q +3pg®) [n +1 — 1] 4x* (qz[n]p,qx
p.q

+1

[n+11p.q (13 ,In+1p4 (41,4
_ -1
L1 g )”“ Px (q3[n]p,qx L g )”+
(n+1pq/,, (n13 , \[n+1p4 n+0p4),,
Thus, (7) is proved. O

Remark 2.2 Let {p,} and {g,} denote sequences such that 0 < ¢, < p, < l.
Then by Bohman and Korovkin Theorem and Lemma 2.1, for any f e c), if
lim, 00 pn = lim, 00 g, = 1 and lim,_ [n],, 4, = 00O, Operators S, pq(f X)
convergence uniformly to f(x).

Lemma 2.3 Let p = {pn}, ¢ = {qn}, 0 < qn < pn < 1 be sequences satisfying
lim, o0 pp = limy 00 gn = 1 and lim, o q), = a, a € [0, 1), then we have

S pgt —x:12) =0, 8)
qn+l—1

st t—x)% ) __ 9

npq(( x)7;x [n—i-l]p,qx

n+i—1
+ X ( Q[n]p,qx - [n]p,qx ) ’ )
[n]pq \[n+ l]p,q [n+ l]p,q P

B [2]p,.,5h g (= 0% x) = —ax + 21, (10)
11m [n]pn n S,ll Postin ((t — x)4; x) =3a%x* + 3X2x2. (11)

where A1, Ay € (0, 1] depending on the sequence {q,}.

Proof From (3) and (4), we get (8). Since S} , , (¢ —x)*;x) = S, , , (11 x) —
2xS} (%) —x andp[n—l—l—l]pq_[n—H] —q"+l—1,weobtam(9).1ndeed,

we can get (10) easily from (9). Finally, since
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(tz; x) —3x*

B (ps[n Fl—=1pgln+1=2]p4n+1-3]p4

:Sl. ’ (14;x) —4xSl‘ ) (t3;x)+6xzsf,!p’q

[n—i—l]?,’q
B 4pin +1— pgln+1-2]p4 +6p[n +i—-1lp4 _3) o
n+113, n+1p,

N (PP +2p*q +3p3q)) In+1 = 11y 4ln +1 = 2] 4x°
(n1pqln +113,

( qlnlpqx 1 [n]pqgx )"H3 (P> +3p%q +3pg®) [n +1—1]4x°
p-a

[l’l + l]p,q [n + l]p,q [n]%’q [”l + l]p,q
(qz[n],,,qx 1— [n1p.q4% )”+l—2 X (q3[n]p,qx |- [n]p,qx )"+1_1
(n+1p.q [n+1p4 Y, [n]?,,q [n+11p4 (n+11py i
AP 2pq) In 41— 1,00 ( ainlpg | Inlpgx )"*"2
(n]pqgln +1]pq [n+1pq n+1p4) ,,
B 4x2 (C]z[n]mx . [n]p.g% )n+ll
(n1%, \[n+1p, 414/ ,,
3 nti—1
6x (M +1- M) ) (12)
[n]p‘q [}’l +1]P;q [ﬂ +l]p,q p.g

Since

PO+ 1 — pgln +1 2]y gln+1—3],,
= (10 +pg = ") (10 4 pg = "7 = pg"72)
% ([n g — g™ — pgH2 - qun+I—3)
=[n+ l]f,yq —[n+ l];qqn+l—3 (pz +2pg + 3q2) +n+ l]p’qq2n+21—5

x (p3 +3¢° +4pq” + 3p2q) — [21p.g[31p.qq>" 70,
and 4p3n +1— 1, 4ln+1—-2lp g =4n+113 , —4¢" "2 +11,42q + p) +

4[21p.qq*" T3, 6pln +1— 11,4 = 6[n + 11,4 — 64" '~!, by some computations,
we get

lim [n
n%oo[ ]P’q

s (PPl =11, +1 =21, 4ln+1—3],,
TR

B 4P+ 1= 1lpgln+1=2lpy  6pln+1—1lp4 —3 )it
n+112, [+ 11pq
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. [n]2 _qn+l—3(p _ q)2 N q2n+21—5 (pS _ q3 + 3[726])
~ n—oo P n+11p.,4 [n + ]2
’ pq
B [z]p,q[S]p,qq3’1+3l_6 4 (13)
[n n l]3 X .
P.q

From conditions of Lemma 2.3, we have

. _qn+l—3(p B Q)z _ . n+l—-3 (. n n _
B e e L A (" —q") (p—q) =0,

thus, (13) = 3a’x*. From (12), we get
. 2 [ 4, _ 2.4 : 2
Tim 012, 8%, o (= 0% ) = 3% + lim (02,
6)63)»1 7x2A2 XA3 12)63)»1 4)62)»2 6x3)q
% _ _
[nlpg [y, 0, [nlpg  Inl5,  [nlpg

= 3a%x* + 3A2x2,

where A1, A2, A3 € (0, 1] depending on the sequence {g,}. O

3 Statistical approximation properties

In this section, we present the statistical approximation properties of the operator
Sfl, p.q ([ x) by using the Korovkin-type statistical approximation theorem proved in
[14].

Let K be a subset of N, the set of all natural numbers. The density of K is defined by
8(K) :=lim, % > i1 xk (k) provided the limit exists, where x is the characteristic
function of K. A sequence x := {x,} is called statistically convergent to a number L
if, forevery ¢ > 0,8{n e N: |x, — L| > ¢} = 0. Let A := (ajn), j,n =1,2,...
be an infinite summability matrix. For a given sequence x := {x,}, the A—transform
of x, denoted by Ax := ((Ax);), is given by (Ax); = Z,?il ajnx, provided the
series converges for each j. We say that A is regular if lim,(Ax); = L whenever
limx = L. Assume that A is a non-negative regular summability matrix. A sequence
x = {x,} is called A-statistically convergent to L provided that for every ¢ > 0,
lim; >, _1s¢@jn = 0. We denote this limit by st4 — lim, x, = L. For A =
C1, the Cesaro matrix of order one, A-statistical convergence reduces to statistical
convergence. It is easy to see that every convergent sequence is statistically convergent
but not conversely.

We consider sequences p := {p,}, ¢ := {gn} for 0 < g, < p, < 1 satisfying

sta — lim p, = sty — lim g, = 1and sty — lim [n],, 4, = 0. (14)
n—00 n—0oo n—oo
Ife; =¢, re R, i =0,1,2, ... stands for the ith monomial, then we have
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8 Q.-B. Cai et al.

Theorem 3.1 Let A = (aui) be anon-negative regular summability matrix, p := {p,}
and q := {qn} be sequences satisfying (14), then for all f € C(I), x € I, we have

Sl =]

Stpg — 11m ’
C(I)

Proof Obviously

=0, i=0,1. (15)

St — hm ‘
c)

By (5), we have

1
e (x)‘ < + .
? [l’l + l]pn’qn [n]l’nyqn

1 .
Sn Pn-qn (82’ X) -

Now for a given ¢ > 0, let us define the following sets:

1 &
U:= k1’ ) zep, Uni=gkiomr—2 o1,
{ e (€2) = ‘C(I) _8] ! [ (n+Upq — 2]
1
U2 = [k ZE]
(1] i 2

Then one can see that U C U; U U, so we have

1
(n + p.ae

e
> _
_2]
8<k§n: ! ZE}

(lppa — 2

since st4 — lim p, = stq — limg, = 1 and st4 — lim[n],, 4, = 0o, we have
n n n

5{k§n IS} . pEs qk(é’z)—ezllcu)} fé[kin:

1 1
stg — lim ——— = st4 — lim =0,
n [l’l + Z]Pnﬂn n [n]Pn’Qn

which imply that the right-hand side of the above inequality is zero, thus we have
StA hrrln S0, po.gn (€2) — e2llcay = 0. (16)

Combining (15) and (16), Theorem 3.1 follows from the Korovkin-type statistical
approximation theorem established in [14], the proof is completed. O
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On (p, g)-analogue of modified Bernstein—Schurer operators... 9

4 Local approximation properties

Let f € C(I), endowed with the norm || f|| = sup,;|f(x)|. The Peetre’s K-
functional is defined by

Ky(f;8) = inf {IIf — gll+8l1g"II},
geC?

where § > 0 and C* = {g € C(I) : g’.g" € C(I)}. By [15, p. 177, Theorem2.4],
there exits an absolute constant C > 0 such that

Ka(f38) < Can(f;V5), (17)
where

w2(f;8) = sup sup | f(x+2h) =2f(x+h)+ f(x)]
0<h<§ x,x+h,x+2hel

is the second order modulus of smoothness of f € C(I).
Now we give a direct local approximation theorem for the operators Sfl, g (f %)

Theorem 4.1 ForO <qg < p <1,x el and f € C(I), we have

S! g (i) = f(x)

<Cw |f;

qn+l—1x2 X ( q[n]p,qx 1 [n]p,qx >n+l—1

2ty 2y \InH1lpg  tlpg/,,

where C is a positive constant.

Proof Let g € C2. By Taylor’s expansion

t
g(t) = g(x) + &'t —x) +/ (t —w)g" (wydu,

and Lemma 2.1, we get

t
Shpg@X)=8X)+S, ,, (/ (t —w)g" (wdu; x) :
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10 Q.-B. Cai et al.

Hence, by (9), we have

Snpg (85 %) — g(x)‘

n p.q (/ (t - u)g”(u)du .X)
<s e (‘/ t —u)l|g" (u)|du ;x)

= Shpg (€= 0% 2) 11"

qu+l—1 5 X q[n]p,q-x [n]p,qx n+i—1 ,
= | = x° 4+ +1 - —— g™l
[n+ l]p,q [n]pq \[n+ l]p,q [n+ l]p,q p.q

(18)
On the other hand, by (3), we have
Shpg (1)
B[ () () )|
[n+ l]p,q [n+ l]p,q p.q [(n]p.q
< Il (19)

Now (18) and (19) imply

Shpg (1) = f)|
Stpal =80 = (f = )| +

Sn, ,,q(g x) —g(x)

n+l—1

q X

x° 4+
[+ 1)y (114
qlnly.qx [n]pqx \" !
x(¢+l—¢) l1g"l.
[n+ 1,4 n+10pa),,

Hence taking infimum on the right hand side over all g € C?, we get

<2/f —-¢gll+ [—

Shopg (30 = F@)]

n+l—1,2 n+l—1
o) ) L s (q["]”“’x 41— et ) :
2[n + l]p,q z[n]p,q [n+ l]p,q [n+ l]p,q P.q
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On (p, g)-analogue of modified Bernstein—Schurer operators... 11

By (17), forevery 0 < g < p < 1, we have

Sty (f12) = F(0)

_ -1
< Con [f: |- a ( anlpgx ) Wlpax ) :
2[n+1pg  2[nlpg \[n+1lpy (n+1]pq v
where C is a positive constant. This completes the proof of Theorem 4.1. O

Remark 4.2 For any fixed x € I,]l e Npandn € N, let p := {p,} and q := {q,} are
sequences satisfying 0 < p, < g, < 1, lim, p, = lim, g, = 1 and lim,[n],, 4, =
00, we have

_ [—1
. _qn—H 1,2 N X (q[n]p,qx Lo (n]p.qx )n+ o
n— 00 (n+1llpq  [(nlpg \In+1lpg [n+1]pq v

These gives us a rate of pointwise convergence of the operators S n g (3 X) 10 f ().

Next we study the rate of convergence of the operators Sfl, p.q(fs x) with the help
of functions of Lipschitz class Lipys (), where M > 0 and 0 < o < 1. A function f
belongs to Lipys () if

lfO) = Ol =My —xI* (y,x €R). (20)

We have the following theorem.

Theorem 4.3 Let p := {p,} and q := {q,} are sequences satisfying 0 < g, < pn <
L, lim, p, = lim, g, = 1, lim,[n],, 4, = 00 and f € Lipy(a), 0 < a < 1. Then
we have

St (f10) = £

-y _qn+l*1x2 N X (q[n]p,qx e [n]p,qx )n—H—l
- [n+ l]p,q [n]p,q [n+ l]p,q [n+ l]p,q

p.q

IR

Proof Since S
we have

n s q(f x) are linear positive operatorsand f € Lipy(x) (0 <o < 1),

@ Springer



12 Q.-B. Cai et al.

Shpg (1) = F)|
< S0 (£ = F@I:0)

_g[wz] ( [n]p.qgx )k(l_ [n]).4x )"*’—"
v [n+1pq [n+1pq

p.q

< M%[m—i—l} ( [n1p.q% )k(l_ [n1p.q% )"”—k
pg \[n+1lpg [n+1pg

p.q

k
f (—[ ]”’q) - f(X)‘
[n]p,q
Kpg |°
[”]p,q

< M% |:}’l+l:| ( [n]p,qx )k (1 _ [n]p,qx )n+l—k ([k]p,q _x)2 ?
P.q (n+1]pq (n+1]pq P [n]p.q

2—a
k P.q [n+ l]p,q [n+ l]p,q P.q '

Applying Holder’s inequality for sums, we obtain

St (f10) = F )]
<M il [" i ] (M)" (1 _ _Inlpgx )"*"k ([klp,q _x)2 '
= ~ k P [l’l + l]p,q [n + l]p’q g [n]p’q
2—a
x(%[”:l} ( [n]p’qx )k (1 ~ [n]p’qx )n+lk) 2
k=0 pg N+ 1pg (n+1pa),,
=M (sz P.q ((t —x)% X))7

Yy _anrlfle N X (q[n]p,qx 1 [n]p,q-x )Yl+l] 2
[n+ l]p,q [”]p,q [n + l]p,q [n+ l]p,q P.q

Thus, Theorem 4.3 is proved. O
Now, we give a Voronovskaja-type asymptotic formula for S; n g (3 %)

Theorem 4.4 Let p = {pn}, ¢ = {qn}, 0 < gn < pn < 1 be sequences satisfying
lim;, 00 pp = limy 00 g = 1, lim,[n],, 4, = 00 and lim, . q;, = a, a € [0, 1),
then we have

Tim (1], (4.0 () = F()) = % (—ax? +3x),

where A1 € (0, 1] depending on the sequence {q,}.
Proof Let x € [0, 1] be fixed. By the Taylor formula, we may write

1
FO =0+ 00 =x)+ (0 = )P r ) —x)?%  (21)
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On (p, g)-analogue of modified Bernstein—Schurer operators... 13

where r(¢; x) is the Peano form of the remainder, r(¢; x) € C(I), using L'Hopital’s
rule, we have

f@) = f@) = [0 —x) — 5 /(@)1 — x)?

lim r(t; x) = lim
t—x t— 00X (t— x)2
e SO 0= 0= 0= @
= lim =lim——— = O
t—x 2(t — x) t—x 2

Since (8), applying S/ n,p.q (f3 X) to (21), we obtain

[n]pq( Shpg(F30) = ()
f”(x) npd ((t —x)% x) + [n]pq o pod (r(t;x)(t —x)2;x).

By the Cauchy—-Schwarz inequality, we have

Sfl P (r(t;x)(t —X)Z;X) \/ Sy pq 2(l‘;x);)c)\/‘S‘fl,p,q ((; —x)4;x).

Since r2(x; x) = 0, thenitis obtained easily thatlimn_,oo[n]p,qS,ﬁ,p’q (r(t; xX)(t—x)%;
x) = 0 by (11). Thus, from (10), we have

Tim 1], (Sflvl,,q(f;x) f(x)) = lim_ —[n],,qf”(x) L ((t—x)z;x)

_f//()
2

(—ax2 + Alx) .

Theorem 4.4 is proved. O

5 Construction of bivariate operators and some approximation
properties

In this section, we construct a bivariate (p, ¢ )-analogue of modified Bernstein—Schurer
operators and get some approximation properties.

For f € C(I1 x I), 1 x L = [0, 1 +11] x [0, 1 + o], l1,] € No, x € I3,
y€D,0<qn,qn, < Pn> Pny < landny, ny € N, the bivariate (p, g)-analogue of
modified Bernstein—Schurer operators are defined as follows
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14 Q.-B. Cai et al.

ni+li o+l
Snl,nz,ll,lz (f X y) _ z Z ni +ll ny +12
PnysPnysdny-9ny T kl - k2 .
ny4qny ny s4ny

k=0 k=0
( [n11p,, .gu, X )kl (1 3 (1] py, qn, X )anlk1 ( (2] puy gy ¥ )k2
[y + 111, an, (1 + hlp,, qn s [n2 + 11p,, qn,
(1 B [nz]pnz,qnzy )n2+lz—k2 ; ( [kl]p,,l,q,,1 [k2]pnz,f1n2 ) 22)
[n2 + 121p,., .4, Pyt (1) pu, an, ’ (721 py, . qn,

Lemma 5.1 Lete; j(x,y) = xiyj, i,jeN, (x,y) € (I] xI) be the two-dimensional
test functions, the bivariate ( p, q)-analogue of modified Bernstein—Schurer operators
defined in (22) satisfy the following equalities

ny,n,ly,0

Spnlspnza‘hll»qnz (60’0; Xy y) = l’ (23)
ny,na,l .0 . .
Spnlsan"Inl»LInz (el’o’ X y) =X (24)
ny,na,l,0 . S
Sﬂnl,pnz,qnl,qn2(€0,lax, y) =Y (25)
ny,n2,l1,0 . .
SP"l 2 Pnydny »dny (er,13%, y) = xy; (26)
_ 2
Snn2,lib (€20} X, y) = pmlni+1 ”Pm"]nlx b
PP e ’ [n1 +ll]l7n1"1n1 [nl][’npqnl
ni+l—1
qilnilp, g, x (1] py qu X
><( l ni qnl + 1 _ lnl 11»11 ’ (27)
[Vll + l]p,,l,q,,1 [Yl] + l]p”l’q”l Do
— 2
snn2,lilb . _ Pm (2 + 1 —1p,, .40, Y y
PnysPnysqny-9n (60,29 X, y) -
1P sdny»Gny [n2 + 12]pn2sQn2 [”2]1?;12,11”2
no+h—1
> ( q2[n2]11’"2"1n2y 1 — [”2]172,%2)6 ) . (28)
[l’l2 + 2][7)12in2 [nz + 2]pn2,q”2 Py iiny

Remark 5.2 Let {pn,}, {pPn,}. {gn,} and {g,,} are sequences such that 0 < g, gn, <
DPny» Pny, < 1.Thenby[16] and Lemma 5.1, forany f € C(Iy x ), iflim,, o0 pn, =
hmm—)oo qn, = hmng—mo Pn, = hmng—)oo qn, = I and liHlm—)oo[nl]pnl Ay

lim, o121, 4., = 0O, Operators S;’,L;f’;ﬁ;:f}nl .n, (f3 X, y) convergence uniformly

to f(x, ).
Lemma 5.3 Let {p,,}, {Pn,} {@n, } {@na}, O < Gnys ny < Puy» Pry < 1 be sequences

satisfying limy | 00 Pny = 1My, 00 Gny; = liMyy—00 Ppy, = liMyy 00 gn, = 1 and
lim,,l_mo[nl]l,,n1 Ay = lim,,z_wo[ng],,nz,qn2 = o00. The following equalities hold

ny,n2.l1,0 e — 0
S P iy imy = X5 X5 ¥) = 05 (29)
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n1,n2,l1,0 oy — 0
Spnl sPnysdny»4ny (S i X, y) - 0’ (30)
ni+lhi—1_2
q X X
SO L (U= 05w y) = = +
1’ 2’ 1’ 2 [nl +ll]pn|:q”1 [nl]pYI"qlll

+1—1
qﬂl[nl]])nlvqu [nl]p”]’qnlx " l
x{ —AM— 41 - —— =8y (X); 3D

[}’l] +ll][?n|,q;11 [nl +ll][)n|s¢In1 Pny-qng
na+l—1_2
An; Y Y
sn-n2.lisl ((s — y)z; X, y) = - +
Pny+Pnydny dny (2 + L21pyyge,  [12]py .40,

-1
s [121p,y M2)pyany N
sl ST g TPt =8n,(y).  (32)

[n2 + l2]pn2»11;12 [n2 + lZ]an,an Pnysdny

For f € C(I; x I,), the complete modulus of continuity for the bivariate case is
defined as

o(f361,62)
= Sup{'f(tas)_f(xv )’)| : ([,S), (-xa }’) € (Il X 12)’ |t_'x| S 817 |S _y| S 82}7

where 81, 8> > 0. Furthermore, w(f; &1, 82) satisfies the following properties:

() o(f:81,82) = 0, if 81,82 — 0;

.. . [t — x| Is — yl
@)1 f@,s)— fx, M So(f;81,8) {1+ 5 1+ .
1 )

The partial moduli of continuity with respect to x and y is defined as

oV (f;8) =sup{|f(x1,y) — f(x2, ¥)| 1 y € [0, 1] and |x; — x2| < 8},
WP (f;8) =sup{lf(x,y1) — f(x, )] :x € [0, 1]and |y; — y2| < 8}.

Details of the modulus of continuity for bivariate case can be found in [17].
Now, we give the estimate of the rate of convergence of bivariate (p, g)-analogue
of modified Bernstein—Schurer operators defined in (22).

Theorem 5.4 For f € C(I} x I3), under the conditions of Lemma 5.3, we have

spsl L (Fix) = )| = 40 (f1 V0, Van D).

where 8, (x) and &,,(y) are defined in (31) and (32).

Proof From Lemma 5.1, using the property (i) above and Cauchy—Schwarz inequal-
ity, we easily get
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16 Q.-B. Cai et al.

n1,n2,l1,0 . _
Sprmil o (Fxy) = [ )|

nina,ll _ .
S SPnlsPnz,qnlyfInZ(lf(t’S) f(-x’ )’)|, X, y)

snin2:lil ((t —x)%; x, y)

< 0 (f3 Vo @), Vo) | 14 | et

(Sn](x)

ny,n2,l1,0 2.
Spnl,Pnz,qnl,qnz ((S - y) s X, y)
Sny ()

x |1+

Theorem 5.4 is proved. O

Theorem 5.5 For f € C(Iy x I2), under the conditions of Lemma 5.3, we have

spsle 5o = £ £2[£500 (516, @) + 0 (£ V6. 0) ]

where 8, (x) and 8,, (y) are defined in (31) and (32).

Proof Using the definition of partial moduli of continuity above and Cauchy—Schwarz
inequality, we have

ny,na,l,0 . _
S P sy iny (3% ¥) = F(x,y)
ny,n2,l1,0 _ .
S Spnlspnzs%llvqnzqf(t’s) f(x’y)l’x’y)
ny,na.li,hL _ .
< Sl fs) = £ x )

n1,n2,l1,0 _ .
+Spnlvpn27qn1s(In2(|f(t’y) f(x’y)|’x’y)
ny,n,l,0 Q(foqe .
s sprmit (0Pl = yDixy)

n1,n2,l1,0 OYFar .
+Sl’n1‘17n2,qn],qn2 (a) (f’ |t x|)7 X, y)

shinzll (s =% x,y)

<w® (f; 5n2(y)) 14 Py Pyl Gny

6nz )

ni,na,li,lb 2.
SPnI;PnzvqnlJInZ ((t —Xx)% X, y)
Oy (%)

+o (316, 0) [ 1+

Theorem 5.5 is proved. O

Finally, we study the rate of convergence of SZrlzi’?z;llzlzfian»Qrzz (f;x,y) by means of

functions of Lipschitz class Lipys (o1, op) if

|f(t,s) = fOe, ] = Mt —x|*s — y|*2, (1,5), (x, y) € (I x D).
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15

=——=For p=0.99
=—=For p=0.999

For p=0.9999
——=For p=0.99999
—_—f (%)

L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X (for n =50, 1 =1 and g = 0.9)

Fig. 1 Convergence of Sflﬁp.q(f; x) forn =50,/ =1, ¢ = 0.9 and different values of p

Theorem 5.6 Let f € Lipy (o1, a2), under the conditions of Lemma 5.3, we have

/2

2
spralilh o (fixy) = )| < ME 2083 (),

where 8, (x) and 8,,(y) are defined in (31) and (32).

Proof Since f € Lipy (a1, a2), we get

ny,na,liL . _
Sy sty sy sy S 3% ¥) = (X, 9)
ni,na.l,lL _ .
< syl (£ = fkx )

ni,na.l 0 oo ny,na,l,0 |2,
= MSP"lvpnz*qﬂl’q"z(“ X[ x, y)SPinnpqnlJInz(ls YT X, y),

using the Holder’s inequality for last formula, respectively, we obtain
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2 T T T T T T T T T
=——=For q = 0.6
18|=—=For @ = 0.9 _
—For q = 0.99
— (x)
1.6 g
141 -
121
1L _
08 -
06 _
0.4 -
02 _
0 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X (for n =50, 1 =1 and p = 1)

Fig. 2 Convergence of Sflﬁp.q(f; x) forn = 50,1 =1, p = 1 and different values of ¢

ni,na.l,0 . .
Spnl’pnzvlh];‘[nz f"x’ y) f(-xv y)‘
a1
< ni,n2,l,l 2. 2 [ anyonaidi b )
M [Sp"l 2Py »dny Gy ¢ —x)%x,y SP"] sPny »4ny 4ny (1 x, )
a
2

2 2—ay
n1,n2,0,0 — )2 ni,n2,l,0b .
x [Sp”l »Pnydnydny ((S y) » X y)] I:Spnl sPnysqny +qny (1’ X y)]

= M3 (x)822 % (),

2—ay

where 8, (x) and §,, (y) are defined in (31) and (32). Theorem 5.6 is proved. O

6 Graphical analysis

In this section, we give several graphs to show the convergence of S, n pg(fix)10 f(x)
and S} l'ff,,le,lqznl an, (f3 %, ) to f(x, y) with different values of parameters.

Let f(x) = sin(wrx/2), forn =50,/ = 1 and ¢ = 0.9, the graphs of S,lw,q(f; X)
with different values of p are shown in Fig 1. Moreover, let f(x) = 1 — cos(4e”),
forn =50,/ = 1 and p = 1, the graphs of § (f; x) with different values of g are
shown in Fig. 2.

”Pq
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1 ~
[ If(x,¥y)
For = =0.6
oo | q:nl qn2 =\
0.7 ez st 15t
111 :,:',",'
17 %

0.6 :",.
>
RN
W

0.4

0.3

0.2

0.1

0

Fig.3 S

I I I

! ! ! 08 09 1
0 o1 02 03 04 05 068 07 ) .

i (fsx,y)forny =np =501} =lp =1, pp; = pn, = land gn; = qn, = 0.6

Pny>Pny-qny-qny

£ (x,v)

B
X
H
0.4 0 2
Fig. 4 Snl,nz’ll,lz (f;x,y)forn; =np =50,11 =l = L, pny = pn, = land gn; = qn, = 0.9

PnysPnysqny-dny
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£ (x,v)
[ For p1=p2=0.999

£(x,y)

-0.5—

. RN,
Fig. 5 sj‘,;l'fg,n;,qlnl’qnz (fix,y)forny =ny =501y =lp = 1, pu; = pn, = 0.999 and gu, = gn, =

0.9
[ E (x,v)
[ For pl=p2=0.9999
1—
0.5
™
~
IS
w

_0.5_
1
-1 0.5
1 0.8 x
0.6 0.4
0.2 o 0
s

. 2,0l
Fig. 6 Sy 5 Gy (fix,y) forny = ny = 50,1y = lp = 1, pu; = pny = 0.9999 and g, =

qn, = 0.9
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Let f(x,y) = sin(x> 4+ y3), Fig. 3 shows the graphs of Sﬁiif’%ﬁ;,’lfnl,% (f;x,y)
(blue) and f(x,y) (red) for ny = np = 50,11 =1, =1, py,, = pn, = 1 and
qn, = qn, = 0.6. Let f(x,y) = x2sin(my) 4 cos(rx)y?, in Fig. 4, the values of
Gn, > qn, are replaced by 0.9, the graphs of S;’,;l"f,leffnl g, (f3 %, ) (red) and f(x, y)
(blue) are shown.

Let f(x, y) = x?sin(y) + cos(x)y?, Fig. 5 shows the graphs of S’;,jl;r"f,;llzljlqznl dny
(f;x,y) (green)and f(x, y) (red)forn; = ny = 50,11 =l =1, py;, = pn, = 0.999
and g,, = qn, = 0.9. Finally, the values of p,,, p,, are substituted for 0.9999, the
graphs of S;’,)‘li'fﬁ,;lejfi”,qnz (f; x,y) (blue) and f(x, y) (red) are shown in Fig. 6.
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