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Abstract In this paper, a Newton method is proposed to obtain efficient solutions for
the optimization problems with interval-valued objective functions. In the concept of
efficient solution of the problem, a suitable partial ordering for a pair of intervals is
used. Through the notion of generalized Hukuhara difference of a pair of intervals,
the generalized Hukuhara differentiability of multi-variable interval-valued functions
is defined and analyzed to develop the proposed method. The objective function in
the problem is assumed to be twice continuously generalized Hukuhara differentiable.
Under this hypothesis, it is exhibited that the method has a local quadratic rate of
convergence. In order to improve the local convergence of the method to a global
convergence, an updated Newton method is also given. The sequential algorithms and
the convergence results of the proposed methods are demonstrated. Several numerical
examples are presented to illustrate the proposed methodologies.

Keywords Interval optimization · Interval-valued function · Efficient solution ·
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1 Introduction

The conventional mathematical description of an optimization problem appears with
exact values of the involving parameters. However, most of the realistic optimization
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problems faced by engineers, management scientists, and applied mathematicians
today exhibit that optimization problems are usually characterized by fuzzy- or
interval-valued objectives and/or constraint functions, especially in the inexact, impre-
cise, or uncertain environment. Thus, each of the involving parameters in the problem,
which are generated from the available data set of the optimization model, are suitably
taken as a fuzzy number or an interval. The optimization problems whose involving
parameters are given by intervals, are categorized as Interval Optimization Problems
(IOPs). In the mathematical analysis on the IOPs, usually the parameters are consid-
ered as compact intervals.

Although there is a plethora of methods to solve conventional optimization prob-
lems, thosemethods cannot be easily/apparently applied on solving IOPs. For the IOPs,
the main problem is that unlike the real numbers, intervals are not linearly ordered.
Thus, obtaining an appropriate comparison of interval-valued objective functions with
regard to optimization problem is an important issue.Much similar problem ariseswith
fuzzy optimization problemswhere fuzzy numbers are not linearly ordered [7,9]. Over
the years there have been many attempts to obtain an appropriate ordering of inter-
vals in connection with optimization problems [16,17,19,21,23–25,27,28,35,40,41].
With the help of the existing orderings of a pair of intervals, IOPs have been analyzed
by many scholars, for instance, see [39,42] and the references therein.

Very recently, using a newly introduced ordering on intervals, Bhurjee and Panda
[2] have given a notion of efficient solutions of interval optimization problems which
is similar to the Pareto optimality concept in multi-objective optimization problems.
This idea on efficient solution of IOPs is rapidly used by many authors; for instance,
see [1,3,4,22,26].

In this paper, we try to characterize and obtain efficient solutions of IOPs.
Towards this end, we attempt to propose a Newton method to solve a multi-variable
unconstrained IOP. The objective function of the problem that we consider here is
interval-valued. Thus, to develop the Newton method we require (i) an appropriate
ordering of a pair of intervals and (ii) a notion of differentiability for interval-valued
functions.

In this article, to define the efficient solutions of an IOP, we use the ordering of
intervals that is developed by Bhurjee and Panda [2] due to two reasons. First, it is a
partial ordering which is superior to the predecessors [2]. Second, it has an important
connection on investigating efficient solutions of an interval optimization problem [2].

In characterizing an efficient solution, we introduce the notion of generalized
Hukuhara differentiability of an interval-valued function which may be the most gen-
eral concept of differentiability of an interval-valued function.

Using the notion of generalized Hukuhara differentiability, the Newton method is
developed and its convergence result is analyzed. We show that the proposed Newton
method is a local method and it has a convergence rate of order two. In order to
improve the Newton method to have the global convergence property, an updated
Newton method is also proposed.

This article is demonstrated in the following sequence. In the next section, we
define the basic terminologies and describe the optimization problems that are used
throughout the paper. In Sect. 2, we explore essential deficiencies of the existing ideas
on differentiability of interval-valued functions. We, then, introduce and interrelate
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the notions of gH -differentiability and gH -partial derivative of an interval-valued
function in Sect. 3. Section 4 presents the Newtonmethod, an updated Newtonmethod
and their convergence analysis. Finally, we give a short summary and a few suggestions
for future research in Sect. 5.

2 Preliminaries and terminologies

2.1 Notations and interval arithmetics

In this article, we employ the following notations.

• The bold letters, A, B, C, · · · , denote the closed and bounded intervals of the real
number setR. Any small letter, a, b, or c, · · · , represents a real number. To denote
the interval [0, 0] we use 0.

• The notation I (R) represents the set of all closed and bounded intervals in R. The
set I (R)k is the Cartesian product I (R) × I (R) · · · × I (R) (k times).

• The notation Ck
v is used to denote a k-tuple interval vector (C1,C2, · · · ,Ck)

T

whereC j is an element of I (R), j = 1, 2, . . . , k. ThusCk
v is an element of I (R)k .

In order to represent anA in I (R), we writeA = [a, a]. The intervalA in I (R) can
also be parametrically presented by the collection of a(t)’s where a(t) = a+ t (a−a),
t ∈ [0, 1].

It is well known that for two intervals A = [a, a] and B = [b, b] in I (R), their
addition, denoted by A ⊕ B, is defined as:

A ⊕ B = {
a(t1) + b(t2)

∣
∣ t1, t2 ∈ [0, 1]} = [a + b, a + b].

Similarly, a scalar multiplication by a real constant λ toA, denoted by λ�A, is defined
as:

λ � A = {
λa(t)

∣
∣ t ∈ [0, 1]} =

{ [λa, λa] if λ ≥ 0
[λa, λa] if λ < 0.

From the literature on the arithmetic of intervals [29,31,32,37,38], it is clear that
the usual definition of difference of two compact intervals A and B, which is defined
by A � B = {a(t1) − b(t2)| t1, t2 ∈ [0, 1]}, is not appealing, in connection with the
calculus of interval-valued functions, due to the following two reasons:

(i) difference between A and A is not {0}, and
(ii) ifC = A�B thenAmay not be equal toB⊕C. For instance, if we takeA = [1, 2]

and B = [3, 5], then C = A � B = [−4,−1]; thus, B ⊕ C = [−1, 4] �= A.

In order to overcome both the deficiencies of the usual difference between a pair of
compact intervalsA andB, Hukuhara [20] have defined the difference as the intervalC
such that A = B⊕C. Although this Hukuhara-difference succeeded to overcome the
deficiencies of the usual difference, this definition is again not so appealing, especially,
when we employ it in defining differentiability of interval-valued functions through
a limit of a Leibniz-like quotient. Because, the Hukuhara-difference may not always
exist for an arbitrary pair of compact intervals; for instance, if we take A = [1, 2] and
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B = [3, 5] then the Hukuhara-difference between A and B does not exist. It exists
only when the length of A is bigger than that of B [6].

Therefore towards defining the notion of differentiability of a multi-variable
interval-valued function, we require a suitable definition of difference between two
compact intervals. In this article, we use the following generalized Hukuhara differ-
ence (gH -difference, in short) between two compact intervals.

Definition 1 (gH-difference of intervals [6]). Let A and B be two elements of I (R).
The gH -difference between A and B is defined as the interval C such that

C = A �gH B ⇐⇒

⎧
⎪⎨

⎪⎩

A = B ⊕ C
or

B = A � C.

It is to be noted that C = A �gH B = [min{a − b, a − b},max{a − b, a − b}].
For a detailed account of the interrelations between Hukuhara-difference and gH -

difference, one can see [6]. Here it is to be mentioned that gH -difference between any
arbitrary pairs of intervals exists and it satisfy the equation A � A = {0}.

2.2 Interval-valued functions

The interval-valued functions have been presented in different ways by many
researchers since the pioneering work by Moore in 1966 [31]. The research articles
by Hansen [16], Wu [40], Bhurjee and Panda [2] and the references therein are main
stream of this topic. Broadly there are two different parametric representations of an
interval-valued function. Those as mentioned below.

2.2.1 Parametric representation of interval-valued function

Let FCk
v

: Rn → I (R) be an interval-valued function involving k interval coefficients

C1, C2, . . ., Ck ; we denote Ck
v = (C1,C2, . . . ,Ck)

T . If C j is the interval
[
c j , c j

]
,

then the interval vector Ck
v can be presented by

{
c(t)

∣
∣
∣ c(t) = (

c1(t1), c2(t2), . . . , ck(tk)
)T

, c j (t j ) = c j + t j (c j − c j ),

t = (t1, t2, . . . , tk)
T , 0 ≤ t j ≤ 1, j = 1, 2, . . . , k

}
.

Thus, parametrically, the function FCk
v
can be observed as a collection of bunch of

functions fc(t)’s where c(t) is a vector in Ck
v . That is to say for all x in Rn we have

FCk
v
(x) =

{
fc(t)(x)

∣
∣
∣ fc(t) : Rn → R, c(t) ∈ Ck

v, t ∈ [0, 1]k
}
. (2.1)
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Example 1 For instance, if we consider the function FC2
v
(x1, x2) = C1x1 ⊕ C2x22e

x1

with C1 = [1, 3] and C2 = [−2, 1], then FC2
v
is the collection of functions

f(c1(t1),c2(t2))T (x1, x2) = c1(t1)x1 + c2(t2)x22e
x1 = (1 + 2t1)x1 + (−2 + 3t2)x22e

x1 ,
where t1 and t2 are in [0, 1].

We can also have one other presentation of FCk
v
. Towards this end, we assume that

for each fixed x in Rn all fc(t)(x)’s are continuous in t . Let

f (x) = min
t∈[0,1]k

fc(t)(x) and f (x) = max
t∈[0,1]k

fc(t)(x).

Then, for each argument point x in R
n , FCk

v
(x), being a connected set in R, can be

presented by
FCk

v
(x) = {

λ f (x) + (1 − λ) f (x)
∣
∣0 ≤ λ ≤ 1

}
. (2.2)

Example 2 We consider the function FC2
v
in Example 1. Here

f (x1, x2) =
{
x1 − 2x22e

x1 if x1 ≥ 0

3x1 − 2x22e
x1 if x1 < 0

and

f (x1, x2) =
{
3x1 + x22e

x1 if x1 ≥ 0

x1 + x22e
x1 if x1 < 0.

Therefore, FCk
v
(x1, x2) can be presented by the class of functions

{
fλ(x)

∣
∣λ ∈ [0, 1]}

where

fλ(x1, x2) = λ f (x1, x2) + (1 − λ) f (x1, x2)

=
{

(1 + 2λ)x1 + (−2 + 3λ)x22e
x1 if x1 ≥ 0

(3 − 2λ)x1 + (−2 + 4λ)x22e
x1 if x1 < 0.

Although according to the parametric representations (2.1) and (2.2) of FCk
v
, for

each x ∈ R
n we have

FCk
v
(x) =

{
fc(t)(x)

∣
∣c(t) ∈ Ck

v, t ∈ [0, 1]k
}

=
[
f (x), f (x)

]

=
{
fλ(x)

∣
∣ fλ = λ f + (1 − λ) f , 0 ≤ λ ≤ 1

}
,

there are few important observations in this regard, which are mentioned below.

(1) An fc(t) may not be an fλ.
In order to observe so, let x0 be an element of Rn and we consider fc(t)(x0) for
some fixed c(t) inCk

v . Since the real number fc(t)(x0) lies in the intervalFCk
v
(x0) =
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[
f (x0), f (x0)

]
, there exists a λ0 ∈ [0, 1] such that fc(t)(x0) = λ0 f (x0) + (1 −

λ0) f (x0). This λ0 depends on the chosen c(t) as well as on x0.
If we vary x0 to some other point x1 inRn , then again there exists a λ1 ∈ [0, 1] such
that fc(t)(x1) = λ1 f (x1) + (1 − λ1) f (x1). It is quite natural that λ1 is different
from λ0. This observation supports the claim.

(2) f and f may not be identical to fc(0) and fc(1), respectively.

For instance, consider the functionFC2
v
in Example 1.Here for t = (0, 0) ∈ [0, 1]2,

fc(t)(x) = f(c1(0),c2(0))T (x1, x2) = x1 − 2x22e
x1

and for t = (1, 1) ∈ [0, 1]2,

fc(t)(x) = f(c1(1),c2(1))T (x1, x2) = 3x1 + x22e
x1 .

We note that f(c1(0),c2(0))T �= f and f(c1(1),c2(1))T �= f .

(3)
∫ 1
0 fλ(x)dλ may not be equal to

∫
t∈[0,1]k fc(t)(x)dt .

For example consider the function FC2
v
(x) = [1, 2] � ex�[2,3], x ∈ R.

Here ∫ 1

0
fλ(x)dλ = 1

2 ( f (x) + f (x)) =
{

1
2e

2x + e3x if x ≥ 0

e2x + 1
2e

3x if x < 0.

However,

∫

t∈[0,1]2
fc(t)(x)dt =

∫ 1

0

∫ 1

0

(
(1 + t1)e

(2+t2)x
)
dt2dt1 = 1

4

[
2e3x − 3e2x

]
for all x ∈ R.

2.2.2 Note on the existing differentiability of interval-valued function

According to various parametric and classical representations, there are different
approaches in the literature to develop calculus of interval-valued functions. The cal-
culus of single variable interval-valued functions have been rigorously formalized in
several articles (for details, see [6,29,37,38]) since the pioneering work by Markov
[30]. The research articles by Neumaier [33], Stahl [36] and the references therein are
the main stream of this topic. Recently, Bhurjee and Panda [2] defined differentiability
of a multi-variable interval-valued function FCk

v
: Rn → I (R) through the existence

of the limit

lim
h→0

FCk
v
(x + h) � FCk

v
(x)

‖h‖ . (2.3)

There are several issues against this definition. Those are mentioned below.

(1) The motivation behind the differentiability that is defined in [2] reads as the exis-
tence of differentiability of an interval-valued function FCk

v
(x) = [

f (x), f (x)
]

depends upon the differentiability of the boundary functions f (x) and f (x). How-
ever, this is not compatible with the definition of differentiability that is given in
[2].
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For instance, we consider the function FCk
v
in Example 1. Here, all fc(t)’s are dif-

ferentiable and hence, according to [2], so isFCk
v
. However, the boundary functions

f and f (see Example 2) are not differentiable at (0, 0).
(2) The reference [2] defined differentiability of FCk

v
under the assumption that all

underlying fc(t)’s are differentiable. Not only this is a very restrictive hypothesis,
the equality of

lim
h→0

1
‖h‖

(
FCk

v
(x0 + h) � FCk

v
(x0)

)

=
{
α(x0, t)

∣
∣t ∈ [0, 1]k, α(x0, t) = lim

h→0

1
‖h‖

(
fc(t)(x0 + h) − fc(t)(x0)

)
}

is questionable. For instance, consider the linear interval-valued function FC2
v
(x1,

x2) = [1, 2]x1 ⊕ [1, 2]x2. Here, for any c(t) in C2
v , fc(t)(x1, x2) = (1 + t1)x1 +

(1 + t2)x2 is differentiable at x0 = (0, 0). However the limit

lim
h→0

1
‖h‖

(
FCk

v
(x0 + h) � FCk

v
(x0)

)
= lim

(h1,h2)→(0,0)

[1,2]h1⊕[1,2]h2√
h21+h22

does not exist. Since, for h2 = 0 the limit reduces to limh1→0
[1,2]h1|h1| which does

not exist. Thus, the question of the mentioned equality cannot arise.
(3) A regular differentiable function may become nondifferentiable.

For instance, we consider FC4
v
(x1, x2) = C1x21 ⊕C2x22 ⊕C3x1 whereC1 = C2 =

C3 = [1, 1]. This function is, evidently, differentiable everywhere. However, at
x0 = (0, 0) the limit

lim
h→0

1

‖h‖
(
FCk

v
(x0 + h) � FCk

v
(x0)

)
= lim

(h1,h2)→(0,0)

h21 + h22 + h1√
h21 + h22

does not exist, and hence, FC4
v
is nondifferentiable according to [2].

(4) The equality of

∂FCk
v
(x∗)

∂xi
=
{

∂ fc(t)
∂xi

∣
∣c(t) ∈ Ck

v

}

is not always true.
For example consider the linear interval-valued function FC2

v
(x1, x2) = [1, 2]x1⊕

[1, 2]x2. Here, for any c(t) in C2
v , the partial derivatives of fc(t)(x1, x2) = (1 +

t1)x1 + (1 + t2)x2 exist and

∂ fc(t)
∂x1

= 1 + t1 = ∂ fc(t)
∂x2
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for all (x1, x2) in R2. However, we note that at x0 = (0, 0), none of the limits

lim
h1→0

[1,2]h1|h1| and lim
h2→0

[1,2]h2|h2|

exist and hence the partial derivatives of FC2
v
do not exist. Thus the question of the

mentioned equality cannot arise.
(5) A regular single variable differentiable function may become nondifferentiable.

For example consider FC = Cx where C = [1, 1]. This well-known identity
function is differentiable and its derivative value is ‘1’ across the points in R.
However, according to [2], FC is not differentiable, since limh→0

1
‖h‖

(
FC(x +

h) � FC(x)
) = limh→0

h
|h| does not exist for any x in R.

The item (6) indicates that if the denominator ‖h‖ in Limit (2.3) is replaced by h,
then the definition may become appropriate. But, this will not be suitable for multi-
variable functions.

The aforementioned paragraphs show that the notion of derivative and the associ-
ated analysis given in [2] requires further enquiry. Also, in addition, we can attempt
to redefine it for multi-variable interval-valued functions. One might guess that the
numerator in Limit (2.3) should be replaced by FCk

v
(x+h)�FCk

v
(x)�hT �∇FCk

v
(x).

However, surprisingly, this modification may not also be appropriate. Since, for any
pair of intervalsA andB, the differenceA�Bmay not exist. It exists only when length
ofA is bigger than that of B, since otherwiseA�Bmay not implyA = B⊕C. At this
situation, the notion of generalized-Hukuhara difference between a pair of intervals
may be an appropriate choice, since it is the most general definition of difference (for
details please see [6]).

Although, using the generalized-Hukuhara difference, Chalco-Cano et al. [6] have
defined differentiability for a special category of single variable interval-valued func-
tion, the notion of differentiability, partial derivative and their interrelations for any
generalmulti-variable interval-valued function is yet to be developed. The next section
defines and analyzes the same.

3 Differentiability of interval-valued functions

In this section,we develop a notion of differentiability ofmulti-variable interval-valued
functions which has a useful connection with efficient solution or non-dominated
solution of an interval optimization problem. Towards this end, at first, we give the
definition of continuity. Then, differentiability, partial derivatives and their interrela-
tions will be investigated.

In the following definitions, we assume that D ⊆ R
n is the domain of definition of

the interval-valued function FCk
v
.

Definition 2 (gH -continuity). Let x0 = (x01 , x
0
2 , · · · , x0n ) be an interior point of D

and h ∈ R
n be such that x0 + h ∈ D. The function FCk

v
is said to be continuous at x0,

if there exists E(FCk
v
(x0); h) ∈ I (R) with lim‖h‖→0 E(FCk

v
(x0); h) = 0 such that

FCk
v
(x0 + h) = FCk

v
(x0) ⊕ E(FCk

v
(x0); h). (3.1)
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Due to the definition of gH -difference, Eq. (3.1) implies and implemented by

lim‖h‖→0

(
FCk

v
(x0 + h) �gH FCk

v
(x0)

)
= 0.

Definition 3 (gH -partial derivative). Let x0 = (x01 , x
0
2 , · · · , x0n ) be an interior point

of D and h = (h1, h2, · · · , hn) ∈ R
n be such that x0+h ∈ D.We define a function�i

by �i (xi ) = FCk
v
(x01 , x

0
2 , · · · , x0i−1, xi , x

0
i+1, · · · , x0n ). If the generalized Hukuhara

derivative (gH -derivative, in short) of�i exists at x0i , which is defined by the existence
of the limit

lim
hi→0

�i (x0i + hi ) �gH �i (x0i )

hi
,

then we say that FCk
v
has the i th gH -partial derivative at x0.

Wedenote the i-th gH -partial derivative ofFCk
v
at x0 by DiFCk

v
(x0), i = 1, 2, . . . , n.

Note 1 It is evident that if DiFCk
v
(x0) exists, then �i (x0i + hi ) �gH �i (x0i ) can be

written as hi �
(
DiFCk

v
(x0) ⊕ Ei (FCk

v
(x0); h)

)
where lim‖h‖→0 Ei (FCk

v
(x0); h) = 0.

Definition 4 (gH -gradient). The gH -gradient. of an interval-valued function FCk
v
at

a point x0 ∈ D is defined by the interval vector

(
D1FCk

v
(x0), D2FCk

v
(x0), · · · , DnFCk

v
(x0)

)T
.

We denote this gH -gradient by ∇FCk
v
(x0).

Proposition 1 Let x0 be an element of D,�i be the function as defined in Definition 3
and �i (x) = [

φ
i
(x), φi (x)

]
for x ∈ D. If the i-th gH-partial derivative of FCk

v
exists

at x0, then one of the following cases holds

(i) DiFCk
v
(x0) =

[
min

{
φ′
i
(x0), φ

′
i (x0)

}
, max

{
φ′
i
(x0), φ

′
i (x0)

}];
(ii) (φ

i
)′−(x0), (φ i

)′+(x0), (φi )
′−(x0) and (φi )

′+(x0) exist and satisfy (φ
i
)′−(x0)

= (φi )
′+(x0) and (φ

i
)′+(x0) = (φi )

′−(x0). Moreover,

DiFCk
v
(x0) =

⎧
⎨

⎩

[
min

{
(φ

i
)′−(x0), (φi )

′−(x0)
}
, max

{
(φ

i
)′−(x0), (φi )

′−(x0)
}]

[
min

{
(φ

i
)′+(x0), (φi )

′+(x0)
}
, max

{
(φ

i
)′+(x0), (φi )

′+(x0)
}]

.

Proof The proof is followed by Theorem 3 of the article referred in [30].

Definition 5 (gH -differentiability). A function FCk
v

: D → I (R) is said to be gH -
differentiable at x0 in D if there exist two interval-valued functionsE(FCk

v
(x0); h) and

Lx0 : Rn → I (R) such that

FCk
v
(x0 + h) �gH FCk

v
(x0) = Lx0(h) ⊕ ‖h‖ � E(FCk

v
(x0); h) (3.2)
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for ‖h‖ < δ for some δ > 0, where lim‖h‖→0 E(FCk
v
(x0); h) = 0 and Lx0 is such a

function that satisfies

(i) Lx0(x + y) = Lx0(x) ⊕ Lx0(y) for all x, y ∈ D, and
(ii) Lx0(cx) = c � Lx0(x) for all c ∈ R and x ∈ D.

Remark 1 It is worth noting that lim‖h‖→0

(
FCk

v
(x0 + h) �gH FCk

v
(x0)

)
= 0. Hence,

every differentiable function FCk
v
is continuous.

Theorem 1 Let FCk
v
be gH-differentiable at x0. Then Lx0 exists for every h =

(h1, h2, . . . , hn)T in Rn and

Lx0(h) =
n∑

i=1

hi � DiFCk
v
(x0). (3.3)

Proof At h = (0, 0, · · · , 0)T ∈ R
n , Eq. (3.3) is trivially true since both the sides are

0.
We assume that h �= (0, 0, · · · , 0)T .
Since FCk

v
is differentiable at x0 we have

FCk
v
(x0 + h) �gH FCk

v
(x0) = Lx0(h) ⊕ ‖h‖ � E

(
FCk

v
(x0); h

)
(3.4)

for ‖h‖ < δ for some δ > 0, where lim‖h‖→0 E(FCk
v
(x0); h) = 0 with the desirable

properties of Lx0(h), which are mentioned in Definition 5.
In Eq. (3.4), we take h = tv for some t �= 0, v ∈ R

n and |t |‖v‖ < δ. Then ‖h‖ < δ.
Equation (3.4) now gives us

1
t �

(
FCk

v
(x0 + tv) �gH FCk

v
(x0)

)
= 1

t � Lx0(tv) ⊕ |t |‖v‖
t � E

(
FCk

v
(x0); h

)

⇒ lim
t→0

1
t �

(
FCk

v
(x0 + tv) �gH FCk

v
(x0)

)
= Lx0(v), since Lx0(tv) = t � Lx0(v).

In particular, choosing v = ei , the i th unit vector in the standard basis of Rn , we
obtain

lim
t→0

1
t �

(
FCk

v
(x0 + tei ) �gH FCk

v
(x0)

)
= Lx0(ei ).

Thus DiFCk
v
exists at x0 and equals to Lx0(ei ).

Using the properties of Lx0(h), we now have

Lx0(h) = Lx0(h1, h2, · · · , hn)

= Lx0(h1e1 + h2e2 + · · · + hnen)

= h1 � Lx0(e1) ⊕ h2 � Lx0(e2) ⊕ · · · ⊕ hn � Lx0(en)

=
n∑

i=1

hi � DiFCk
v
(x0).
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Note 2 It is worth mentioning that existence of gH -partial derivatives at x0 under the
assumption of gH -differentiability is a part of the conclusion of Theorem 1. It is also
to note that Lx0(h) can be written as hT � ∇FCk

v
(x0).

Theorem 2 Let x0 be an element of D. Let the gH-partial derivatives D1FCk
v
, D2FCk

v
,

· · · , DnFCk
v
exist in some neighborhood Nδ(x0) and be continuous at x0. Then FCk

v
is

gH-differentiable at x0.

Proof We will show that

FCk
v
(x0 + h) �gH FCk

v
(x0) = hT � ∇FCk

v
(x0) ⊕ ‖h‖ � E

(
FCk

v
(x0); h

)

where E(FCk
v
(x0); h) → 0 as ‖h‖ → 0. This will prove the result.

Let λ = ‖h‖ and h = λu where ‖u‖ = 1. We take λ to be small enough so
that x0 + h ∈ Nδ(x0). Note that h can be expressed in terms of its components as
u = u1e1 + u2e2 + · · · + unen , where ei is the i-th unit vector in the standard basis
of Rn .

Let us write the gH -difference FCk
v
(x0 + h) �gH FCk

v
(x0) as the following sum

FCk
v
(x0 + λu) �gH FCk

v
(x0) =

n∑

i=1

{
FCk

v
(x0 + λwi ) �gH FCk

v
(x0 + λwi−1)

}

where w0 = 0 ∈ R
n , wi = wi−1 + ui ei , i = 1, 2, . . . , n; here ui ∈ R.

Note that

FCk
v
(x0 + λwi ) �gH FCk

v
(x0 + λwi−1)

= FCk
v
(x0 + λwi−1 + λui ei ) �gH FCk

v
(x0 + λwi−1)

= FCk
v
(z0 + λui ei ) �gH FCk

v
(z0)wherez0 = x0 + λwi−1

= �i (z
0
i + λui ) �gH �i (z

0
i ),where�i is the function as defined in Definition 3

= λui �
(
DiFCk

v
(z0) ⊕ Ei (FCk

v
(z0), λui )

)
, referring to Note 1

where lim
λ→0

Ei

(
FCk

v
(z0), λui

)
= 0, i = 1, 2, · · · , n.

Therefore,

FCk
v
(x0 + h) �gH FCk

v
(x0)

= λ �
n∑

i=1

ui � DiFCk
v
(x0 + λwi−1) ⊕ λ �

n∑

i=1

ui � Ei

(
FCk

v
(x0); λui

)

= λ �
n∑

i=1

ui �
(
DiFCk

v
(x0) ⊕ E′

i

(
FCk

v
(x0); λwi−1

))
⊕ λ �

n∑

i=1

ui � Ei

(
FCk

v
(x0); λui

)

where E′
i

(
FCk

v
(x0); λwi−1

)
→ 0 as λ → 0.
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This is due to continuity of FCk
v
at x0.

=
n∑

i=1

λui � DiFCk
v
(x0) ⊕ λ �

n∑

i=1

(
E′
i (FCk

v
(x0); λwi−1) ⊕ ui � Ei (FCk

v
(x0); λui )

)

= hT � ∇FCk
v
(x0) ⊕ ‖h‖ � E

(
FCk

v
(x0); h

)

where E(FCk
v
(x0); h) = E′

i (FCk
v
(x0); λwi−1) ⊕ ui � Ei (FCk

v
(x0); λui ).

We note that lim‖h‖→0 E(FCk
v
(x0); h) = lim‖h‖→0

(
E′
i (FCk

v
(x0); λwi−1) ⊕ ui�

Ei (FCk
v
(x0); λui )

)
= 0. This completes the proof. ��

Proposition 2 Let at x0 ∈ D and the function FCk
v
is gH-differentiable. Then the

real-valued function

Ψ (x) =
∫ 1

tk=0

∫ 1

tk−1=0
· · ·

∫ 1

t1=0
f(c1(t1),c2(t2),··· ,ck (tk ))T (x)dt1dt2 · · · dtk

is differentiable at x0.

Proof As FCk
v
is gH -differentiable at x0 ∈ D, FCk

v
is continuous at x0.

We observe that each ci (ti ) = ci + ti
(
ci − ci

)
is a linear function in ti , 0 ≤ ti ≤ 1,

i = 1, 2, · · · , k.
Theproof is now readily followed from theobservation that f(c1(t1),c2(t2),··· ,ck (tk ))T(x0)

is continuous in (t1, t2, · · · , tk) over the compact set [0, 1]k . ��

In the rest of the paper, we write the function Ψ (x) by the short expression∫
t∈[0,1]k f(c(t)(x)dt where c(t) is the vector (c1(t1), c2(t2), · · · , ck(tk))T and t =

(t1, t2, · · · , tk)T .

Proposition 3 Let at x0 ∈ D, the function FCk
v
is m-times gH-differentiable. Then,

the real-valued function Ψ is m-times differentiable at x0.

Proof The proof follows from Proposition 2. ��

Definition 6 (gH -Hessian). Let the function FCk
v
be twice gH -differentiable at x0.

Then for each i , the function DiFCk
v
is gH -differentiable at x0. The second order partial

gH -derivative can be calculated as D2
i jFCk

v
=

{
∂2 fc(t)
∂xi ∂x j

∣
∣c(t) ∈ Ck

v

}
. The gH -Hessian

of FCk
v
at x0 can be defined by the n × n interval matrix

∇2FCk
v
(x0) =

(
D2
i jFCk

v
(x0)

)

n×n
.
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3.1 Interval optimization

In this sectionwe consider the following unconstrained IntervalOptimization Problem

min
x∈Rn

FCk
v
(x),

where FCk : Rn → I (R) is a twice continuously gH -differentiable function.
Since min

x∈Rn
FCk

v
(x) = min

x∈Rn

{
fc(t)(x)

∣
∣c(t) ∈ Ck

v

}
, the IOP can be treated as a multi-

objective optimization problem [2]. In order to investigate a solution concept for IOP,
we use the following partial ordering relation, which is similar to the usual dominance
relation between a pair of points in the Euclidean space.

Definition 7 (Dominance relation of intervals [2]). Let A and B be two intervals in
I (R).

(i) B is said to be dominated byA if a(t) ≤ b(t) for all t ∈ [0, 1], and then we write
A � B;

(ii) we say A �= B if there exists a t0 ∈ [0, 1] such that a(t0) �= b(t0);
(iii) B is said to be strictly dominated by A if A � B and A �= B, and then we write

A ≺ B.

Using this dominance relation on I (R), alike to the Pareto optimality or efficient
solution concept in multi-objective optimization problems, we use the following effi-
cient solution concept for IOPs.

Definition 8 (Efficient solution [2]) A feasible solution x̄ ∈ R
n is called a local

efficient solution of the IOP if there does not exist any x ∈ Nδ(x̄) such that FCk
v
(x) ≺

FCk
v
(x̄), where Nδ(x̄) is a δ-neighborhood of x̄ .
If a solution x̄ is efficient, then we call FCk

v
(x̄) as a non-dominated solution to IOP.

Theorem 3 (A characterization of efficient solutions). Let FCk
v
be an interval-valued

function. Let x̄ be a local minimizer of the function Ψ (x) = ∫
t∈[0,1]k fc(t)(x)dt . Then

x̄ is a local efficient solution of the IOP min
x∈Rn

FCk
v
(x).

Proof If possible let x̄ is not a local efficient solution of the considered IOP. Then, for
any δ > 0, there exists a point xδ ∈ Nδ(x̄) such that FCk

v
(xδ) ≺ FCk

v
(x̄). Therefore,

fc(t)(xδ) < fc(t)(x̄) for all t ∈ [0, 1]k . Hence

Ψ (xδ) =
∫

t∈[0,1]k
fc(t)(xδ)dt <

∫

t∈[0,1]k
fc(t)(x̄)dt = Ψ (x̄),

which is contradictory. This follows the result. ��
Remark 2 Theorem 3 gives a sufficient condition for a local efficient solution. It is to
be noted that a point x̄ ∈ R

n can be a local efficient solution to the IOP min
x∈Rn

FCk
v
(x),

without being a local minimizer of either or both of the lower and the upper functions
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f and f , respectively. For instance, if we take FC2
v
(x1, x2) = [1, 3]x21 ⊕ [0, 1]x1x2 ⊕

[−1, 3]x22 , then (0, 0) is a local efficient solution; however, (0, 0) is not a point of local
minimum of the lower function f , since for any δ > 0 we have f (0, δ) = −δ2 <

0 = f (0, 0). It is also to worth-noting that (0, 0) is a local minimizer of the function

Ψ (x1, x2) = 2x21 + 1
2 x1x2 + x22 .

4 Newton method

In this section, a Newton method is developed to find an efficient solution of the IOP
min
x∈Rn

FCk
v
(x). Towards this end, we assume the following conditions on the objective

function FCk
v
(x) : Rn → I (R):

(i) at each term of the following generated sequence {xm}, FCk
v
(xm) is well defined,

and
(ii) the function FCk

v
is twice continuously gH -differentiable at each point of {xm}.

Due to the assumption (ii), the values ∇FCk
v
(xm) and ∇2FCk

v
(xm) are well defined.

Let us consider the function

Ψ (x) =
∫

t∈[0,1]k
fc(t)(x)dt.

Taking into account Proposition 3, we can calculate ∇Ψ (xm) and ∇2Ψ (xm); also, Ψ
is twice differentiable.

With the help of Taylor’s formula, a quadratic approximation of Ψ (x), at xm , gives
us a function φ as follows:

φ(x) = Ψ (xm) + ∇Ψ (xm)T (x − xm) + 1

2

{
(x − xm)T ∇2Ψ (xm) (x − xm)

}
.

If x is a minimizer of Ψ , for a given xm , let us try to approximate x by a minimizer of
φ(x). The first order necessary condition of local optimality at x gives us ∇φ(x) = 0.
Hence,

∇Ψ (xm) + ∇2Ψ (xm) (x − xm) = 0.

Putting x = xm+1, we arrive at the next sequential point

xm+1 = xm − [∇2Ψ (xm)
]−1 ∇Ψ (xm), (4.1)

where
[∇2Ψ (xm)

]−1 is the inverse of the Hessian matrix ∇2Ψ (xm).
Thus starting with an initial approximation to a minimizer of φ, we can generate a

sequence of approximation to a minimizer of Ψ through Eq. (4.1). We may employ
the termination condition of the above process of generating the sequence {xm} as
‖xm+1 − xm‖ < ε or ‖∇Ψ (xm)‖ < ε where ε is a pre-specified tolerance level of
acceptable solution and ‖.‖ is the usual Euclidean norm on R

n .
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The algorithmic implementation of the above Newton method is presented in
Algorithm 1.

Algorithm 1 Newton Method
Require: Given the tolerance value ε.

Given the initial point x0 and the interval-valued function FCk
v
(x).

1: Set m = 0.
2: If ‖∇Ψ (xm)‖ < ε then Return xm as an efficient-solution and Stop.

Otherwise go to Step 3.
3: Compute Ψ (xm) = ∫

t∈[0,1]k fc(t)(x)dt , ∇Ψ (xm) and ∇2Ψ (xm).
4: Calculate

xm+1 = xm − [∇2Ψ (xm)]−1 ∇Ψ (xm).

5: Set m ← m + 1 and go to Step 2.

In the next subsection, we analyze the convergence of the developed Newton
method. It is to be mentioned that if {xm} converges and lim

m→∞ xm = x , then by

Theorem 3, x is an efficient solution of the considered IOP.

4.1 Convergence result of the Newton method

In this section, we prove the convergence of the sequence {xm} generated by Eq. (4.1).
At first, we show that for an interval-valued quadratic function, the sequence {xm} in
the Newton method converges in a single iteration. Then, the convergence rate of the
sequence for any general non-quadratic and non-linear function is investigated.

Theorem 4 Let FCk
v
(x) = 1

2 x
TAx ⊕BT x ⊕D be an interval-valued quadratic func-

tion, where

A is an n × n interval matrix
(
Ai j

)
n×n, Ai j = [

ai j , ai j
]
,

B is an n × 1 interval matrix
(
Bi
)
n×1, Bi = [

bi , bi
]
and

D is the interval [d, d].
Let the matrices (ai j )n×n and (ai j )n×n be positive definite. If we consider the IOP
min
x∈Rn

FCk
v
(x), then the Newton method converges to an efficient solution of the problem

with a single iteration.

Proof For the given objective function FCk
v
(x) = 1

2 x
TAx ⊕ BT x ⊕ D we have

fc(t)(x) = 1
2

n∑

i=1

n∑

j=1

ai j (ti j )xi x j +
n∑

i=1

bi (ti )xi + d(t ′)

whereai j (ti j ) = ai j+ti j
(
ai j − ai j

)
,bi (ti ) = bi+ti (bi−bi ) andd(t ′) = d+t ′(d−d);

the parameters ti j , ti and t ′ lie on [0, 1].
Let x0 be any arbitrary point of Rn .
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With the help of a Taylor quadratic approximation of the functions fc(t), at the point
x0, we obtain

Ψ (x) =
∫

t∈[0,1]k
fc(t)(x)dt = 1

4 (x − x0)T 1
2

(
ai j + ai j

)

n×n
(x − x0)+

1
2 (bi + bi )

T
n×1 (x − x0) + 1

2 (d + d).

If x is a point such that ∇Ψ (x) = 0, then x is a local minimum (indeed global) point
of Ψ , since ∇2Ψ (x) = (

ai j + ai j
)
n×n is a positive definite matrix. The equation

∇Ψ (x) = 0 gives

x = x0 −
(
(ai j + ai j )n×n

)−1
(bi + bi )n×1.

Theorem 3 shows that x is an efficient solution to the considered IOP.
Next, we start applying Newton method with the point x0 as the initial point. Then

Eq. (4.1) gives the next iteration point as

x1 = x0 −
(

∇2Ψ (x0)

)−1 (
∇Ψ (x0)

)

= x0 − (
(ai j + ai j

)
n×n)

−1(bi + bi )n×1

= x .

This completes the proof. ��
Remark 3 Theorem4 shows that if positive definiteness of an intervalmatrix is defined
as that of Bhurjee and Panda [2], the proposed Newton method for a positive definite
interval-valued quadratic form will converge to an efficient solution in one itera-
tion. However, for a non-quadratic function, obviously, the same result cannot be
established. Fortunately, appealing Propositions 2 and 3, for a twice continuously
gH -differentiable function FCk

v
, near a local minimizer of Ψ = ∫

t∈[0,1]k fc(t), Ψ can
be approximated in a quadratic form. Thus if the initial point of the algorithm is
very close to a minimizer of Ψ (x), the Newton method will converge in a very few
iterations. The next Theorem 5 assures this convergence.

Theorem 5 Let FCk
v
be a twice continuously gH-differentiable function and the m-

th sequential point xm generated by Eq. (4.1) be sufficiently close to a solution x of
∇Ψ (x) = 0. Let theHessian∇2Ψ be positive definite at x and each entry of∇2 fc(t)(x)
is bounded in a close enough neighborhood of x for all c(t) in Ck

v . Then, the sequence
{xm} in the Newton method is well defined and quadratically converges to x.

Proof Let εm = xm − x .
With the help of Taylor’s approximation of ∇ fc(t)(x) at xm , we obtain

∇ fc(t)(x) = ∇ fc(t)(x
m) − ∇2 fc(t)(x

m)εm + O(‖εm‖2)
and hence ∇Ψ (x) = ∇Ψ (xm) − ∇2Ψ (xm)εm + O(‖εm‖2).

}

(4.2)
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Since FCk
v
is twice gH -differentiable, using Propositions 2 and 3, Ψ is twice con-

tinuously differentiable. Thus a neighborhood property of a continuous function gives
that ∇2Ψ is positive definite in a neighborhood N (x) of x , because ∇2Ψ is positive
definite at x .

Therefore, in N (x),∇2Ψ is invertible, and hence {xm}, defined by Eq. (4.1), is well
defined.

According to the hypothesis, from Eq. (4.2), for all x ∈ N (x), we have

∇Ψ (xm) − ∇2Ψ (xm)εm + O(‖εm‖2) = 0

⇒ there exists c1 > 0 such that ‖∇Ψ (xm) − ∇2Ψ (xm)εm‖ ≤ c1‖εm‖2
⇒ ‖∇Ψ (xm) − ∇2Ψ (xm)(xm − x)‖ ≤ c1‖εm‖2
⇒ ‖[∇2Ψ (xm)]−1∇Ψ (xm) − xm + x‖ < c1c2‖εm‖2

where c2 be such that each entry of [∇2Ψ (xm)]−1 is less than c2

⇒ ‖xm+1 − x‖ < c1c2‖εm‖2
⇒ ‖εm+1‖ < c1c2‖εm‖2.

Let c = |c1c2| + 1. Let α ∈ (0, 1) be a number such that

N α
c
(x) = {

x : ‖x − x‖ < α
c

} ⊂ N (x).

If xm ∈ N α
c
(x), then ‖εm+1‖ < c‖εm‖2 < α2

c < α
c . Thus, x

m+1 ∈ N α
c
(x).

Using the principle of induction, we note that Newton iteration sequence {xm} is
well-defined and ‖εm‖ → 0 asm → ∞. Therefore, under the stated conditions, {xm},
given by Eq. (4.1) converges quadratically to x . ��

4.2 An updated Newton method

Although Theorem 5 shows quadratic rate of convergence of the Newton sequence
{xm}, unless the starting point and hence xm is sufficiently closer to x such that xm lies
in N α

c
(x), the function ∇2Ψ may not be positive definite and {xm} may not converge

to x . Therefore, the developed Newton method is a local method. In order to excel the
local convergence to a global convergence, we can update Eq. (4.1) as follows so as
to maintain a sufficient decrease of the function Ψ . Instead of Eq. (4.1), we consider

xm+1 = xm + αmd
m, (4.3)

where αm = argminα≥0 Ψ (xm + αdm) and dm = −[∇2Ψ (xm)]−1 ∇Ψ (xm). We
call the sequence {xm}, generated in Eq. (4.3), as an updated Newton sequence.

The following theorem proves global convergence of the sequence generated by
Eq. (4.3).
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Theorem 6 Let the function FCk
v

: R
n → I (R) be twice continuously gH-

differentiable. Let x0 be any point of Rn. We consider x0 as the starting point of the
updated Newton iteration {xm} as in Eq. (4.3). Let the angle θm = � (−∇Ψ (xm), dm)

be uniformly bounded away from π
2 , i.e., θm ≤ π

2 − θ for some θ > 0 for all m
in N. Then, {xm} converges to an efficient solution x of min

x∈Rn
FCk

v
(x) where x lies in

S(FCk
v
) = {x ∈ R

n : FCk
v
(x) � FCk

v
(x0)}.

Proof We observe that the set S(FCk
v
) is a compact subset of Rn , because

S(FCk
v
) =

⋂

t∈[0,1]k
f −1
c(t)

(
(−∞, fc(t)(x0)]

)

and each of fc(t) is continuous for all t in [0, 1]k .
Since Ψ (x) is monotonically descent along the direction of dm and x0 ∈ S(FCk

v
),

we have xm ∈ S(FCk
v
).

Hence there exists a limit point x in S(FCk
v
) with limm→∞ xm = x ; further,

limm→∞ Ψ (xm) = Ψ (x) and limm→∞ ∇Ψ (xm) = ∇Ψ (x).
We will show that ∇Ψ (x) = 0.
If possible let ∇Ψ (x) �= 0 and hence ‖∇Ψ (xm)‖ ≥ ε for all m in N for some

ε > 0.
Then,

−∇Ψ (xm)T ˆdm = ‖∇Ψ (xm)‖ cos θm, where ˆdm = dm
‖dm‖

≥ ε sin θ = ε0, say.

Herewe observe that for some ξm , lies in the line segment joining xm and xm+αdm ,

Ψ (xm + αdm) = Ψ (xm) + α∇Ψ (ξm)T dm

= Ψ (xm) + α∇Ψ (xm)T dm + α(∇Ψ (ξm) − ∇Ψ (xm))

≤ Ψ (xm) + α‖dm‖
(
∇Ψ (xm)T ˆdm + ‖∇Ψ (ξm) − ∇Ψ (xm)‖

)
.

As ∇Ψ (x) is continuous on S(FCk
v
) and S(FCk

v
) is compact, ∇Ψ is uniformly

continuous on S(FCk
v
). Hence, there exists some c > 0 such that satisfying 0 ≤

α‖dm‖ ≤ c, we have ‖∇Ψ (ξm) − ∇Ψ (xm)‖ ≤ ε0
2 .

Therefore,

Ψ (xm + c ˆdm) ≤ Ψ (xm) + c
(∇Ψ (ξm)T ˆdm + ε0

)

≤ Ψ (xm) − cε0 + c ε0
2

≤ Ψ (xm) − c ε0
2 ,

which contradicts that limm→∞ Ψ (xm) = Ψ (x). Hence ∇Ψ (x) = 0 and Theorem 3
completes the proof. ��

Analgorithmic implementation of the above updatedNewtonmethod is given below
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Algorithm 2 Updated Newton Method
Require: Given the tolerance value ε.

Given the initial point x0 and the interval-valued function FCk
v
(x).

1: Set m = 0.
2: If ‖∇Ψ (xm)‖ < ε then Return xm as an efficient-solution and Stop.

Otherwise go to Step 3.

3: Compute FCk
v
(xm) =

[
f (xm), f (xm)

]
, Ψ (xm) = ∫

t∈[0,1]k fc(t)(xm)dt , ∇Ψ (xm)

and ∇2Ψ (xm).
4: Calculate

xm+1 = xm + αmd
m,

where αm = argminα≥0 Ψ (xm + αdm) and dm = −[∇2Ψ (xm)]−1 ∇Ψ (xm).
5: Set m ← m + 1 and go to Step 2.

4.3 Illustrative examples

Example 3 Consider the following quadratic IOP:

minFC5
v
(x1, x2) = [1, 2]x1 ⊕ [−1, 2]x2 ⊕ [1, 3]x21 ⊕ [0, 1]x1x2 ⊕ [2, 3]x22 , x1 ∈ R, x2 ∈ R.

In this example,

fc(t)(x1, x2) = (1 + t1)x1 + (−1 + 3t2)x2 + (1 + 2t3)x
2
1 + t4x1x2 + (2 + t5)x

2
2 .

It is to observe that for any t ∈ [0, 1]5, fc(t) is twice differentiable, and hence the
function Ψ (x1, x2) is a twice gH -differentiable function. Here,

Ψ (x1, x2) = 3
2 x1 + 1

2 x2 + 2x21 + 1
2 x1x2 + 5

2 x
2
2 .

Application ofAlgorithm1 produces the Table 1with the initial point (x01 , x
0
2 ) = (3, 2)

and the level of accuracy ε = 10−4.
Table 1 shows that the point (x1, x2) = (−0.367,−0.063) is an efficient solution

of the IOP under consideration. Since the objective function is a quadratic interval-
valued function, the proposed Newton method converges at the single iteration, as
assured by Theorem 4.

Example 4 In this example we consider the following non-linear and non-quadratic
IOP:

minFC5
v
(x1, x2) = [−3, 0]x21 ⊕ [0, 1]x32 ⊕ [−2,−1]x22 ⊕ [1, 2]x21 x2 ⊕ [1, 3], x1 ∈ R, x2 ∈ R.

With the help of the parametric representation of intervals, for any t = (t1, t2, t3, t4, t5)
∈ [0, 1]5 we obtain

fc(t)(x1, x2) = (−3 + 3t1)x
2
1 + t2x

3
2 + (−2 + t3)x

2
2 + (1 + t4)x

2
1 x2 + (1 + 2t5).
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Table 1 Performance of Newton method (Algorithm 1) on Example 3

m
(
xm1 , xm2

)
FCk

v

(
xm1 , xm2

) ∇Ψ (xm1 , xm2 ) ‖∇Ψ (xm1 , xm2 )‖

0 (3, 2) [18, 54] (14.500,12.000)T 18.822

1 (−0.367, −0.063) [−0.718, 0.136] 10−15 ∗ (−0.666, 0.444)T 8.006× 10−16

Here, the function FC5
v
(x1, x2) is a twice gH -differentiable function and

Ψ (x1, x2) = − 3
2 x

2
1 + 1

2 x
3
2 − 3

2 x
2
2 + 3

2 x
2
1 x2 + 2.

We now calculate the sequence {xm} to produce an efficient solution x using the
following equation:

xm+1 = xm − (∇2Ψ (xm))−1 ∇Ψ (xm)

where

∇Ψ (x1, x2) = 1
2

[
6x1x2 − 6x2

3x21 + 3x22 − 6x1

]

and

∇2Ψ (x1, x2) =
[

3x2 3x1 − 3
3x1 − 3 3x2

]

Applying Algorithm 1, with the accuracy level of ε = 10−4 and the initial point
(x01 , x

0
2 ) = (−2, 4), we get the following solution Table 2.

Table 2 shows that the point to which the sequence {xm} converges in five iterations
producing (x1, x2) = (0, 2) as an efficient solution of the considered IOP.

Table 2 Performance of Newton Method (Algorithm 1) on Example 4

m

(
xm1 , xm2

)
FCk

v

(
xm1 , xm2

)
∇Ψ

(
xm1 , xm2

) ∥
∥
∥
∥∇Ψ

(
xm1 , xm2

)∥∥
∥
∥

0 (−2,4) [−27, 83] (18, −18)T 25.456

1 (−0.800, 2.800) [−14.808, 20.696] (4.320, −4.320)T 6.110

2 (−0.246, 2.246) [−9.136, 9.559] (0.920, −0.920)T 1.301

3 (−0.041, 2.041) [−7.329, 7.340] (0.127, −0.127)T 0.179

4 (−0.002, 2.002) [−7.012, 7.012] (0.004, −0.004)T 0.006

5 (−0.000, 2.000) [−7.000, 7.000] 10−4∗(0.069, −0.069)T 0.983 ×10−5
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Table 3 Performance of updated Newton algorithm 2 on Example 4 with initial point (−2, 4)

m

(
xm1 , xm2

) (
dm1 , dm2

)
FCk

v

(
xm1 , xm2

)
∇Ψ

(
xm1 , xm2

) ∥
∥
∥
∥∇Ψ

(
xm1 , xm2

)∥∥
∥
∥

0 (−2, 4) (1.200, −1.2000) [−27, 83] (18, −18)T 25.456

1 (2.000, −0.000) 10−5∗(−0.052, 0.052) [−7.001, 7.000] 10−5(0.314, 0.314)T 10−6∗4.447

Table 4 Performance of the updated Newton algorithm 2 on Example 4 with initial point (−3, 6)

m
(
xm1 , xm2

) (
dm1 , dm2

)
FCk

v

(
xm1 , xm2

) ∇Ψ
(
xm1 , xm2

) ‖∇Ψ (xm1 , xm2 )‖

0 (−3, 6) (1.594, −2.344) [−44, 291] (49.5, 49.5)T 66.897

1 (−0.187, 1.863) (1.594, −0.176) [−5.983, 6.128] (−0.329, −0.484)T 0.586

2 (−0.005, 2.006) (0.005, −0.006) [−7.048, 7.048] (0.017, −0.014)T 0.022

3 (−0.000, 2.000) 10−5∗(0.233, 0.383) [−7.000, 7.000] 10−4∗(−0.115, −0.016)T 1.345×10−5

Example 5 In this example we consider to solve Example 4 through the updated
Newton method (Algorithm 2).

As observed in Table 2, with the accuracy level of ε = 10−4 and the initial point
(x01 , x

0
2 ) = (-2, 4), the proposed Newton Algorithm 1 converges in five iterations.

Surprisingly, the modified Newton Algorithm 2 converges in a single iteration as
shown in the Table 3.

For this example, we can also observe that with the initial point (x01 , x
0
2 ) =

(−3, 6), the proposed Newton method (Algorithm 1) does not converge, because it
is not sufficiently close to any efficient solution of the problem. The updated New-
ton method (Algorithm 2), however, with the same initial point, converges in three
iterations with the level of accuracy ε = 10−4. Algorithm 2 produces the following
solution Table 4 in this case.

5 Conclusion

The contribution of the paper is two-fold. First, in this paper, a Newton method has
been proposed to capture an efficient solution of an IOP. Second, towards devel-
oping the method, the notions of gH -differentiability and gH -partial derivative of
interval-valued function are defined and interrelated. It is shown that the proposed
Newton method for IOPs has a quadratic rate of convergence, and for an interval-
valued quadratic function, the method converges with a single iteration. It order to
improve the local convergence of the proposed Newton method to a global conver-
gence, an updated Newton method is also demonstrated. Several numerical examples
have been given towards illustrating the methodologies.

In the updated Newton sequence {xm} (refer to Eq. (4.3)) an exact line search
technique has been employed to promote that sequence to have a global conver-
gence. An inexact line search [34] could have been also used in place of the exact

123



730 D. Ghosh

one. A future research may be done in this topic. However, there is a reason to
employ the exact line search. The proposed Newtonmethod assumes that the objective
function is twice continuously gH -differentiable. Under the differentiability assump-
tion, an exact line search is usually preferable, and often outperforms an inexact line
search technique. In order to further improve the proposed Newton method, a future
research may be done similar to proposing quasi-Newton methods in classical opti-
mization.

It is important to observe that this article intended to characterize only one effi-
cient solution of an IOP. Alike to capturing the complete Pareto set in multi-objective
optimization [13–15] the characterization of the complete efficient solution set for an
IOP is not performed yet in the literature. This topic may be covered in the next step
of this research work. It is worth mentioning here that the efficient solution concept
solely depend on the ordering being used. In analogy to the methodology proposed
here, future researchers can modify the steps in the proposed algorithms according to
the different ordering or preference indexes [35].

It is also to note that in the literature efficient solutions of IOPs have not been
observed form geometrical viewpoint as it is done for fuzzy multi-objective optimiza-
tion problems [5,7,8,10–12]. Future researchers can perform some research work on
the topic of geometrical observation of the efficient points that are obtained through
the results of this paper.
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