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1 Introduction

The hibernation of the plants is that the plants stop growing, the bud of a plant or other
organ growth came to a halt, only to maintain the weak life period. It is formed during
the development of the system, and is a kind of adversity adaptation characteristics.
One of the two hibernation state is forced dormancy: due to unfavorable environmental
conditions (temperature, drought stress and) temporarily stop growing phenomenon,
stress elimination recovery growth. By hibernating, animals can reduce their energy
requirements by at least ninety percent and survive for many months while slowly
catabolizing body lipid reserves [1]. Hibernation constitutes an effective strategy of
animals in order to correspond survive cold environments and limited availability of
food [2].

The chemostat is a basic piece of laboratory apparatus. The advantages that certain
of the biological parameters assumed to influence the outcomes can be controlled
by the experimenters. The chemostat plays an important role in bioprocessing, such
as ecology, microbiology, chemical engineering, etc. Smith and Waltman had made
discussion about the chemostat model in [3]. The models contain discrete time delays
which account for time which laps between uptaked of nutrient and the assimilation of
nutrient into viable biomass. Many authors [4–9] discussed various aspects of models
with discrete time delay. Especially, Ellermeyer, Hendrix, and Ghoochan [10] did a
theoretical and empirical investigation of delayed growth response in the continuous
culture of bacteria. Delays occur naturally in biological system by two obvious sources
of delays: delays due to the cell cycle; and delays due to the possibility the organism
stores the nutrient. Delays appear in a chemostat model in Bush and Cook [11]. They
have investigated a model of growth of one organism in the chemostat with a delay
in the intrinsic growth rate of the microorganism but with no delay in the substrate
equation. Bulert et al. [12] studied a chemostat model with periodic washout rate. Hale
andSomolinas [13],Hsu et al. [14],Wolkowicz andZhao [15] investigated competition
in chemostat.Many researchers indicated that it was important to considermodelswith
periodic perturbations, since thesemodels may be quite naturally exposed inmany real
world phenomena, for instance, food supply, mating habits, cross flooding in rainstorm
season. In fact, the perturbations such as cross flooding in rainstorm which are not
suitable to be considered with continuity. These perturbations bring sudden changes to
the system. Systems with sudden perturbations are involving an impulsive differential
equations which have been studied intensively and systematically in [16,17]. There
are few papers [18–22] research the chemostat model with impulsive perturbations on
nutrients.

In chemostat’s simplest form, the system approximates conditions for plankton
growth in lakes, where the limiting nutrients such as silica and phosphate are supplied
from streams draining the watershed. In the lakes, the plankton population move-
ments are subject to many factors, such as currents and turbulent lateral diffusion ( cf.
Levin and Segel [23], Mimura [24], Okubo [25], Freedman and Ruan [26], Wang and
Wolkowicz [27]), Ruan [28] proposed a diffusive plankton-nutrient interaction model
with delayed nutrient recycling and delayed growth response and studied Turing insta-
bility and the existence of travelling wave solutions. However, they did not investigate
a chemostat model with hibernation and impulsive diffusion on nutrients.
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The organizations of the paper are as following. In Sect. 2, we introduce a plankton-
nutrient chemostat model with employing impulsive switched systems. In Sect. 3, we
present some lemmas. Our main results are stated and proven in Sect. 4. Finally, a
brief discussion in Sect. 5.

2 The model

In this section, a plankton-nutrient chemostat model with employing impulsive
switched systems is presented:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ds1(t)

dt
= D(s01 − s1(t)),

ds2(t)

dt
= −Ds2(t) − m

k1
× s2(t)x(t)

k + s2(t)
,

dx(t)

dt
= −Dx(t) + ms2(t)x(t)

k + s2(t)
,

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

t ∈ (nτ, (n + l)τ ], n = 1, 2 . . . ,

�s1(t) = −ds1(t),
�s2(t) = ds1(t),
�x(t) = 0,

⎫
⎬

⎭
t = (n + l)τ, n = 1, 2 . . . ,

ds1(t)

dt
= D(s01 − s1(t)),

ds2(t)

dt
= −Ds2(t),

dx(t)

dt
= −d1x(t),

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

t ∈ ((n + l)τ, (n + 1)τ ], n = 1, 2 . . . ,

�s1(t) = μ1,

�s2(t) = μ2,

�x(t) = 0,

⎫
⎬

⎭
t = (n + 1)τ, n = 1, 2 . . . ,

(2.1)

It is assumed that System (2.1) is composed of river and reservoir connected by impul-
sive diffusion. No nutrient input is assumed in the reservoir. Nutrient input is assumed
in the river from upper stream. s1(t) denotes the concentration of the nutrient in the
river at time t . s2(t) denotes the concentration of the nutrient in reservoir at time t .
x(t) denotes the concentration of the the plankton in the reservoir at time t . s01 denotes
the input nutrient concentration in the river. D denotes the input rate from the lakes
containing the substrate and the wash-out rate of substrate and plankton by products
from the reservoir. m > 0 is the uptake constants of the nutrient. k1 > 0 is the yield
of plankton per unit mass of nutrient. 0 < d < 1 is diffusive rate from the river to the
reservoir unilaterally. d1 is the death rate of the plankton in the intervals of hibernation.
It is assumed here that the net exchange from the river (s1(t)) to the reservoir (s2(t))
is proportional to the difference s1(t) − s2(t) of concentration of the nutrient. The
Michaelis-Menten function s2(t)

k+s2(t)
indicates the consumption rate of nutrient by the

plankton, where k > 0 is the half-saturation constant or Michaelis-Menten constant.
The impulsive diffusion occurs every τ period (τ > 0), the system evolves from its
initial state without being further affected by diffusion until the next pulse appears.
�si = si ((n + l)τ+) − si ((n + l)τ )(i = 1, 2), and s1((n + l)τ+) represents the
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concentration of the nutrient in the the river immediately after the nth diffusion pulse
at time t = nτ , s2((n + l)τ+) represents the concentration of the nutrient in the the
reservoir immediately after the nth diffusion pulse at time t = nτ , while s1((n + l)τ )

represents the concentration of the nutrient in the river before the nth diffusion pulse at
time t , s2((n+ l)τ ) represents the concentration of the nutrient in the reservoir before
the nth diffusion pulse at time t = (n + l)τ, n = 0, 1, 2, . . .. There are two intervals
are separated in the period of System (2.1) for the effect climate, that is normal sea-
sons and draught seasons. The plankton is regular growing in the normal seasons, and
the plankton is in hibernation in the drought seasons. t = (n + l)τ are moments of
torrential rain, the nutrient is diffusing between rivers and reservoir in moments of
torrential rain. t = (n + 1)τ are moments of rainy season, the amount of nutrients μ1
and μ2 are coming from soil all around in moments of rainy season. The purpose of
this paper is to prove that the System (2.1) has a plankton-extinction periodic solution,
further, it is globally asymptotically stable, and also prove System (2.1) is permanent.

3 The lemma

The solution of System (2.1), denote by X (t) = (s1(t), s2(t), x(t))T , is a piecewise
continuous function X :R+ → R3+. X (t) is continuous on (nτ, (n + l)τ ] and ((n +
l)τ, (n + 1)τ ](n ∈ Z+). X ((n + l)τ+) = limt→(n+l)τ+ X (t) and X ((n + 1)τ+) =
limt→(n+1)τ+ X (t) exist. Obviously the global existence and uniqueness of solutions
of (2.1) is guaranteed by the smoothness properties of f , which denotes the mapping
defined by right-side of System (2.1) [16].

According to the biological meanings, it is assumed that s1(t) ≥ 0, s2(t) ≥ 0 and
x(t) ≥ 0.Now,wewill show that all solutions of System (2.1) are uniformly ultimately
bounded.

Lemma 3.1 There exists a constant M > 0 such that s1(t) ≤ M, s2(t) ≤ M, x(t) ≤
M, for each solution (s1(t), s2(t), x(t)) of (2.1) with all t large enough.

Proof Define V (t) = s1(t) + s2(t) + 1
k1
x(t) and take λ = min{D, d1}. When t ∈

[nτ, (n + l)τ ), we have

dV (t)

dt
+ λV (t) = Ds01 .

When t ∈ [(n + l)τ, (n + 1)τ ), we have

dV (t)

dt
+ λV (t) ≤ Ds01 .

When t = (n + l)τ, we also have

V (nτ+) = V (nτ).

When t = (n + 1)τ, we also have

V (nτ+) = V (nτ) + μ1 + μ2.
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By Lemma 2.3. ( it can been seen in [16]), for t ∈ (nτ, (n + 1)τ ] , we obtain

V (t) ≤ V (0) exp(−λt) + Ds01
λ

(1 − e−λt ) + (μ1 + μ2)
e−λ(t−τ)

1 − eλτ
+ (μ1 + μ2)

eλτ

eλτ − 1

→ Ds01
λ

+ (μ1 + μ2)
eλτ

eλτ − 1
, as t → ∞.

So V (t) is uniformly ultimately bounded. Hence, by the definition of V (t), there exists
a constant M > 0 such that s1(t) ≤ M, s2(t) ≤ M, x(t) ≤ k1M for all t large enough.
The proof is complete. �	
If x(t) = 0, the subsystem of (2.1) is written as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ds1(t)

dt
= D(s01 − s1(t)),

ds2(t)

dt
= −Ds2(t),

⎫
⎪⎬

⎪⎭
t ∈ (nτ, (n + l)τ ], n = 1, 2 . . . ,

�s1(t) = −ds1(t),

�s2(t) = ds1(t),

}

t = (n + l)τ, n = 1, 2 . . . ,

ds1(t)

dt
= D(s01 − s1(t)),

ds2(t)

dt
= −Ds2(t),

⎫
⎪⎬

⎪⎭
t ∈ ((n + l)τ, (n + 1)τ ], n = 1, 2 . . . ,

�s1(t) = μ1,

�s2(t) = μ2,

}

t = (n + 1)τ, n = 1, 2 . . . ,

(3.1)

Integrating and solving the first two equations of System (3.1) between pulses, we
have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

s1(t) =
{
s01 − [s01 − s1(nτ+)]e−D(t−nτ),

s2(nτ+)e−D(t−nτ),

}

nτ < t ≤ (n + l)τ.

s2(t) =
{
s01 − [s01 − s1((n + l)τ+)]e−D(t−(n+l)τ ),

s2((n + l)τ+)e−D(t−(n+l)τ ),

}

(n + l)τ < t ≤ (n + 1)τ.

(3.2)

Let A = (1 − e−D(1−l)τ ) + (1 − d)e−D(1−l)τ − (1 − d)e−Dτ )s01 + μ1, B =
ds01 (e

−D(1−l)τ − e−Dτ ) + μ2. Considering the third,fourth,seventh and eighth equa-
tions of System (3.1), we have the stroboscopic map of System (3.1) as following:

{
s1((n + 1)τ+) = (1 − d)e−Dτ s1(nτ+) + A,

s2((n + 1)τ+) = de−Dτ s1(nτ+) + e−Dτ s2(nτ+) + B.
(3.3)

Equation (3.3) are difference equations. They describe the the concentration of the
nutrients diffusing from river to reservoir at a pulse in terms of values at the previous
pulse. The dynamical behaviors of System (3.3)withEq. (3.2) determine the dynamical
behaviors of System (3.1). So we will devote to investigate System (3.3).
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From System (3.3), we can easily have a unique fixed point of System (3.3) as
following ⎧

⎪⎪⎨

⎪⎪⎩

s∗
1 = A

1 − (1 − d)e−Dτ
> 0,

s∗
2 = B[1 − (1 − d)e−Dτ ] + Ade−Dτ

(1 − e−Dτ )[1 − (1 − d)e−Dτ ] > 0.
(3.4)

To write System (3.3) as a map, we define the map F : R2+ → R2+:
{
F1(x) = (1 − d)e−Dτ x1 + A,

F2(x) = de−Dτ x1 + e−Dτ x2 + B.
(3.5)

F(x) is the map evaluated at the point x = (x1, x2) ∈ R2+. Consequently, in system
(3.2), Fn describes the concentration of the nutrients in the time nτ .

Then we have the following lemmas:

Lemma 3.2 In System (3.3), every point has a bounded orbit.

Proof For each i = 1, 2 and each point x ∈ R2+, we need to show each of the sequence
{Fn

i (x)} is bounded.
From (3.5), if x1 < x2, we obtain that

max{F1(x), F2(x)} ≤ x2.

On the other hand, if x1 > x2, we also obtain that

max{F1(x), F2(x)} ≤ x1.

Consequently,

max{F1(x), F2(x)} ≤ max{x1, x2}.

Hence, the sequence{Fn
i (x)} is bounded, that is, for System (3.3), every point has a

bounded orbit. �	
Lemma 3.3 [29] Let T : Rn+ → Rn+ be continuous, C1 in int (Rn+), and suppose
DT (0) exists with limx→0,x>0 DT (x) = DT (0). In addition, assume

(a) DT (x) > 0, if x > 0;
(b) DT (y) < DT (x), if 0 < x < y;

If T (0) = 0, Let λ = ρ(DT (0)). If λ ≤ 1, for every x > 0, T n(x) → 0 as n → ∞;
if λ ≥ 1, then either T n(x) → 0 as n → ∞ for every x > 0 or there exists a unique
nonzero fixed point q of T . In the latter case, q > 0 and for every x > 0, T n(x) → q
as n → ∞.

If T (0) �= 0, then either T n(x) → 0 as n → ∞ for every x > 0 or there exists a
unique fixed point q of T . In the latter case, q > 0 and for every x > 0, T n(x) → q
as n → ∞.
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According to Lemmas 3.2 and 3.3, and doing similarly to Lemma 4.1 [21] and
Theorem 4.1 [21], one can easily obtain Lemma 3.4 as the following:

Lemma 3.4 For every point (x1, x2) > (0, 0) of System (3.5), then have

Fn(x) → (s∗
1 , s

∗
2 ), as n → ∞.

Remark 3.5 Lemma 3.4 implies that the fixed point (s∗
1 , s

∗
2 ) of F is globally stable.

So all trajectories of (3.1) approach the positive periodic solution (˜s1(t), ˜s2(t)) with
period τ , where
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

˜s1(t) =

⎧
⎪⎨

⎪⎩

s01 − [
s01 − s∗

1

]
e−D(t−nτ), nτ < t ≤ (n + l)τ,

s01 −
[
s01−(1 − d)

(
s01−(

s01−s∗
1

)
e−Dlτ

)]
e−D(t−(n+l)τ ), (n + l)τ < t ≤ (n+1)τ,

˜s2(t) =
⎧
⎨

⎩

s∗
2e

−D(t−nτ), nτ < t ≤ (n + l)τ.
[
s∗
2e

−Dlτ + d
(
s01 − (

s01 − s∗
1

)
e−Dlτ

)]
e−D(t−(n+l)τ ), (n + l)τ < t ≤ (n + 1)τ

(3.6)

4 Dynamical behaviors of (2.1)

From the above discussion, we know that there exists a plankton-extinction boundary
periodic solution (˜s1(t), ˜s2(t), 0) of System (2.1). In this section, we will prove that
the plankton-extinction boundary periodic solution (˜s1(t), ˜s2(t), 0) of System (2.1) is
globally asymptotically stable.

Theorem 4.1 If

(1 + d)e−Dτ < 1,

and

m

D
ln

k + s∗
2

k + s∗
2e

−Dlτ
< Dlτ + d1(1 − l)τ,

hold, the plankton-extinction periodic solution (˜s1(t), ˜s2(t), 0) of System (2.1) is glob-
ally asymptotically stable.

Proof First, we prove the local stability of the plankton-extinction solution (˜s1(t),
˜s2(t), 0) of (2.1). Defining x1(t) = s1(t) − ˜s1(t), x2(t) = s2(t) − ˜s2(t), x3(t) = x(t),
thenwe have the following linearly similar system for system (2.1)which is concerning
one periodic solution (˜s1(t), ˜s2(t), 0) to

⎛

⎜
⎝

ds1(t)
dt

ds2(t)
dt

dx(t)
dt

⎞

⎟
⎠ =

⎛

⎜
⎜
⎜
⎝

−D 0 0

0 −D − m
k1

× ˜s2(t)

k+˜s2(t)

0 0 −D + m˜s2(t)

k+˜s2(t)

⎞

⎟
⎟
⎟
⎠

⎛

⎝
s1(t)
s2(t)
x(t)

⎞

⎠ , t ∈ (nτ, (n + l)τ ],
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and

⎛

⎜
⎝

ds1(t)
dt

ds2(t)
dt

dx(t)
dt

⎞

⎟
⎠ =

⎛

⎝
−D 0 0
0 −D 0
0 0 −d1

⎞

⎠

⎛

⎜
⎝

ds1(t)
dt

ds2(t)
dt

dx(t)
dt

⎞

⎟
⎠ , t ∈ (nτ, (n + l)τ ].

It is easy to to obtain the fundamental solution matrix

�(t) =
⎛

⎜
⎝

exp(−Dt) ∗ ∗1
0 exp(−Dt) ∗2
0 0 exp(

∫ t
0 (−D + m˜s2(s)

k+˜s2(s)
)ds)

⎞

⎟
⎠ , t ∈(nτ, (n+l)τ ].

There is no need to calculate the exact form of ∗, ∗1 and ∗2 as they are not required in
the analysis that follows, and

�(t) =
⎛

⎝
exp(−Dt) 0 0

0 exp(−Dt)) 0
0 0 exp(−d1t))

⎞

⎠ , t ∈ ((n + l)τ, (n + 1)τ ].

The linearization of the fourth, fifth and sixth equations of (2.1) is

⎛

⎝
s1((n + l)τ+)

s2((n + l)τ+)

x((n + l)τ+)

⎞

⎠ =
⎛

⎝
1 − d 0 0
0 1 + d 0
0 0 1

⎞

⎠

⎛

⎝
s1((n + l)τ )

s2((n + l)τ
x((n + l)τ )

⎞

⎠ , t ∈ (nτ, (n + l)τ ],

and the linearization of the tenth,eleventh and twelfth equations of (2.1) is

⎛

⎝
s1((n + 1)τ+)

s2((n + 1)τ+)

x((n + 1)τ+)

⎞

⎠ =
⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠

⎛

⎝
s1((n + 1)τ )

s2((n + 1)τ )

x((n + 1)τ )

⎞

⎠ , t ∈ ((n + l)τ, (n + 1)τ ].

The stability of the periodic solution (˜s1(t), ˜s2(t), 0) is determined by the eigenvalues
of

M =
⎛

⎝
1 − d 0 0
0 1 + d 0
0 0 1

⎞

⎠

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ �(τ),

where are

λ1 = (1 − d)e−Dτ < 1,

and

λ2 = (1 + d)e−Dτ ,
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and

λ3 = e

∫ lτ
0 (−D+ m˜s2(s)

k+˜s2(s)
)ds−d1(1−l)τ

.

According to the Floquet theory [21], if | λ2 |< 1 and | λ3 |< 1, i.e.

(1 + d)e−Dτ < 1,

and

m

D
ln

k + s∗
2

k + s∗
2e

−Dlτ
< Dlτ + d1(1 − l)τ,

hold, then (˜s1(t), ˜s2(t), 0) is locally stable,where x∗ is defined as (3.4).
In the following, we will prove the global attraction, choose a ε > 0 such that

ρ = e

∫ lτ
0 [−D+ m(˜s2(s)+ε)

k+(˜s2(s)+ε)
]ds−d1(1−l)τ

< 1

From the second equation of (2.1), we know that

ds2(t)

dt
≤ −Ds2(t).

We consider the comparison impulsive differential equation

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ds11(t)

dt
= D(s01 − s11(t)),

ds21(t)

dt
= −Ds21(t),

⎫
⎪⎬

⎪⎭
t ∈ (nτ, (n + l)τ ], n = 1, 2 . . . ,

�s11(t) = −ds11(t),
�s21(t) = ds11(t),

}

t = (n + l)τ, n = 1, 2 . . . ,

ds11(t)

dt
= D(s01 − s11(t)),

ds21(t)

dt
= −Ds21(t),

⎫
⎪⎬

⎪⎭
t ∈ ((n + l)τ, (n + 1)τ ], n = 1, 2 . . . ,

�s11(t) = μ1,

�s21(t) = μ2,

}

t = (n + 1)τ, n = 1, 2 . . . ,

(4.1)

From Remark 3.5. and comparison theorem of impulsive equation [21], we have
s1(t) ≤ s11(t), s2(t) ≤ s21(t) and s11(t) → ˜s1(t), s21(t) → ˜s2(t) as t → ∞. Then
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s2(t) ≤ s21(t) ≤ ˜s2(t) + ε, (4.2)

for all t large enough. For convenience, we assume (4.2) holds for all t ≥ 0. From
(2.1) and (4.2), we get

⎧
⎪⎪⎨

⎪⎪⎩

dx(t)

dt
≤ −Dx(t) + m˜s2(t)

k + ˜s2(t)
x(t), t ∈ [nτ, (n + l)τ ),

dx(t)

dt
= −d1x(t), t ∈ [(n + l)τ, (n + 1)τ ).

(4.3)

So

x((n + 1)τ ) ≤ x(nτ+)e

∫ (n+l)τ
nτ (−D+ m˜s2(s)

k+˜s2(s)
)ds−d1(1−l)τ

.

Hence x(nτ) ≤ x(0+)ρn, and x(nτ) → 0 as n → ∞.Therefore x(t) → 0 as t → ∞.
In the next step, we prove that s1(t) → ˜s1(t), s2(t) → ˜s2(t) as t → ∞. For ε > 0

is small enough, there must exist a t0 > 0 such that 0 < x(t) < ε for all t ≥ t0.
Without loss of generality, we assume that 0 < x(t) < ε for all t ≥ 0, then we
have

−(D + mε

k1k
)s2(t) ≤ ds2(t)

dt
≤ −Ds2(t), (4.4)

and z11(t) ≤ s1(t) ≤ z12(t), z21(t) ≤ s2(t) ≤ z22(t) and z11(t) → ˜z11(t), z21(t) →
˜z21(t) as t → ∞, z12(t) → ˜s1(t), z22(t) → ˜s2(t) as t → ∞, while (z11(t), z12(t))
and (z21(t), z22(t)) are the solutions of

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dz11(t)

dt
= D(s01 − z11(t)),

dz21(t)

dt
= −(D + mε

k1k
)z21(t),

⎫
⎪⎬

⎪⎭
t ∈ (nτ, (n + l)τ ], n = 1, 2 . . . ,

�z11(t) = −dz11(t),

�z21(t) = dz11(t),

⎫
⎬

⎭
t = (n + l)τ, n = 1, 2 . . . ,

dz11(t)

dt
= D(s01 − z11(t)),

dz21(t)

dt
= −Dz21(t),

⎫
⎪⎬

⎪⎭
t ∈ ((n + l)τ, (n + 1)τ ], n = 1, 2 . . . ,

�z11(t) = μ1,

�z21(t) = μ2,

⎫
⎬

⎭
t = (n + 1)τ, n = 1, 2 . . . ,

(4.5)
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and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dz12(t)

dt
= D(s01 − z12(t)),

dz22(t)

dt
= −Dz22(t),

⎫
⎪⎬

⎪⎭
t ∈ (nτ, (n + l)τ ], n = 1, 2 . . . ,

�z12(t) = −dz12(t),

�z22(t) = dz12(t),

⎫
⎬

⎭
t = (n + l)τ, n = 1, 2 . . . ,

dz12(t)

dt
= D(s01 − z12(t)),

dz22(t)

dt
= −Dz22(t),

⎫
⎪⎬

⎪⎭
t ∈ ((n + l)τ, (n + 1)τ ], n = 1, 2 . . . ,

�z12(t) = μ1,

�z22(t) = μ2,

⎫
⎬

⎭
t = (n + 1)τ, n = 1, 2 . . . ,

(4.6)

where (˜z11(t), ˜z12(t)) are defined as

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

˜z11(t) =

⎧
⎪⎨

⎪⎩

s01 −
[
s01 − z∗11

]
e−D(t−nτ), nτ < t ≤ (n + l)τ,

s01 −
[
s01 − (1 − d)

(
s01 − (s01 − z∗11)e−Dlτ

)]
e−D(t−(n+l)τ ), (n + l)τ < t ≤ (n + 1)τ,

˜z12(t) =
⎧
⎨

⎩

z∗12e
−(D+ mε

k1k
)(t−nτ)

, nτ < t ≤ (n + l)τ.
[
z∗12e

−(D+ mε
k1k

)lτ + d
(
s01 − (s01 − s∗

1 )e−Dlτ
)]

e−D(t−(n+l)τ ), (n + l)τ < t ≤ (n + 1)τ

(4.7)
with ⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

z∗11 = A1

1 − (1 − d)e−Dτ
> 0,

z∗12 = B1[1 − (1 − d)e−Dτ ] + A1de
−(D+ mε

k1k
)τ

(1 − e
−(D+ mε

k1k
)τ

)[1 − (1 − d)e−D)τ ]
> 0.

(4.8)

and A1 = (1 − e
−(D+ mε

k1k
)(1−l)τ

) + (1 − d)e−D(1−l)τ − (1 − d)e−Dτ )s01 + μ1, B1 =
ds01 (e

−D(1−l)τ − e
−(D+ mε

k1k
)τ

) + μ2.

Therefore, for any ε1 > 0. there exists a t1, t > t1 such that

˜z11(t) − ε1 < s1(t) < ˜s1(t) + ε1,

and

˜z21(t) − ε1 < s1(t) < ˜s2(t) + ε1.

Let ε → 0, so we have

˜s1(t) − ε1 < s1(t) < ˜s1(t) + ε1,
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and

˜s2(t) − ε1 < s2(t) < ˜s2(t) + ε1,

for t large enough, which implies s1(t) → ˜s1(t) and s2(t) → ˜s2(t) as t → ∞. This
completes the proof. �	
Definition 4.2 System (2.1) is said to be permanent, if there are constants m, M >

0 (independent of initial value) and a finite timeT0 such that for all solutions
(s1(t), s2(t), x(t)) with all initial values s1(0+) > 0, s2(0+) > 0, x(0+) > 0,
m ≤ s1(t) ≤ M,m ≤ s2(t) ≤ M, and m ≤ x(t) ≤ M hold for all t ≥ T0.
Here T0 may depend on the initial values (s1(0+), s2(0+), x(0+)).

Theorem 4.3 Let (s1(t), s2(t), x(t)) be any solution of system (2.1), if

m

D
ln

k + s∗
2

k + s∗
2e

−Dlτ
> Dlτ + d1(1 − l)τ,

hold, system (2.1) is permanent,where s∗
2 is defined as (3.4).

Proof Assume (s1(t), s2(t), x(t)) is a solution of system (2.1)with s1(0) > 0, s2(0) >

0, x(0) > 0. By lemma 3.1., we have proved there exists a constant M > 0 such that
s1(t) ≤ M, s2(t) ≤ M, x(t) ≤ M for t large enough, we may assume s1(t) ≤
M, s2(t) ≤ M, x(t) ≤ M for t ≥ 0. From theorem 4.1., we know s1(t) > ˜s1(t) − ε2

and s2(t) > ˜s2(t) − ε2 for all t large enough and ε2 > 0, so s1(t) ≥ s01 − [s01 −
s∗
1 ]e−Dlτ + s01 − [s01 − (1 − d)(s01 − (s01 − s∗

1 )e
−Dlτ )]e−D(1−l)τ − ε2 = m2 and

s2(t) ≥ s∗
2e

−Dlτ + [s∗
2e

−Dlτ + d(s01 − (s01 − s∗
1 )e

−Dlτ )]e−D(1−l)τ − ε2 = m3 for t
large enough. Thus, we only need to find m1 > 0 such that x(t) ≥ m1 for t large
enough, we will do it in the following.

By the conditions of this theorem, we can select m3 > 0, ε1 > 0 small enough
such that

σ = m

D + mm3
kk1

ln
k + z∗2 − ε1

k + z∗2e
−(D+mm3

kk1
)lτ − ε1

− Dlτ + d1(1 − l)τ > 0,

and z∗2 = B2[1−(1−d)e−Dτ ]+A2de
−(D+mm3

k1k
)τ

(1−e
−(D+mm3

k1k
)τ

)[1−(1−d)e−D)τ ]
> 0. here A2 = (1 − e

−(D+mm3
k1k

)(1−l)τ
) +

(1−d)e−D(1−l)τ − (1−d)e−Dτ )s01 +μ1, B2 = ds01 (e
−D(1−l)τ − e

−(D+mm3
k1k

)τ
)+μ2.

We will prove x(t) < m3 can not hold for t ≥ 0. Otherwise,
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ds1(t)

dt
= D(s01 − s1(t)),

ds2(t)

dt
≥ −

(

D + mm3

k1k

)

s2(t),

⎫
⎪⎪⎬

⎪⎪⎭

t ∈ (nτ, (n + l)τ ], n = 1, 2 . . . ,

�s1(t) = −ds1(t),

�s2(t) = ds1(t),

⎫
⎬

⎭
t = (n + l)τ, n = 1, 2 . . . ,

ds1(t)

dt
= D(s01 − s1(t)),

ds2(t)

dt
= −Ds2(t),

⎫
⎪⎬

⎪⎭
t ∈ ((n + l)τ, (n + 1)τ ], n = 1, 2 . . . ,

�s1(t) = μ1,

�s2(t) = μ2,

⎫
⎬

⎭
t = (n + 1)τ, n = 1, 2 . . . ,

(4.9)

By Remark 3.5., we have s1(t) ≥ z1(t), s2(t) ≥ z2(t) and z1(t) → z1(t), z2(t) →
z2(t), as t → ∞, where (z1(t), z2(t)) is the solution of

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dz1(t)

dt
= D(s01 − z1(t)),

dz2(t)

dt
= −

(

D + mm3

k1k

)

z2(t),

⎫
⎪⎪⎬

⎪⎪⎭

t ∈ (nτ, (n + l)τ ], n = 1, 2 . . . ,

�z1(t) = −dz1(t),

�z2(t) = dz1(t),

⎫
⎬

⎭
t = (n + l)τ, n = 1, 2 . . . ,

dz1(t)

dt
= D(s01 − z1(t)),

dz2(t)

dt
= −Dz2(t),

⎫
⎪⎬

⎪⎭
t ∈ ((n + l)τ, (n + 1)τ ], n = 1, 2 . . . ,

�z1(t) = μ1,

�z2(t) = μ2,

}

t = (n + 1)τ, n = 1, 2 . . . ,

(4.10)

and

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

˜z1(t) =
⎧
⎨

⎩

s01 − [
s01 − z∗11

]
e−D(t−nτ), nτ < t ≤ (n + l)τ,

s01 −
[
s01 − (1 − d)

(
s01 − (

s01 − z∗1
)
e−Dlτ

)]
e−D(t−(n+l)τ ), (n + l)τ < t ≤ (n + 1)τ,

˜z2(t) =

⎧
⎪⎨

⎪⎩

z∗2e
−(D+ mm3

k1k
)(t−nτ)

, nτ < t ≤ (n + l)τ.
[

z∗2e
−(D+ mm3

k1k
)lτ + d

(
s01 − (

s01 − s∗
1

)
e−Dlτ

)]

e−D(t−(n+l)τ ), (n + l)τ < t ≤ (n + 1)τ

(4.11)
with ⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

z∗1 = A2

1 − (1 − d)e−Dτ
> 0,

z∗2 = B2[1 − (1 − d)e−Dτ ] + A2de
−(D+mm3

k1k
)τ

(1 − e
−(D+mm3

k1k
)τ

)[1 − (1 − d)e−D)τ ]
> 0.

(4.12)
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and A2 = (1− e
−(D+mm3

k1k
)(1−l)τ

) + (1− d)e−D(1−l)τ − (1− d)e−Dτ )s01 + μ1, B2 =
ds01 (e

−D(1−l)τ − e
−(D+mm3

k1k
)τ

) + μ2.

Therefore, exists a T1 > 0 such that

s1(t) ≥ z1(t) ≥ z1(t) − ε1,

and

s2(t) ≥ z2(t) ≥ z2(t) − ε1.

Therefore
⎧
⎪⎪⎨

⎪⎪⎩

dx(t)

dt
≥ −Dx(t) + m(z2(t) − ε1)

k + (z2(t) − ε1)
x(t), t ∈ [nτ, (n + l)τ ),

dx(t)

dt
= −d1x(t), t ∈ [(n + l)τ, (n + 1)τ ).

(4.13)

For t ≥ T1, Let N1 ∈ N and N1τ > T1, Integrating (4.13) on (nτ, (n + l)τ ), and
((n + l)τ, (n + 1)τ ), n ≥ N1, we have

x((n + 1)τ ) ≥ x(nτ+)e

∫ (n+l)τ
nτ (−D+ m˜s2(s)

k+˜s2(s)
)ds−d1(1−l)τ

.

Hence x(nτ) ≥ x(0+)ρn → +∞, as n → ∞, which is a contradiction to the
boundedness of x(t). Hence exists a t1 > 0 such that x(t) ≥ m1. The proof is
complete. �	
Remark 4.4 Let

f (τ ) = m

D
ln

k + s∗
2

k + s∗
2e

−Dlτ
− Dlτ − d1(1 − l)τ,

Weeasily know there exists ε > 0 such that f (ε) < 0, and f (τ ) → −∞ as τ → +∞,

and f ′′(τ ) < 0. So f (τ ) = 0 has a unique positive root, denoted by τ ∗. From theorem
4.1and theorem4.3.,weknow τ ∗ is a threshold. If τ > τ ∗, then theplankton-extinction
boundary periodic solution (˜s1(t), ˜s2(t), 0) of system (2.1) is globally asymptotically
stable. If τ < τ ∗ the system(2.1) is permanent.

5 Discussion

In this paper, we investigate a plankton-nutrient chemostat model with employing
impulsive switched systems.We analyze that the plankton-extinction periodic solution
of System (2.1) is globally asymptotically stable, and we also obtain the permanent
condition of System (2.1).

From Theorems 4.1 and 4.3 , we can easily deduce that there must exist a threshold
d∗. If d < d∗, the plankton-extinction periodic solution (˜s1(t), ˜s2(t), 0) of System
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(2.1) is globally asymptotically stable. If d > d∗, System (2.1) is permanent. The
results show that the impulsive diffusion amount of nutrients plays an important role
for the permanence of System (2.1). Our results are valuable for biological resource
management in practice.
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