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Abstract A delayed predator-prey model with disease in the predator and stage
structure for the prey is investigated. By analyzing the corresponding characteristic
equations, the local stability of each of feasible equilibria is studied. The existence of
Hopf bifurcations at the disease-free equilibrium and the coexistence equilibrium are
addressed, respectively. By using Lyapunov functions and LaSalle invariant principle,
sufficient conditions are derived for the global stability of the trivial equilibrium, the
predator-extinction equilibrium and the disease-free equilibrium, respectively. Fur-
ther, sufficient conditions are derived for the global attractiveness of the coexistence
equilibrium of the proposed system.

Keywords Eco-epidemiological model · Stage structure · Time delay · LaSalle
invariant principle · Hopf bifurcation · Stability
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1 Introduction

Predator-prey models are important in the modelling of multi-species interactions
and have received great attention among theoretical and mathematical biologists.
The dynamics of the predator-prey models has been studied by many means, such
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as the adomian decomposition method (ADM), the variational iteration method
(VIM) and the differential transform method (DTM) (see [1,4,6–8,13]). Since the
pioneering work of Anderso and May [3] who were the first to propose an eco-
epidemiological model by merging the ecological predator-prey model introduced
by Lotka and Volterra, great attention has been paid to the modelling and analysis of
eco-epidemiological system recently (see [9,11,12,15–18,21,22]). In [18], Xiao and
Chen discussed a predator-prey model with disease in the prey. Mathematical analy-
sis of the model equations with regard to invariance of nonnegativity, boundedness
of solutions, nature of equilibria, permanence and global stability were analyzed. In
[21], Zhang and Sun considered a predator-prey model with disease in the predator
and Holling-II type functional response. Sufficient conditions were derived for the
permanence of the eco-epidemiological system. In [22], Zhang et al. considered the
following eco-epidemiological model

ẋ(t) = r x(t) − ax2(t) − a12x(t)S(t),
Ṡ(t) = a21x(t − τ)S(t − τ) − d3S(t) − βS(t)I (t),
İ (t) = βS(t)I (t) − d4 I (t),

(1.1)

where x(t), S(t) and I (t) represent the densities of the prey, susceptible (sound)
predator and infected predator population at time t , respectively. The parameters
a, a12, a21, d3, d4, r andβ are positive constants (see [22]). In system (1.1), the authors
assumed that the infectious predator would die of diseases and only the healthy preda-
tor had predation capacity, but once infected with the disease, the predator would not
be able to recover. By regarding the time delay τ as the bifurcation parameter and
analyzing the characteristic equation of the positive equilibrium, the local asymptotic
stability of the positive equilibrium and the existence of a Hopf bifurcation of system
(1.1) were investigated in [22].

The above-mentioned works all used bilinear incidence to model disease transmis-
sion. However, there are a variety of factors that emphasize the need for a modification
of the bilinear incidence. For example, the underlying assumption of homogeneous
mixingmay not always hold. Incidence rates that increasemore gradually than linearly
in I and S may arise from saturation effects. It has been strongly suggested by several
authors that the disease transmission process may follow saturation incidence. After
studying the cholera epidemic spread inBari in 1973, Capasso and Serio [5] introduced
a saturated incidence rate with β I S/(1+α I ). This incidence rate seems more reason-
able than the bilinear incidence rate βSI , because it includes the behavioral change
and crowding effect of the infective individuals and prevents the unboundedness of
the contact rate by choosing suitable parameters.

We note that it is assumed in system (1.1) that each individual prey admits the same
risk to be attacked by predators. This assumption seems not to be realistic for many
animals. In the natural world, there are many species whose individuals pass through
an immature stage during which they are raised by their parents, and the rate at which
they are attacked by predator can be ignored. Moreover, it can be assumed that their
reproductive rate during this stage is zero. Stage-structure is a natural phenomenon
and represents, for example, the division of a population into immature and mature
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individuals. Stage-structured models have received great attention in recent years (see,
for example, [2,16,19,20]).

Based on above discussions, in this paper, we incorporate a stage structure for the
prey and saturation incidence into the system (1.1). To this end, we study the following
differential equations

ẋ1(t) = r x2(t) − (r1 + d1)x1(t),
ẋ2(t) = r1x1(t) − d2x2(t) − ax22 (t) − a1x2(t)S(t),

Ṡ(t) = a2x2(t − τ)S(t − τ) − d3S(t) − bS2(t) − βS(t)I (t)

1 + α I (t)
,

İ (t) = βS(t)I (t)

1 + α I (t)
− d4 I (t),

(1.2)

where x1(t) and x2(t) represent the densities of the immature and the mature prey
population at time t , respectively. τ ≥ 0 represents the time delay due to the gestation
of the susceptible predator. The parameters a, a1, a2, b, d1, d2, d3, d4, r, r1, α and β

are positive constants in which d1 and d2 are the death rates of the immature and the
mature prey, respectively; d3 and d4 are the death rates of the susceptible and infected
predator, respectively; a and b are the intra-specific competition rate of the mature
prey and the susceptible predator, respectively; a1 > 0 is the capturing rate of the
susceptible predator; a2/a1 > 0 is the conversion rate of nutrients into the reproduction
of the predator by consuming mature prey; the disease incidence is assumed to be the
saturation incidence βSI/(1 + α I ), where β > 0 is called the disease transmission
coefficient.

The initial conditions for system (1.2) take the form

x1(θ) = ϕ1(θ) ≥ 0, x2(θ) = ϕ2(θ) ≥ 0,

S(θ) = φ1(θ) ≥ 0, I (θ) = φ2(θ) ≥ 0, θ ∈ [−τ, 0),

ϕ1(0) > 0, ϕ2(0) > 0, φ1(0) > 0, φ2(0)

> 0, (ϕ1(θ), ϕ2(θ), φ1(θ), φ2(θ)) ∈ C([−τ, 0], R4+0), (1.3)

where R4+0 = {(y1, y2, y3, y4) : yi ≥ 0, i = 1, 2, 3, 4}.
It is well known by the fundamental theory of functional differential equations [10]

that system (1.2) has a unique solution (x1(t), x2(t), S(t), I (t)) satisfying initial con-
ditions (1.3). It is easy to show that all solutions of system (1.2) with initial conditions
(1.3) are defined on [0,+∞) and remain positive for all t ≥ 0.

The organization of this paper is as follows. In the next section, we show the perma-
nence of solutions of model (1.2) with initial conditions (1.3). In Sect. 3, by analyzing
the corresponding characteristic equations, we study the local stability of each feasible
boundary equilibria of system (1.2) and the existence of Hopf bifurcations of system
(1.2) at the disease-free equilibrium. By means of Lyapunov functions and LaSalle
invariant principle, we establish sufficient conditions for the global stability of each
feasible boundary equilibria of system (1.2). In Sect. 4, by analyzing the correspond-
ing characteristic equation, we discuss the local stability of coexistence equilibrium
and the existence of Hopf bifurcations of system (1.2) at the coexistence equilibrium.
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By means of Lyapunov functions and LaSalle invariant principle, we establish suffi-
cient conditions for the global attractiveness of the coexistence equilibrium. A brief
discussion is given in Sect. 5 to conclude this work.

2 Permanence

In this section, we are concerned with the permanence of system (1.2).

Lemma 2.1 Positive solutions of system (1.2) with initial conditions (1.3) are ulti-
mately bounded.

Proof Let (x1(t), x2(t), S(t), I (t)) be any positive solution of system (1.2) with initial
conditions (1.3). Denote d = min{d1, d2, d3, d4}. Define

V (t) = x1(t − τ) + x2(t − τ) + a1
a2

[S(t) + I (t)].

Calculating the derivative of V (t) along positive solutions of system (1.2), it follows
that

V̇ (t) = −d1x1(t − τ) − d2x2(t − τ) − ax22 (t − τ) + r x2(t − τ)

− a1
a2

[d3S(t) + d4 I (t)] − bS2(t)

≤ −dV (t) − a
[
x2(t − τ) − r

2a

]2 − bS2(t) + r2

4a

≤ −dV (t) + r2

4a

which yields lim supt→∞ V (t) ≤ r2
4ad .

If we choose M1 = r2/(4ad), M2 = a2r2/(4aa1d), then

lim sup
t→∞

xi (t) ≤ M1(i = 1, 2), lim sup
t→∞

S(t) ≤ M2, lim sup
t→∞

I (t) ≤ M2.

��
Theorem 2.1 Suppose that

(H1) βS > d4,
where S is defined in (2.3), then system (1.2) is permanent.

Proof Let (x1(t), x2(t), S(t), I (t)) be any positive solution of system (1.2) with initial
conditions (1.3). By Lemma 2.1, it follows that lim supt→+∞ S(t) ≤ M2. Hence, for
ε > 0 being sufficiently small, there is a T0 > 0 such that if t > T0, S(t) < M2 + ε.
Accordingly, for ε > 0 being sufficiently small, we derive from the first and the second
equations of system (1.2) that, for t > T0,

ẋ1(t) = r x2(t) − (r1 + d1)x1(t),
ẋ2(t) ≥ r1x1(t) − d2x2(t) − ax22 (t) − a1(M2 + ε)x2(t),

(2.1)
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which yields

lim inf
t→+∞ x1(t)≥ r

r1 + d1
x2 := x1, lim inf

t→+∞ x2(t) ≥ rr1 − (r1+d1)(d2+a1M2)

a(r1 + d1)
:= x2.

(2.2)
we derive from the third equation of system (1.2), for t sufficiently large, we have

Ṡ(t) ≥ bx2S(t − τ) − d3S(t) − bS2(t) − βM2

1 + αM2
S(t)

By Theorem 4.9.1 in [14], one can obtain that

lim inf
t→+∞ S(t) ≥ 1

b
[bx2 − d3 − βM2

1 + αM2
] := S. (2.3)

we derive from the fourth equation of system (1.2), for t sufficiently large, we have

İ (t) ≥ βSI (t)

1 + α I (t)
− d4 I (t)

Since (H1) holds, then

lim inf
t→+∞ I (t) ≥ 1

αd4
[βS − d4] := I . (2.4)

The above calculations and Lemma 2.1 imply that system (1.2) is permanent. ��

3 Boundary equilibria and their stability

In this section, we discuss the stability of the boundary equilibria and the existence of
a Hopf bifurcation at the disease-free equilibrium.

System (1.2) always has a trivial equilibrium E0(0, 0, 0, 0). If rr1 > d2(r1 + d1),
then system (1.2) has a predator-extinction equilibrium E1(x01 , x

0
2 , 0, 0), where

x01 = r [rr1 − d2(r1 + d1)]
a(r1 + d1)2

, x02 = rr1 − d2(r1 + d1)

a(r1 + d1)
.

If a2x02 > d3, then system (1.2) has a disease-free equilibrium E2(x
+
1 , x+

2 , S+, 0),
where

x+
1 = r(abx02 + a1d3)

(r1 + d1)(ab + a1a2)
, x+

2 = abx02 + a1d3
ab + a1a2

, S+ = a(a2x02 − d3)

ab + a1a2
.

The characteristic equation of system (1.2) at the equilibrium E0(0, 0, 0, 0) takes
the form

(λ + d3)(λ + d4)[λ2 + (r1 + d1 + d2)λ + d2(r1 + d1) − rr1] = 0, (3.1)

It is readily seen from Eq. (3.1) that if rr1 < d2(r1 + d1), then E0 is locally asymp-
totically stable; if rr1 > d2(r1 + d1), then E0 is unstable.
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Theorem 3.1 If rr1 < d2(r1+d1), then the trivial equilibrium E0(0, 0, 0, 0) of system
(1.2) is globally asymptotically stable.

Proof Based on above discussions, we see that if rr1 < d2(r1 + d1), then E0 is
locally asymptotically stable.Hence,we only prove that all positive solutions of system
(1.2) with initial conditions (1.3) converge to E0. Let (x1(t), x2(t), S(t), I (t)) be any
positive solution of system (1.2) with initial conditions (1.3). Define

V0(t) = r1
r1 + d1

x1(t) + x2(t) + a1
a2

[S(t) + I (t)] + a1

∫ t

t−τ

x2(u)S(u)du.

Calculating the derivative of V0(t) along positive solutions of system (1.2), it follows
that

V̇0(t) = −d2(r1 + d1) − rr1
r1 + d1

x2(t) − ax22 (t) − a1
a2

[d3S(t) + d4 I (t)] − a1
a2

bS2(t).

(3.2)
If rr1 < d2(r1 + d1), it then follows from (3.2) that V̇0(t) ≤ 0. By Theorem 5.3.1 in
[10], solutions limit to 
, the largest invariant subset of {V̇0(t) = 0}. Clearly, we see
from (3.2) that V̇0(t) = 0 if and only if x2(t) = 0, S(t) = 0 and I (t) = 0. Noting that

 is invariant, for each element in 
, we have x2(t) = 0. It therefore follows from
the second equation of system (1.2) that

0 = ẋ2(t) = r1x1(t),

which yields x1(t) = 0. Hence, V̇0(t) = 0 if and only if (x1(t), x2(t), y1(t), y2(t)) =
(0, 0, 0, 0). Accordingly, the global asymptotic stability of E0 follows from LaSalle
invariant principle for delay differential systems. �

The characteristic equation of system (1.2) at the equilibrium E1(x01 , x
0
2 , 0, 0) is of

the form

(λ+d4)[λ2+(r1+d1+d2+2ax02 )λ+rr1−d2(r1+d1)](λ+d3−a2x
0
2e

−λτ ) = 0, (3.3)

Equation (3.3) always has a negative real root: λ1 = −d4. If rr1 > d2(r1 + d1), then
the equation

λ2 + (r1 + d1 + d2 + 2ax02 )λ + rr1 − d2(r1 + d1) = 0

has two roots with negative real parts. All other roots of Eq. (3.3) are determined by
the equation

λ + d3 − a2x
0
2e

−λτ = 0. (3.4)

Denote f (λ) = λ + d3 − a2x02e
−λτ . If a2x02 > d3 holds, it is easy to show that, for λ

real,

f (0) = d3 − a2x
0
2 < 0, lim

λ→+∞ f (λ) = +∞
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Hence, f (λ) = 0 has a positive real root. Therefore, if a2x02 > d3 holds, the equilib-
rium E1(x01 , x

0
2 , 0, 0) is unstable.

If 0 < a2x02 < d3, we claim that E1 is locally asymptotically stable. Otherwise,
there is a root λ satisfying Reλ ≥ 0. It follows from (3.4) that

Reλ = a2x
0
2e

−τ Reλcos(τ Imλ) − d3 ≤ a2x
0
2 − d3 < 0,

which is a contradiction. Hence, if 0 < a2x02 < d3, then the equilibrium E1 is locally
asymptotically stable. ��
Theorem 3.2 If 0 < a2x02 < d3, then the predator-extinction equilibrium
E1(x01 , x

0
2 , 0, 0) of system (1.2) is globally asymptotically stable.

Proof Based on above discussions, we see that if 0 < a2x02 < d3, then E1 is locally
asymptotically stable. Hence, we only prove that all positive solutions of system (1.2)
with initial conditions (1.3) converge to E1. Let (x1(t), x2(t), S(t), I (t)) be any posi-
tive solution of system (1.2) with initial conditions (1.3). System (1.2) can be rewritten
as

ẋ1(t) = r

x01
[−x2(t)(x1(t) − x01 ) + x1(t)(x2(t) − x02 )]

ẋ2(t) = r1
x02

[−x1(t)(x2(t) − x02 ) + x2(t)(x1(t) − x01 )]

+ x2(t)[−a(x2(t) − x02 )] − a1x2(t)S(t)

Ṡ(t) = a2x2(t − τ)S(t − τ) − d3S(t) − bS2(t) − βS(t)I (t)

1 + α I (t)

İ (t) = βS(t)I (t)

1 + α I (t)
− d4 I (t) (3.5)

Define

V11(t) = k1

(
x1 − x01 − x01 ln

x1
x01

)
+ x2 − x02 − x02 ln

x2
x02

+ k2(S + I ).

where k1 = r1x01/(r x
0
2 ), k2 = a1/a2. Calculating the derivative of V11(t) along

positive solutions of system (1.2), it follows that

V̇11(t) = k1(x1(t) − x01 )

x1(t)
ẋ1(t) + x2(t) − x02

x2(t)
ẋ2(t) + k2

(
Ṡ(t) + İ (t)

)

= − r1
x02

(√
x2(t)

x1(t)
(x1(t) − x01 ) −

√
x1(t)

x2(t)
(x2(t) − x02 )

)2

− a(x2(t) − x02 )
2 + a1x

0
2 S(t)

− a1x2(t)S(t) + a1x2(t − τ)S(t − τ)

− k2d3S(t) − k2bS
2(t) − k2d4 I (t). (3.6)
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Define

V1(t) = V11(t) + a1

∫ t

t−τ

x2(u)S(u)du.

By calculation, we have that

V̇1(t) = − r1
x02

(√
x2(t)

x1(t)
(x1(t) − x01 ) −

√
x1(t)

x2(t)
(x2(t) − x02 )

)2

− a(x2(t) − x02 )
2

− (k2d3 − a1x
0
2 )S(t) − k2bS

2(t) − k2d4 I (t) (3.7)

It follows from (3.7) that if a2x02 < d3, i.e. k2d3 > a1x02 holds, then V̇1(t) ≤ 0. By
Theorem 5.3.1 in [10], solutions limit to
, the largest invariant subset of {V̇0(t) = 0}.
Clearly, we see from (3.7) that V̇1(t) = 0 if and only if x1(t) = x01 , x2(t) = x02 , S(t) =
0 and I (t) = 0. Hence, the only invariant set M = {(x01 , x02 , 0, 0)}. Using LaSalle
invariant principle for delay differential systems, the global asymptotic stability of E1
follows. ��

The characteristic equation of system (1.2) at the equilibrium E2(x
+
1 , x+

2 , S+, 0)
takes the form

(λ + d4 − βS+)[λ3 + g2λ
2 + g1λ + g0 + ( f2λ

2 + f1λ + f0)e
−λτ ] = 0, (3.8)

where

g0=ax+
2 (r1 + d1)(d3 + 2bS+), g1=(d3 + 2bS+)(r1 + d1 + c1)+ax+

2 (r1 + d1),
g2 = r1 + d1 + c1 + d3 + 2bS+, c1 = d2 + 2ax+

2 + a1S+,

f0 = a2x
+
2 [a1S+(r1 + d1) − ax+

2 (r1 + d1)],
f1 = a2x

+
2 [a1S+ − (r1 + d1 + c1)], f2 = −a2x

+
2 .

Clearly, Eq. (3.8) always has a root λ1 = βS+ − d4. All other roots of Eq. (3.8) are
determined by the following equation

λ3 + g2λ
2 + g1λ + g0 + ( f2λ

2 + f1λ + f0)e
−λτ = 0. (3.9)

When τ = 0, Eq. (3.9) reduces to

λ3 + (g2 + f2)λ
2 + (g1 + f1)λ + g0 + f0 = 0. (3.10)

By calculation, we derive that

�1 = g2 + f2 = r1 + d1 + c1 + bS+ > 0,
�2 = (g1 + f1)(g2 + f2) − (g0 + f0) = bS+(r1 + d1 + c1)(r1 + d1 + c1 + bS+)

+ a1a2x
+
2 S+(c1 + bS+) + ax+

2 (r1 + d1)(r1 + d1 + c1) > 0,
�3 = (g0 + f0)�2 = x+

2 S+(r1 + d1)(ab + a1a2)�2 > 0.
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Hence, if 0 < βS+ < d4, then the equilibrium E2 is locally asymptotically stable
when τ = 0.

If iω(ω > 0) is a solution of (3.9), separating real and imaginary parts, we have

f1ω sinωτ + ( f0 − f2ω2) cosωτ = g2ω2 − g0,
f1ω cosωτ − ( f0 − f2ω2) sinωτ = ω3 − g1ω

(3.11)

Squaring and adding the two equations of (3.11), it follows that

ω6 + h2ω
4 + h1ω

2 + h0 = 0. (3.12)

By calculation, we derive that

h2 = g22 − 2g1 − f 22 = c21 + (r1 + d1)2 + 2rr1 + bS+(2d3 + 3bS+) > 0,
h1 = g21 − 2g0g2 + 2 f0 f2 − f 21

= [ax+
2 (r1 + d1)]2 + a1S

+(d3 + bS+)2(2d2 + 4ax+
2 + a1S

+) > 0,
h0 = g20 − f 20 = x+

2 S+(r1 + d1)(ab + a1a2)(g0 − f0)

Note that if g0 > f0, equation (3.12) has no positive real roots. Accordingly, by
Theorem 3.4.1 in Kuang [14], we see that if 0 < βS+ < d4 and g0 > f0, then E2
is locally asymptotically stable for all τ ≥ 0. If 0 < βS+ < d4 and g0 < f0, then
equation (3.12) has a unique positive root ω0. That is, equation (3.9) has a pair of
purely imaginary roots of the form ±iω0. Denote

τk = 1

ω0
arccos

f1ω0(ω
3
0 − g1ω0) + ( f0 − f2ω2

0)(g2ω
2
0 − g0)

( f1ω0)2 + ( f0 − f2ω2
0)

2

+ 2kπ

ω0
, k = 0, 1, 2, · · · . (3.13)

By Theorem 3.4.1 in Kuang [14], we see that if 0 < βS+ < d4 and g0 < f0, then E2
remains stable for τ < τ0.

We now claim that
d(Re(λ))

dτ

∣∣∣∣
τ=τ0

> 0

This will show that there exists at least one eigenvalue with positive real part for
τ > τ0. Moreover, the conditions for the existence of a Hopf bifurcation [10] are then
satisfied yielding a periodic solution. To this end, differentiating Eq. (3.9) with respect
to τ , it follows that

(
dλ

dτ

)−1

= 3λ2 + 2g2λ + g1
−λ(λ3 + g2λ2 + g1λ + g0)

+ 2 f2λ + f1
λ( f2λ2 + f1λ + f0)

− τ

λ
.
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Hence, a direct calculation shows that

sign

{
d(Reλ)

dτ

}

λ=iω0

= sign

{
Re

(
dλ

dτ

)−1
}

λ=iω0

= sign

{
3ω4

0 + 2(g22 − 2g1)ω2
0 + g21 − 2g0g2

(ω3
0 − g1ω0)2 + (g0 − g2ω2

0)
2

+ −2 f 22 ω2
0 + 2 f2 f0 − f 21

( f1ω0)2 + ( f2ω2
0 − f0)2

}
.

We derive from (3.11) that

(ω3
0 − g1ω0)

2 + (g0 − g2ω
2
0)

2 = ( f1ω0)
2 + ( f2ω

2
0 − f0)

2

Hence, it follows that

sign

{
d(Reλ)

dτ

}

λ=iω0

= sign

{
3ω4

0 + 2h2ω2
0 + h1

( f1ω0)2 + ( f2ω2
0 − f0)2

}
> 0.

Therefore, the transversal condition holds and a Hopf bifurcation occurs at ω =
ω0, τ = τ0.

In conclusion, we have the following results.

Theorem 3.3 For system (1.2), assume 0 < βS+ < d4 holds, we have the following:

(i) If g0 > f0, then the disease-free equilibrium E2(x
+
1 , x+

2 , S+, 0, ) is locally
asymptotically stable for all τ ≥ 0;

(ii) If g0 < f0, then there exists a positive number τ0, such that E2 is locally asymp-
totically stable if 0 < τ < τ0 and is unstable if τ > τ0. Further, system (1.2)
undergoes a Hopf bifurcation at E2 when τ = τ0.

Theorem 3.4 Let 0 < βS+ < d4 hold, then the disease-free equilibrium E2 is glob-
ally asymptotically stable provided

(H2) x2 >
a1
a
S+.

Here, x2 is defined in Theorem 2.1.

Proof It is easy to see that if (H2) holds, then ax+
2 > a1S+. It follows from (3.8)

that g0 − f0 = x+
2 (r1 + d1)[ad3 + 2abS+ + a2(ax

+
2 − a1S+)] > 0 holds. By

Theorem 3.3, we see that if 0 < βS+ < d4 and (H1) hold, then the equilibrium
E2(x

+
1 .x+

2 , S+, 0) is locally asymptotically stable. Hence, it suffices to show that all
positive solutions of system (1.2) with initial conditions (1.3) converge to E2. We
achieve this by constructing a global Lyapunov function. Let (x1(t), x2(t), S(t), I (t))
be any positive solution of system (1.2) with initial conditions (1.3). System (1.2) can
be rewritten as
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ẋ1(t) = r

x+
1

[−x2(t)(x1(t) − x+
1 ) + x1(t)(x2(t) − x+

2 )]

ẋ2(t) = r1
x+
2

[−x1(t)(x2(t) − x+
2 ) + x2(t)(x1(t) − x+

1 )] + x2(t)[−a(x2(t) − x+
2 )]

+a1S
+x2(t) − a1x2(t)S(t)

Ṡ(t) = a2x2(t − τ)S(t − τ) − d3S(t) − bS2(t) − βS(t)I (t)

1 + α I (t)

İ (t) = βS(t)I (t)

1 + α I (t)
− d4 I (t)

(3.14)
Define

V21(t) = k3

(
x1 − x+

1 − x+
1 ln

x1
x+
1

)
+ x2 − x+

2 − x+
2 ln

x2
x+
2

+ k4

(
S − S+ − S+ ln

S

S+

)
+ k4 I.

where k3 = r1x
+
1 /(r x+

2 ), k4 = a1/a2.
Calculating the derivative of V21(t) along positive solutions of system (1.2), it

follows that

V̇21(t) = k3
x1(t) − x+

1

x1(t)
ẋ1(t) + x2(t) − x+

2

x2(t)
ẋ2(t) + k4

S(t) − S+

S(t)
Ṡ(t) + k4 İ (t)

= − r1
x+
2

(√
x2(t)

x1(t)
(x1(t) − x+

1 ) −
√
x1(t)

x2(t)
(x2(t) − x+

2 )

)2

− a(x2(t) − x+
2 )2

−a1x2(t)S(t)+a1x2(t−τ)S(t−τ)−k4

(
d4− βS+

1 + α I (t)

)
I (t) + a1x

+
2 S+

−a1S+

S(t)
x2(t − τ)S(t − τ) + a1S

+(x2(t) − x+
2 ) − k4b(S(t) − S+)2

(3.15)
Define

V2(t) = V21(t) + a1

∫ t

t−τ

[
x2(u)S(u) − x+

2 S+ − x+
2 S+ ln

x2(u)S(u)

x+
2 S+

]
du.

By calculation, we have that

V̇2(t) = − r1
x+
2

(√
x2(t)

x1(t)
(x1(t) − x+

1 ) −
√
x1(t)

x2(t)
(x2(t) − x+

2 )

)2

− k4b(S(t) − S+)2

−a1x
+
2 S+

[
x2(t − τ)S(t − τ)

x+
2 S(t)

− 1 − ln
x2(t − τ)S(t − τ)

x+
2 S(t)

]
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−a1x
+
2 S+

[
x+
2

x2(t)
− 1 − ln

x+
2

x2(t)

]
− k4(d4 − βS+

1 + α I (t)
)I (t)

−(x2(t) − x+
2 )2

[
a − a1S+

x2(t)

]
(3.16)

It follows from (3.16) that if 0 < βS+ < d4 and (H1) hold true, then V̇2(t) ≤ 0 with
equality if and only if x1(t) = x+

1 , x2(t) = x+
2 , S(t) = S+, I (t) = 0 Using LaSalle

invariant principle for delay differential systems, the global asymptotic stability of the
equilibrium E2 of system (1.2) follows. ��

4 Coexistence equilibrium and its stability

In this section, we discuss the stability of the coexistence equilibrium.
It is easy to show that if βS+ > d4, system (1.2) has a unique coexistence equilib-

rium E∗(x∗
1 , x

∗
2 , S

∗, I ∗), where

x∗
1 = r

r1 + d1
x∗
2 , x∗

2 = rr1 − d2(r1 + d1)

a(r1 + d1)
− a1

a
S∗,

S∗ = 1

2
� +

√
1

4
�2 + ad4

α(ab + a1a2)
, I ∗ = βS∗ − d4

αd4
,

� = S+ − aβ

α(ab + a1a2)
.

The characteristic equation of system (1.2) at the equilibrium E∗ is of the form

λ4 + p3λ
3 + p2λ

2 + p1λ + p0 + (q3λ
3 + q2λ

2 + q1λ + q0)e
−λτ = 0, (4.1)

where

p3 = r1 + d1 + c2 + c3 + d4α I ∗

1 + α I ∗ ,

p2 = d4α I ∗

1+α I ∗ (r1+d1+c2+c3)+c3(r1 + d1 + c2)+ d4β I ∗

(1 + α I ∗)2
+ax∗

2 (r1 + d1),

p1=(r1+d1 + c2)

(
c3d4α I ∗

1 + α I ∗ + d4β I ∗

(1+α I ∗)2

)
+ ax∗

2 (r1 + d1)

(
c3 + d4α I ∗

1 + α I ∗

)
,

p0 = ax∗
2 (r1 + d1)

(
c3d4α I ∗

1 + α I ∗ + d4β I ∗

(1 + α I ∗)2

)
,

q3 = −a2x
∗
2 , q2 = −a2x

∗
2

(
r1 + d1 + d2 + 2ax∗

2 + d4α I ∗

1 + α I ∗

)
,

q1 = −a2x
∗
2

[
(r1+d1+c2)

d4α I ∗

1+α I ∗ +ax∗
2 (r1+d1)−a1S

∗(r1+d1+ d4α I ∗

1 + α I ∗ )

]
,

q0 = −a2x
∗
2

d4α I ∗

1 + α I ∗ [ax∗
2 (r1 + d1) − a1S

∗(r1 + d1)],
c2 = d2 + 2ax∗

2 + a1S
∗, c3 = a2x

∗
2 + bS∗.
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When τ = 0, Eq. (4.1) becomes

λ4 + (p3 + q3)λ
3 + (p2 + q2)λ

2 + (p1 + q1)λ + p0 + q0 = 0. (4.2)

It is easy to show that


1 = p3 + q3 = r1 + d1 + c2 + bS∗ + d4α I ∗

1 + α I ∗ > 0,


2 = (p3 + q3)(p2 + q2) − (p1 + q1)

= ax∗
2 (r1 + d1)(r1 + d1 + c2) + a1a2x

∗
2 S

∗(c2 + bS∗)

+ bS∗(r1 + d1 + c2 + bS∗)
(
r1 + d1 + c2 + d4α I ∗

1 + α I ∗

)

+ d4β I ∗

(1 + α I ∗)2

(
bS∗ + d4α I ∗

1 + α I ∗

)

d4α I ∗

1 + α I ∗ (r1 + d1 + c2)

(
r1 + d1 + c2 + bS∗ + d4α I ∗

1 + α I ∗

)
> 0,


3 = (p1 + q1)
2 − (p0 + q0)(p3 + q3)
2


4 = (p0 + q0)
3

Note p0+q0 > 0, hence, if
3 > 0, we have
4 > 0. By the Routh-Hurwitz criterion,
we know that if βS+ > d4 and
3 > 0 hold, the coexistence equilibrium E∗ of system
(1.2) is locally asymptotically stable when τ = 0.

Substituting λ = iν(ν > 0) into (4.1) and separating the real and imaginary parts,
one obtains that

(q3ν3 − q1ν) sin ντ + (q2ν2 − q0) cos ντ = ν4 − p2ν2 + p0,
(q3ν3 − q1ν) cos ντ − (q2ν2 − q0) sin ντ = p1ν − p3ν3.

(4.3)

Squaring and adding the two equations of (4.3), it follows that

ν8 + ĥ3ν
6 + ĥ2ν

4 + ĥ1ν
2 + ĥ0 = 0, (4.4)

where

ĥ3 = p23 − 2p2 − q23 , ĥ2 = p22 + 2p0 − 2p1 p3 − q22 + 2q1q3,
ĥ1 = p21 − 2p0 p2 − q21 + 2q0q2, ĥ0 = p20 − q20 .

Letting z = ν2, Eq. (4.4) can be written as

ĥ(z) := z4 + ĥ3z
3 + ĥ2z

2 + ĥ1z + ĥ0 = 0. (4.5)

If ĥi > 0(i = 0, 1, 2, 3), then ĥ(z) has always no positive roots. Hence, under these
conditions, Eq. (4.4) has no purely imaginary roots for any τ > 0 and accordingly,
the equilibrium E∗ is locally asymptotically stable for all τ ≥ 0.
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If ĥi > 0(i = 1, 2, 3) and ĥ0 < 0, then Eq. (4.5) has one positive root z∗.
Accordingly, Eq. (4.4) has one positive roots ν0 = √

z∗. From (4.3) one can get
the corresponding τ ( j) > 0 such that (4.1) has a pair of purely imaginary roots ±iν0
given by

τ ( j) = 1

ν0
arccos

(q2ν20−q0)(ν40− p2ν20+ p0)+(q3ν30−q1ν0)(p1ν0− p3ν30)

(q2ν20−q0)2+(q3ν30−q1ν0)2
+ 2 jπ

ν0
,

j = 0, 1, 2, · · ·

Differentiating the two sides of (4.1) with respect to τ , it follows that

(
dλ

dτ

)−1

= 4λ3+3p3λ2+2p2λ + p1
−λ(λ4+ p3λ3+ p2λ2 + p1λ + p0)

+ 3q3λ2 + 2q2λ + q1
λ(q3λ3 + q2λ2 + q1λ + q0)

− τ

λ
.

After some algebra, one obtains that

sign

{
dReλ

dτ

}

τ=τ ( j)
= sign

{
Re

(
dλ

dτ

)−1
}

τ=τ ( j)

= sign

{
−(p1−3p3ν20 )(p3ν

2
0 − p1)+2(p2−2ν20 )(ν

4
0− p2ν20+ p0)

ν20 (p1− p3ν20 )
2+(ν40 − p2ν20+ p0)2

+ (q1 − 3q3ν20 )(q3ν
2
0 − q1) + 2q2ν0(q0 − q2ν20 )

(q0 − q2ν20 )
2 + (q1ν0 − q3ν30)

2

}

We derive from (4.3) that
ν20 (p1 − p3ν20 )

2 + (ν40 − p2ν20 + p0)2 = (q0 − q2ν20 )
2 + (q1ν0 − q3ν30)

2. Hence,
it follows that

sign

{
dReλ

dτ

}

τ=τ ( j)
= sign

{
4ν60 + 3ĥ3ν40 + 2ĥ2ν20 + ĥ1

(q2ν20 − q0)2 + (q1ν0 − q3ν30)
2

}
> 0

From what has been discussed above, we have the following results.

Theorem 4.1 Assume that βS+ > d4 and 
3 > 0 hold, we have

(i) If ĥi > 0(i = 0, 1, 2, 3), then the coexistence equilibrium E∗ is locally asymp-
totically stable for all τ ≥ 0.

(ii) If ĥi > 0(i = 1, 2, 3) and ĥ0 < 0, then there exists a positive number τ (0), such
that E∗ is locally asymptotically stable if 0 < τ < τ(0) and is unstable if τ > τ(0).
Further, system (1.2) undergoes a Hopf bifurcation at E2 when τ = τ (0).

Now, we are concerned with the global attractiveness of the coexistence equilibrium
E∗.
Theorem 4.2 Assume thatβS+ > d4, then the coexistence equilibrium E∗(x∗

1 , x
∗
2 , S

∗,
I ∗) of system (1.2) is globally attractive provided

(H3) x2 >
a1
a
S∗, I > [αβ(I ∗)2 − 4bS∗(1 + α I ∗)]/[4αbS∗(1 + α I ∗)] Here, x2

and I are defined in Theorem 2.1.
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Proof Let (x1(t), x2(t), S(t), I (t)) be any positive solution of system (1.2) with initial
conditions (1.3). System (1.2) can be rewritten as

ẋ1(t) = r

x∗
1
[−x2(t)(x1(t) − x∗

1 ) + x1(t)(x2(t) − x∗
2 )]

ẋ2(t) = r1
x∗
2
[−x1(t)(x2(t) − x∗

2 ) + x2(t)(x1(t) − x∗
1 )]

+ x2(t)[−a(x2(t) − x∗
2 )] + a1S

∗x2(t) − a1x2(t)S(t)

Ṡ(t) = a2x2(t − τ)S(t − τ) − d3S(t) − bS2(t) − βS(t)I (t)

1 + α I (t)

İ (t) = βS(t)I (t)

1 + α I (t)
− d4 I (t) (4.6)

Define

V31(t) = k5

(
x1 − x∗

1 − x∗
1 ln

x1
x∗
1

)
+ x2 − x∗

2 − x∗
2 ln

x2
x∗
2

+ k6

(
S − S∗ − S∗ ln S

S∗

)

+ k6

(
I − I ∗ − I ∗ ln I

I ∗

)
.

where k5 = r1x∗
1/(r x

∗
2 ), k6 = a1/a2.

Calculating the derivative of V31(t) along positive solutions of system (1.2), it
follows that

V̇31(t)= k5
x1(t) − x∗

1

x1(t)
ẋ1(t)+ x2(t)−x∗

2

x2(t)
ẋ2(t)+k6

S(t)−S∗

S(t)
Ṡ(t) + k6

I (t) − I ∗

I (t)
İ (t)

= − r1
x∗
2

(√
x2(t)

x1(t)
(x1(t) − x∗

1 ) −
√
x1(t)

x2(t)
(x2(t) − x∗

2 )

)2

− a(x2(t) − x∗
2 )

2

+ a1S
∗(x2(t) − x∗

2 )−a1(x2(t)−x∗
2 )S(t)+a1x2(t−τ)S(t − τ)

S(t) − S∗

S(t)

− k6d3(S(t) − S∗) − k6bS(t)(S(t) − S∗) − k6β I (t)(S(t) − S∗)
1 + α I (t)

+k6βS(t)(I (t) − I ∗)
1 + α I (t)

− k6d4(I (t) − I ∗) (4.7)

Define

V3(t) = V31(t) + a1

∫ t

t−τ

[
x2(u)S(u) − x∗

2 S
∗ − x∗

2 S
∗ ln x2(u)S(u)

x∗
2 S

∗

]
du.

By calculation, we have that

V̇3(t) = − r1
x∗
2

(√
x2(t)

x1(t)
(x1(t) − x∗

1 ) −
√
x1(t)

x2(t)
(x2(t) − x∗

2 )

)2
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−a1x
∗
2 S

∗
[
x2(t − τ)S(t − τ)

x∗
2 S(t)

− 1 − ln
x2(t − τ)S(t − τ)

x∗
2 S(t)

]

−a1x
∗
2 S

∗
[

x∗
2

x2(t)
− 1 − ln

x∗
2

x2(t)

]
− k6αβS∗

(1 + α I ∗)(1 + α I (t))[
(I (t) − I ∗) − I ∗(S(t) − S∗)

2S∗

]2
− (x2(t) − x∗

2 )
2
(
a − a1S∗

x2(t)

)

−k6(S(t) − S∗)2
[
b − αβ(I ∗)2

4S∗(1 + α I ∗)
· 1

1 + α I (t)

]
(4.8)

Note that the function g(x) = x − 1 − ln x is always non-negative for any x > 0,
and g(x) = 0 if and only if x = 1. Hence, if x2(t) > a1S∗/a and I (t) > [αβ(I ∗)2 −
4bS∗(1+α I ∗)]/[4αbS∗(1+α I ∗)] for t ≥ T , we have−(x2(t)−x∗

2 )
2
[
a − a1S∗

x2(t)

]
≤ 0

and −k6(S(t) − S∗)2
[
b − αβ(I ∗)2

4S∗(1+α I ∗) · 1
1+α I (t)

]
≤ 0 with equality if and only if

x2(t) = x∗
2 and S(t) = S∗. This, together with (4.8), implies that if (H3) holds,

then V̇3(t) ≤ 0 with equality if and only if x1(t) = x∗
1 , x2(t) = x∗

2 , S(t) = S∗ and
I (t) = I ∗. Therefore, the global attractiveness of E∗ follows from LaSalle invariant
principle for delay differential systems. This completes the proof. ��

5 Conclusion

In this paper, we have incorporated a stage structure for the prey and time delay due
to the gestation of the predator into an eco-epidemiological model. By analyzing the
corresponding characteristic equations, the local stability of each of feasible equilibria
of system (1.2) has been established, respectively. It has been shown that, under some
conditions, the time delay may destabilize both the disease-free equilibrium and the
coexistence equilibriumof the eco-epidemiological system and cause the population to
fluctuate. By means of Lyapunov functions and LaSalle invariant principle, sufficient
conditions were obtained for the global asymptotic stability of each of feasible equi-
libria of system (1.2), respectively. By Theorem 3.1, we see that if rr1 < d2(r1 + d1),
then both the prey population and the predator population go to extinction. By The-
orem 3.2, we see that if 0 < a2x02 < d3 holds, the prey population persists and the
predator population goes to extinction. By Theorem 3.4, we see that if 0 < βS+ < d4
and x2 > a1S+/a hold, that is the disease transmission coefficient β is sufficiently
small and the prey population is always abundant enough, the disease among the
predator population dies out and in this case, the prey and the sound predator coexist.
By Theorem 4.2, we see that if βS+ > d4 and (H3) hold, that is the prey population
is always abundant enough and the disease transmission coefficient β is sufficiently
large, the coefficient equilibrium is a global attractor of the system (1.2). In this case,
the disease spreading in the predator becomes endemic and the prey, sound predator
and the infected predator coexist.
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