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Abstract In this paper, we consider a class of nonlinear matrix equation of the type
X+ ATX 1A =370 BiX™"Bj = Q,where 0 < g, r < land Q is positive
definite. Based on the Schauder fixed point theorem and Bhaskar—Lakshmikantham
coupled fixed point theorem, we derive some sufficient conditions for the existence
and uniqueness of the positive definite solution to such equations. An iterative method
is provided to compute the unique positive definite solution. A perturbation estimation
and the explicit expression of Rice condition number of the unique positive definite
solution are also established. The theoretical results are illustrated by numerical exam-
ples.
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1 Introduction

In this paper, we consider the following nonlinear matrix equation
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m n
X+ > AIX9A;— > BIX'B; =0 (1.1
i=1 j=1

where0 < g, r <1l,and A;,Bj,i=1,2,....m, j=1,2,...,nand Q aren x n
complex matrices with Q Hermitian positive definite. A* is the conjugate transpose of
a matrix A. This type of nonlinear matrix equations arises in many pratical problems.
Whenm =n = 1and g = r = 1, the Eq. (1.1) reduces to be a special stochastic
algebraic Riccati equation arising in stochastic control theory, which can be stated as
follows. Some stochastic linear quadratic (LQ)control problems lead to computing the
positive definite solution of the following stochastic algebraic Riccati equation [26]:

C*XC—X+S+(X) = (L+C*XP 4+ I 12(X))

(R+ P*XP +Th(X))" (L + C*XP + (X)) =0 (12)

where Z* stands for the Moore-Penrose inverse of a matrix Z and C, P, S, R and L
are given matrices of sizen X n,n x m,n x n,m x m and n x m, respectively, such

that
S L
ro(51)

is a Hermitian matrix, and the operator

o (X)) Mp(X)
nx) = (nlzoo* Hz(X))

is positive, i.e., X > 0 implies I[T(X) > 0. Consider the following case: C is the
identity matrix, P is an n x n nonsingular matrix, L is the zero matrix and I112(X) =
[(X) =0, M (X) = (R+ P*XP)~!, where R + P*X P is positive definite for all
positive semidefinite matrices X. Meanwhile, the stochastic rational Riccati Equation
(1.2) has the form
S+ (R+P*XP)"' —XP(R+P*XP)"' P*X =0 (13)
SetY = R+ P*XP,then P~*(Y — R) = X P. Thus, we have
S+Yy'—pPp*y-RY'Y-RP =0
which impies that
Y +R'Y'R— P*Y"'P =2R 4 P*SP.
Denote by Q = 2R + P*SP, A = R, B = P, then Eq. (1.3) can be equivalently

written as Eq. (1.1). Therefore, Eq. (1.1) is a special stochastic Riccati equation (1.2).
Whenr = 1l and A; = Oforalli = 1,2,...,m, Eq.(1.1) becomes a sepcial case
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of nonlinear matrix equation X = Q + B*(X — C)"'B with C = 0 and B =
diag(By, ..., B,) which plays an important role in connection with certain optimal
interpolation problems, see for detail [8,19,21]. Moreover, the special case when all
Ai =00 =1,2,...,m)oral B; = 0(j = 1,2,...,n) are also problems of
practical importance and have many applications in control theory, ladder networks,
dynamic programming, statistics, stochastic filtering, nano research and etc., see for
instance [3,5,8-10,13,15-17,23,25] and the references therein.

In the last few years there has been a constantly increasing interest in developing the
theory, numerical solutions, and perturbation analysis for the definite solutions to the
nonlinear matrix equations of the form (1.1) in several special cases. For instance, [25]
considered the existence and uniqueness of positive definite solutions for the matrix
equation X + >/, AYX™9A; = Q.Duan [6] and Lim [15] proved, respectively, that
the nonlinear matrix equation X — >/ | A*X % A; = Q always has a unique positive
definite solution. Applying matrix differentiation, [8] considered perturbation analysis
for the unique positive definite solution of X — >/ | A¥X ~1A; = Q. Moreover,
positive definite solutions of nonlinear matrix equations X + A*X 7A = Q with
0 < g < 1 wereextensively investigated [9,10, 13,16,17,23]. Similar nonlinear matrix
equations such as X* + A*X A = Q [11,24], X + APX1'A = I [14] and X" +
> ATX % A; = I [22] have been investigated by many authors.

Recently, Mahar Berzig [1] considered positive definite solution to the linear matrix
equation X +> 70| AYXA; —>7" | B¥XB; = Q.Then[2,7] considered the existence
and uniqueness of the positive definite solution to the nonlinear matrix equation X +
A*X"'A — B*X~!'B = I which is a special case of Eq. (1.1) withm = n = 1,
g =r = 1and Q = I. However, as far as we know, there is few literature considering
the general nonlinear matrix equations X + > /2 AfX7A; — >, BiX"Bj =0
where 0 < ¢, r < 1, m, n are positive integers, and Q is positive definite.

Motivated by this, we consider in this work positive definite solution of the general
case of Eq. (1.1) with m, n positive integer numbers and 0 < ¢, r < 1. Based on the
Lakshmikantham-Bhaskar fixed point theorem, we derive in the second section some
sufficient conditions for the existence and uniqueness of positive definite solution
to Eq. (1.1) and propose an iterative method to compute the unique positive definite
solution. In the third section, we consider the perturbation analysis of nonlinear matrix
equations of the form (1.1). An estimation bound of the unique positive definite solution
which is sharp and easy to calculate is derived and an explicit expression of the Rice
condition number of the unique positive definite solution is also obtained. Theoretical
results are illustrated by several numerical examples in Sect. 4.

Throughout this paper, we denote by C**"*, H"*" and H (n) the sets of all n x n
complex matrices, all n x n Hermitian matrices and all positive definite Hermitian
matrices, respectively. The notation A > 0(A > 0) means that A is Hermitian positive
semidefinite (positive definite). We denote by o1(A) and o0, (A) the maximal and
minimal singular values of A, respectively. Similarly, A;(A) and 4, (A) stand for the
maximal and the minimal eigenvalues of A, respectively. For A, B € H"*", we write
A>B(A > B)if A— B > 0(> 0) and let

[A,B]={X|A <X <B}, [A,B)={X|A <X < B}.
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The symbol tr(A) denotes the trace of the matrix A and || - || denotes the trace norm
which is defined by

IAlle = D 0i(A)

i=1

where 0;(A),i = 1,2, ..., n are all singular values of the matrix A. It’s not difficult
to verify that || - ||+ is unitary invariant and ||A||y = trace(A) if A is Hermitian
positive semidefinite. Unless otherwise noted, the symbol || - || stands for the spectral

norm(i.e., |Al| = v/ p(AA*) = 01(A)). It’s clear that for any positive definite matrix
0.0l =x1(Q) and Q77! = 2,(Q).

2 Positive definite solutions

In this section, we provide several sufficient conditions for Eq. (1.1) to have positive
definite solutions and also we propose an iterative method for obtaining the positive
definite solution.

We start with several lemmas which we need to prove our main results:

Lemma 2.1 [3]IfA > B >0(orA> B >0), then A” > B" (or A” > B") for all
re 0,1, and A" < B" (or0 < A" < B")forallr € [—1,0).

Lemma 2.2 [3] Let f be an operator monotone function on (0, 00) and let A, B be
two positive operators bounded below by a, i.e., A > al and B > al for a positive
number a. If there exists f'(a), then for every unitary invariant norm || - ||, we have

I f(A) — fB)I < |f (@] |A— B
Lemma 2.3 [5] Let A > 0 and B > 0 be n x n matrices. Then
0 <tr(AB) < ||A|tr(B).

— _ q
Lemma 2.4 [25] Suppose that > 1, 02(Q~12A;071/%) < W. Then the non-
linear matrix equation X + Y /| ATX™1A; = Q has a positive definite solution in

[qqﬁ 0, 0], where 0 < g < 1 and Q is positive definite.

Let (X, <) be a partially ordered set and F : X x X — X be a given mapping.
We call that F has the mixed monotone property if F'(x, y) is increasing in x and
decreasing in y, that is,

F(x1,y1) < F(x2,y2)

for arbitraryxy, x2, y1, y2 € X with x; < xp and y < y1.
We say that (x, y) is a coupled fixed point of F if x = F(x,y) and y = F(y, x).
The proof of our main result in this section is based on the following two fixed
point theorems.
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Lemma 2.5 (Schauder fixed point theorem) Let S be a nonempty, compact, convex
subset of a normed vector space. Every continuous function f : S — S mapping S
into itself has a fixed point.

Lemma 2.6 (Bhaskar-Laksmikantam’s coupled fixed point theorem [4]) Let (X, <)
be a partially ordered set and d be a metric on X. Let the map F : X x X — X be
continuous and mixed monotone on X. Assume that there exists a § € [0, 1) with

8
d(F()C, y)s F(I/t, U)) S E[d(xvu) +d(y1 U)]

forall x > u and y < v. Suppose also that

(1) there exist xo, yo € X such that xo < F (xo, yo) and yo > F (yo, X0);
(2) every pair of elements in X has a lower bound and an upper bound, that is, for
every (x,y) € (X x X), there exist z1 and zp such that x,y < z1 and x,y > 2.

Then there exists a unique X € X such that X = F(x, X). Moreover; the sequences
{xx} and {yr} generated by xi+1 = F(xk, yx) and yir+1 = F(yr, xr) converge to X,
with the following estimate

k

max (d(xg, ), dO, )} < 15

Smax {d(x1,x0),d(y1, y0)} -

Theorem 2.1 If >/ | 62(Q~9%A;071/?) <

definite solution X > s

#, then Eq. (1.1) has a positive

Proof Suppose >/t o2(Q~92A;071/?) < #,
definite X € [qu 0, Qlsuchthat X+>7 , A;"f(_in = Q according to Lemma 2.4.
Then

then there exists a positive

m m n n
X=0-D> ArX 94, <0-> AIX 94 +> BIXB;<Q+> BX'B;.
i=1 i=1 j=1 j=1

Denote D = {X|X < X < Q0 + > B;‘X”Bj}. Consider the map
m n
GX)=0— ZA?‘X_in + ZBjX—’Bj, X € D.
i=1 j=1

Clearly, D is a bounded convex set in H™(n) and G is continuous on D. Then we
have for arbitrary X € D,

m n m
GX)=0— ZA;"X_in + Z BIX™"Bj > Q— ZA;"X_in
i=1 j=l1 i=1
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m
>0 - D ATXTIA; =X,

i=1

and

m n n
GX)=0Q0—-> A;X"9A;+ > B}X'Bj <Q+ Y BIX"B,
i=1 j=1 j=1
n
<0+ BIX7B;.

j=l1
which implies G(D) € D. Applying Schauder fixed point theorem (Lemma 2.5), G
has a fixed point X in D, which is a positive definite solution to Eq. (1.1) and clearly
X=Xz 50 0
Remark 2.1 Fromthe proof of Theorem2.1,if >/ 104 2(07124,071?) < W’
then Eq. (1.1) has a positive definite solution X satisfying +1 0 <X <Xc<
0+> B;‘ B < Q0+ (q;“,l) 2.}—1 Bf Q7" B; in which the second inequality
holds from Lemma 2.1 (X > quQ gives X7 < (qq+—,1)Q_r.)

Theorem 2.2 Suppose that

r+1

x4 q‘ 1 q
AZA , 2.1
Z” ) ||(q+1)Q Ha+! Z” 2r I|(q+1)Q—‘||’+1( )

Then Eq. (1.1) has a unique positive definite solution X € [qul Q, +00) and the
sequences { Xy} and Yy defined by

— 9 2r(g+D+q
Xo=719 Y= @
Xip1 =0 = 2L ATX 1A+ X0 BIY By, (2.2)

Yiri = Q=200 ATY, A+ X BIX " Bj, k=0,1,2,.

converges to X and the error estimation is given by

(Sk
max{|| Xk — Xller, 1Yk — Y} =< T—

8max{||X1 — Xollw, I1Y1 — Yolle}, (2.3)

where

m n

(g + 1~ |4t! rel(g+ 1ot
8 =2 - max > AT All. > |B} Byl
J

qq — qr+l
1=
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Proof Consider the following two-variable map
m n
F(X.Y)=0Q—- > A;X 9A;+ > B}Y "B, X.Y€Q,
i=1 j=1

where Q ={Z e H (n): Z > qqﬁQ}. Obviously, F is continuous on  x €.
We divide our proof into five aspects:

(1) For arbitrary X, Y € Q, combining (2.1) with lemma 2.1, we obtain that
m m
_ (g + D1 _
F(X,Y) = Q=D AfX™A; > Q- q—qu?‘Q iy

i=1 i=l1

in which the third inequality holds since

(@ + DY < _ G+1D7 & 1 1
S aro A < o e Y AAy < s
(A q p— 2@+ Do~
L o<l g
T 2(@+D" T2q+17

Thus, F (X, Y) € Q which implies that F : 2 x Q — Q.
(2) For arbitrary X1, X», Y1, Y2 € Q with X1 < X, and Y] > Y5, we have

m n
F(X1.Y1) = Q— > AfX{"Ai+ > BjY"B; < Q
i=1 j=1

m n
— D> AIX;7A;+ > B}Y; Bj = F (X2, Y1)
i=1 j=l1

which implies that F is mixed monotone on 2.

(3) For arbitrary X,Y,U,V € Q with X > U > qq?Q > qqﬁkn(Q)I and
qqﬁkn(Q)I < qqﬁQ <Y <V, we have by Lemma 2.3 that

m
IF(X.Y) = FWU. Ve = | DA (U1 = X79) A
(=1
l n
+ZB;‘ (Y7 = V") Bjlle
j:l

m
<UD AT (U™ = X7) Al
i=1
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n
+HID By (Y = V) Bjl«
j=1
m
=D r(AF (U -X9)A)
i=1
n
+> (B (y =V B))
j=1

m
<D IAFA U™ = X9l
i=1

n

Using Lemma 2.2, we obtain that

1 q+1
U — Xy <q. 9T U = Xl
g+1 g+1
q PEANIT0)
(q + 1)1t 1
= U = Xl
q A )
Similarly,
_ , (g + 1)+l 1
Y~ =V lg <r- 1Y = Vi,

BBl - 1Y~ = V"l
1

It is clear that |Q7'|| = o1(Q~™H) = A (Q7)) = ﬁg) since Q is positive

definite. Then we have

IF(X.Y) = FU, Ve < CE0 L5 A4 U = Xl

@ o)

+r gy X 1B B Y = Vi

+1 —1q+1
= Mg I3 AT Al U = X

1 —1pr+l1
4 D S UBIBI- Y = Ve

qr
<85 (U =Xllw+ 1Y = Vi)
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where
g + DO~ H!
qq
m —lyr+l 1
rl@+ et
> lIAT AL > BB} < 1.

qr+l

0 <§=2-max{

4) Let Xg = # 0, Yy = zrz(r"(;“—jr)fr)q Q. Then we have by Lemma 2.1 that

m n
F(Xo, Yo) = 0 — D AfX,"Ai+ D BjY,"B;

R W
=Q——qZA,.Q Ai+ > BYy' B,

q i=1 j=1

1
0- (q+ a7 - annAAn

v

g+ D7

q
>0- 1T o1y 1
q1

1
= 1
21lGg + HO|at!

1
=0~ mkn(Q)I

1
>0- 6Ij)tn(Q)I

>Q—mQ

S Xo,
q+1Q 0

and similarly,
m n
F(Yy, Xo) = O — Z ATYy A + Z BYX;" B,

@+ 1) < _
< Q+TZB}'-‘Q "B;
j=l

G+ X
=0+ =10 NI UBE B - T

j=1

@ Springer



254 L. Fang et al.

(q+l)r qr—i-l
<Q+——=|07 - 1
q’ 2r(q + DrHt Q-1+
WL B
- 2 +1 n
_ 2r(q+1)+qQ
2r(g + 1)
=Y.

(5) For arbitrary pair X, Y € HT(n), it’s well known that
min{A, (X), A,(Y)} < X, Y < max{r1(X), A (Y)}]
which means that each pair has both lower bound and upper bound.
O

Combining the above 5 aspects with Lemma 2.6, there exists a unique X € Qsuch
that X = F(X, X).Moreover, the sequences { Xy} and i generated by (2.2) converge
to X, with the estimation (2.3).

Remark 2.2 Incasem =n =1,g =r = 1 and Q = I in Theorem 2.2, we obtain
Theorem 2.3 in [7].

3 Perturbation analysis

Consider the perturbed matrix equation

m n
X+ > AIX 94— > B;X"Bj=0 3.1
i=1 j=1
where Ai, i=1,2,...,m; Bj, j=1,...,nand Q are the slightly perturbed matrices
ofthematrices A;, i =1,...,m; B;, j = 1,..., nand Q,respectively. In this section,

we show that if ||A; — A;||l,i = 1,...,m; [|B; — Bjll,j =1,...,n.and |Q — Q|
are sufficiently small, then the unique positive definite solution X to the perturbed
matrix equation (3.1) exists. We derive a perturbation estimate for the unique positive
definite solution X and give an explicit expression of the Rice condition number of X.

Denote AQ = Q 0, AA;j=A;— A i=1,2,...,m: AB; _B —B;,j=
1,2,....n, AX =X — X.

Theorem 3.1 Let
r+1

q

(1) 0] = W

m
q 2 n—119+1
—— e = 2> AP > 0, 6y 0=
+1
(q+ 1) ~
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n
=2 B I*Ie It >0, 3.2)

j=1

(i) |AQ| < ﬁ -min{l — =g, 1- 1 —92}, (3.3)

m n

; (g + DI — g1 5

i) > (A2 = 14i117) < o DT > (1812 - 18,12)
i=1

j=1

(q 4 1)r+l _ qr+l/7’
2g + Do

3.4)

Then nonlinear matrix equations X + > i | A¥X " 9A; — Z.'/’.:l BiX™"Bj = Qand
X+ AFXTTA; =30 BiX™"Bj = Q have unique positive definite solutions

X and X, respectively. Moreover, we have

IAXI < ¢ - [IAQI+2 30, (IXT4A - 1 AA N+ IX 740 - 1AA )
(3.5)
+ 237 (X Byl - IABjI + X7 - IIABj||2)] ,

where

m n
E=1—gb D> AN —rb~ D> |1B)|?, b=——min {An(an(Q)}.
i=1 j=1

qg+1

Proof Since 01 > 0, 6, > 0, we know from Theorem 2.2 that Eq. (1.1) has unique
positive definite solution X > qq? Q. Notice that §; < 1 and

107 <o~ i+1e~ - aon- 18~ = e+ (1- Wi=a) 1o,
which gives

—1g+1
ST ]
107 = S

.. A __1 i
Similarly, |Q 1| < ”Q1—6|)‘2 :
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Consequently, we have

m —1yg+1 m +1

S ="y (g + D" —q7
A2 1)g+1 A2 %
;n AP < H—p— ;n i+ S F oot

_ 2@ DT AP + g + DT — q9161

2(1 = 6)(q + 14+ 3.6)
g+l q+1
g 2 AP e 1 + 1 — 16
©2(g + 1yat! -6
qq
©2(g + Dl

and similarly

n n
SO I < ”Q l”m Zn g D g,
. J J 2( +1)r+1”Q 1||r+1

2+ DB P10 1||’+1 +1q+ D)™ — g /ri6

2(1 = 6)(q + 1y +! (3.7)
r r r r+1
g 2 B D o [ g,
T 2r(g + T 1—6,
qr+l

= 3 s

Applying Theorem 2.2, we obtaln that the perturbed matrix equation (3.1) has unique
positive definite solution X > Q

In the following, we show the estimate (3.5):

Since X > 474,(Q)1 and X > q"?)\n(é)l. Leth = _47min{1,(Q), An(O)).

Then X, X > bl and consequently,
IX~9 = X~ < gb~“*tDAX|, and X" = X" < rb~ "tV |AX]|

from Lemma 2.2. ~ o
Since X + >0 AfX79A; — 3 BiX"Bj = Qand X + 3L ATXTIA; —
Z;f:l B;‘X”Bj = Q, then
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ie.,
m
AX = AQ + ZA* (X q_ %" q) Z [AfX‘qA,- - A;fx—qA,-]
i=1 i=1
n
-3 B (X_’ _ X_r) B+ Z [—B;fx—fBj + Bjx—féj]
j=1 j=1
m
=AQ+ > Ar (X1 -X7) 4
i=1
m
- Z [AAFXTTA; + AATXTIAA; + AT X 1AA;]
i=l1
n
+> B (X7 -x7) By
=1
n
*yv—rp. %y — . * y— .
+ > [ABIXTB; + ABIXTAB; + BjX 7 AB;|.
=1
Hence

m m
IAX] < HAQI+IX™=X "1 D AP+ (IAAFX T AA;||+2] AATX 7 A
i=1 i=1

n n
HIXT = XTI NBIR + Y (1ABX T AB; I + 2 AB; X Bl
=1 =1

m
< [AQ] +gb~ TV IAX| D 1A
i=1
m
+ O IXTIA - IAAN+ IX79 - 1AA]P)

n n
+rb”CONAX ) D IBIP + D] 21X B - 1AB I+ X7 - [ AB;I?) .
j=1 j=1

Denote & = 1—gh~@+D 3" || A; |2 —rb~+D > || B |- Notice from the proof
of (3.6) and (3.7) that

Lyg+1 [ 2 Dt — g4
o 3 1A < 10 [§ AP 1T K
ol Z“ I” Z ;“ A TP T RN TR

qq
©2(q + Det!
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and

o=+t ZnB &

(q + 1)r+1 _ qr-H/r 9
2(g + QT

1 1 n
IIQ ||’+
Z 1B 1” +

r+1
q

T 2r(g +

which implies that if b = —im(Q) = q+1 HQ RIL then
E=1—qb @D AP —rb= D 3 1B
1)+t 1
= 1= g o L AP — T o i S 1B
(g+DiI*t g4 (g+D)*' gt
>1- qq+1 2(q+1)q+1 - qr+l oyt (q+1)r+l - 07
and if b = 47k, (0) = —ﬁ,then
E=1—qb= @D AP —rb= D 30 1B
1 1
= 1= g CET O S AR — R O S B2
gl gt gyt 1 g
qq+1 2((1+1)q+1 qr+1 2r (q+])r+l
=0.

Thus we obtain that

[AX] <

e | =

=

m
: [IIAQII + D0 (2UXTTAN - A+ IX7] - A1)

i=1

+ D0 (2AX B IAB I+ XTI - A1)

j=1

O

By the theory of condition number developed by Rice [20], we give in the following
an explicit expression of the condition number of the unique positive definite solution

Xincase0 < ¢q,r < 1.
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3.1 The complex case

Lemma 3.1 [13] Let X be any n x n positive definite matrix, 0 < g < 1. Then

s o0
() x—¢ = 2097 / W+ X) "' dA,
7 Jo
s o0
(i) x~¢ = 297 / W+ X)X I+ X) 1A 74,
qr Jo

From Theorem 3.1, we see thatif [|AA;||,i = 1,2,...,m,[|AB;|l,j=1,2,...,n
and || A Q| are sufficiently small, then the perturbed matrix equation (3.1) has a unique
positive definite solution X. Subtracting (1.1) from (3.1) gives rise to

m n
AX A+ (A;“f{‘% — A;"X_in) +>° (—isjf(—’éj + Bjx—fBj) — AQ,
i=1 =1

ie.,
AX+ Y [Ar (X0 = x79) A+ Ar (R0 = X79) A+ a7 (70— x71) Ay

+ 2 [ B (X7 = X7 ) By — By (X = X7) AB; - AB} (X7 = X77) ]

m
=AQ— Z (AATXT9A; + AATXTIAA; + AT X1AA;)
i=1
n
+> (ABJX 7 B; + ABIX T AB; + BIXTTAB;), (3.8)
=1
Notice that

M+X+AX)""—@ar+x)7!

— M+ X+AX)TAxXI+x)7!
=W +X)"AX QAT+ X +AX)7.

Using Lemma 3.1, we have

X0 — x4 = ML (X[ 4 X+ AX)"' — O + X) ' A 9dA

ST (W + X)TTAX (M + X 4+ AX)TIA9dn
ST [ (L + X)) AX (M + X) "' AT9d A

F 3T OT+X)TTAX QI X+AAX)TTAX M+ X) I 9dA
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X7 — X" =80T (I + X+ AX)T = M+ X)T AT dA

= ST O G 4 X)TPAX (T + X + AX) "I dA 3.9

= SNIT G 4 X)TTAX G+ X)TIA T da
ST CGI+X)TTAX QA X+HAX) T AX G+ X) T d

Combining (3.9) with (3.8), we obtain that

AX — ST S0 AXT 4+ X) TP AX T+ X) I Avd

b/

oD W Bi(M + X)"'AX(M + X)"'A " Bydy (3.10)
= E + h(AX),
where
m
E=AQ— Z (AATXTTA; + AAFXTIAA; + ATXT9AA;)
i=1
n
+> (AB;X7"Bj + AB}X " AB; + BjX 7 AB)).

j=1

singm

h(AX) = —

m 00

- EA;‘/ MM+X)T"AX A+ X +AX)7!
, 0

i=1

x AX I + X))~ a79drA;

singm
i q

m %)

> AZ‘/ M+ X)VAX T + X 4+ AX) " A 9drAA;
T ‘ 0
i=1

sin g

m 0
§ AA;“/ M+ X)TPAX M+ X+ AX) T A T9dAA;
i=1

sin

+
T

n o0
rmw * —1 —1
ZBj/ A+ X)TVAX (M + X + AX)
j=t 70
x AX (M + X)"' A7 d)B;

sin

rmw - % *© —1 —149—r
> B; O+ X)"AX (M + X+ AX)" AT dAAB;
b . 0 ’
j=1

sinrmw

n oo

> AB;‘/ OI+X)""AX M+ X+ AX)" AT dAB;.
T ; 0
j=1
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Lemma 3.2 Let

r+1

m n
q4 « q
A7 Al < , |B:B;l|l < .
; T2l Do R g + DO

Then the linear operator L : H™" — H"*" defined by

LW =W — ST s 190 4% G+ X) T W + X) " A T9dA

T

. (3.11)
+SE S o BEOL + XTI W O + X) 7! BjardA

is invertible.
Proof 1t suffices to show that for any matrix V € H"*", the following equation
LwW=V (3.12)

has a unique solution. Define the operator G : H"*" — H"*" by

. m 00
Gz = a7 Z/ XA+ X)X 22X 24+ X) T A X2
s 0
i=1
sinrmw

n [es)
Z/ XTV2BrOa + X)X PZX P + X)T B XA d
0

Let Y = X~ '/2WX~1/2 Thus (3.12) is equivalent to
Y -Gy =x"2vx 12, (3.13)
Notice that | X! < qqll lo=1y. According to Lemma 3.1 (ii), we have

singmw

m o)
IGY| < | 2/ X2Ar0 + X)X V2y X200 + X) 7 A X T2y
i=170

sinrm

n (o)
+] 2/ XTVPBYOL + X)X Py X P+ X)) By x TP dA|
: 0
j=1

sin

m o0
o i Z/O XTV2AYI + X)X+ X)T A X TV dn -y
i=1

/4

sin

n 00
rmw
+II > /0 XTI + X)X G+ X) 7 B X T2 a1y )|
=1

T

m n
=gVl DX PATX A X 2 Y- D X BT B X
i=1 s
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m n
<qIYI- D IXTPATX TP Y- DX T 2B X
i=1 j=1

m n
< gyl D HANPIX T gy - DBy IR X!
i=1 j=1

m

q+1
qly| - (qqi ZnA Ire="yet!

(q+ )r+1 n
+rlY - ZHB P!

r+1

< Y.

Then ||G|| < 1 which implies that I — G is invertible. Therefore, for any matrix
V € H™", Eq. (3.13) has a unique solution Y. Thus equation (3.12) has a unique
solution W for any V € H™*" which implies that the operator L is invertible. The
proof is then completed. O

LetC; =X"9A;,i=1,2,...,m; D; =X""B;, j=1,2,...,n. Wecanrewrite
(3.10) as

AX =L [AQ — 3 (CEAA; + AAXCH) + X1, (D;fABj + ABTDJ')]
- (ZE”ZI AAFXTIAA; + 30, AB;’.‘X_’ABJ-)
+L7 ' (h(AX)).

Then we have

AX =L (AQ = X0, (C7AA + AATC) + X, (D AB; + ABD;))
(3.14)
+O (Il (AA1, -+, AAw, AB1, -+, ABy AQ) II7)
(AAyL, -+, AAy, ABy, -+, ABy, AQ) — 0.

By Rice’s condition number theory [20], we define the condition number of the
unique positive definite solution X of Eq. (1.1) as follows:

' IAXIlF
C(X) = lim sup £ (3-15)
TN S A SR e
where &, (1, -+, tm, N1, *+ , Nn, P are positive parameters. Takingé = pu; = --- =
Um =1n1 = =n, = p = 1in (3.15) gives the absolute condition number Cyps(X)

and taking & = | X||p, u; = |AillFp,i=1,....,m,n; =|Bjllr,j=1,...,n,p =
|Q|l F gives the relative condition number Cej(X).
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Substituting (3.14) into (3.15), we get

1
CX)=- max
& (AA] . AAm AB] ABy ﬂ)#o
myo Bmeomyp M > p

AA,',ABI'EC”X"’AQEHNX"
1L (A0 - 3L, (rani+aATC) + 3, (PjAB; + ABD;)) Ir

||A7Al...%% LBn&”
nr? Y oM T e o F

X

1
= — max
E (Ky, Km F ... Fn . H) #0
Ki,FjEC”x”,HGH"Xy’

I (oH = S0y i (CP K+ KFCi) + Xy ny (DG F) + FiD;)) e
I (Ki,- Ky Fi, oo, Fus H) P

X

1
=— max
& (Kp K Fy oo Fn H)£0
K,',FjEC”X”,HGH"Xy’

1L (oH = X0y i (CF K+ K G + Xy nj (D Fy + FID;)) e
I (=K1, =Km, Fi,..., Fo, H) I F

X

= max
E (By o Em, Fy oo Fa H)#0
Ei’FjGC)lX)l’Heann

I (oH + Sy i (CFE: + EFC) + Xy ny (D3 F + F1D;) ) e
ICEr, - Em, Fi ..., Fy H) | F '

X

Let L be the matrix of the operator L. Then it is not difficult to see that

1 mn oo T *
L=1e1- 7% / [(AI+X)_1Ai] ®[(u+x>—1 A,»] A~9d
T N 0
i=1

sinrm
+

g

Zn:/ooo [(M +X)! Bj]T ® [(u +x)7! Bj]* AT
j=1

Denote by = vec(H) = a + kb, w; = vec(E;) = uD + ki =1,...,me; =
vec(F;) = pD + kgD, j =1,2,...,n, where k is the imaginary unit satisfying
k* = —1. Let

(1 (D
(i) . 5 &1 &2 .
i _ [(u h_(r N I _10].
8 = o |8 = G )81 = : » 82 = : » 8 = >
v q g1
(m) )
81 L) g2

L rech) =17 (1o (x714)") = Ul + ke,
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7 (cfenn=17"((x7a) @1)n=ul+kl,
—1 (I ® Dl*) — L—l (I ® (X_rBl')*) _ Vl(J) +kq)§])’
7 (pfer)n=17((x78) @)1=V + ko),
where U, U0, VP vi? @ @f) o) oy € R = 1. m,j =

1 ,n, and IT is the vec-permutation matrix, such that vec(K Ty = TIvecK. For
i=12,....mj=1,...,n

Denote
-1 _ n?xn? _ § -z

L™ =S+k%,5,2€R ,SC—[E S:|’

yor [0 +00 o a0 [vO v e e
¢ le) + Q(zl) U](l) _ Uz(l) @5]) 4 (D(QJ) Vl(]) _ Vz(])

Then we obtain that

max
(E1s Em Floeees i, H)#0
E F ecnxn HEHYLXU

I (pH + X0 i (CFE: + EFC) + Xy ny (DS F) + F1D;) ) I
N(E1, -, En, F1,..., Fy, H)|IF

C(X) =

| —

X

max
(Eq. Em.Floeoes i, H)#0
E F GCIXX}’( HGH"X”

||pL Yvec(H)+X ", i L™ 'vec (Cl.*E,-—&—Ei*C,')—i-Z'}:l njL~ vec (D;fFj—i—F_;‘Dj) I
HVGC(E],---,Em, Fls~~~an7H)”

e | —

1
= max
& (Eyo Em Fi,sFn H)#0
E[,Ft/.ecﬂxﬂyHEHﬂxn

. (i) . ()
a @ [u M (P
llpSe (b) + 20 wiUe (U(n) +25omve! (q(p) I
X
||Vec(E1,~~~,Em,Fl,...,F,,,H)ll
1
— ! max (o Se, lUc( )s"' ’//«mUc(m)v T]lVC( ),---,nnVc("))gH
E 870 gl

= gn (0Se iU oo U VO, V) 1.

Theorem 3.2 Let

r+1
q

qq
ATA| < = ’ B} B;
> IAzA < T Z” I 5 T ho T

i=1
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Then the condition number C(X) defined by (3.15) has the following explicit expres-
sion

1
) = gl (oS UL an U VO, V)L G16)

where S, Uéi), Vc(j),i =1,2,...,m;j=1,2,...,n are defined as above.

Remark 3.1 From (3.16), we have the relative condition number

1 1
I (1eHeSe 1A FUL, 1Al e U 1B VE - 1BV ) |

Gl (X0 = X1 7

(3.17)

3.2 The real case

In this section we consider the real case, i.e., all the coefficient matrices A;,i =
1,2,...,m;Bj,j = 1,2,...,n, and Q of Eq. (1.1) are real. In such a case the
corresponding unique positive definite solution X is also real. Similar to Theorem 3.2,
we obtain the following theorem.

Theorem 3.3 Let A;,i =1,2,...,m; B, j=1,2,...,n, and Q be real. Suppose
that

c 1 q° N 1 g
A¥A; | < = , B*B;i|| < — .
2 < S ng T 2B < g

i=1

Then the condition number C(X) defined by (3.15) has the explicit expression
1
) = gl (oS mULD U VO, mVO) I G18)

where

Singm < [ 1\ 1.\, -
Sr=|18l-— Z/O ((M~|—X) Al-) ®((u+x) A,-) A 9d
i=1

—1
Sinrmw < [ _1 T 1 r _
+ E/ ((u+X) Bj) ®((AI+X) Bj) ATdn |
; 0
j=1

b
U =s, [1 ® (AiTX"f) + ((AiTX’q) ® 1) n] L i=1.2,.m

Vr(j) =S, [1®(B].TX")+((B].TX_r)®I) 1'[], j=12,...,n.
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Remark 3.2 In the real case the relative condition number is given by

1 1
1 (1S AU AU BV - Bl Vi) |
1XIiF '

Crel(X) =
(3.19)

4 Numerical experiments

In this section, several numerical examples are given to illustrate the theoretical results.
All the tests are carried out using MATLAB 7.1 with machine precision around
10716, The practical stopping criterion used is the residual || X + > ATXT9A; —
1 BjX B - Q] < 10715,

Example 4.1 Consider Eq. (1.1) with the case ¢ = 0.5,7 = 0.7, m = n = 2, and the
matrices Aq, Ay, By, By and Q as follows:

0.1 0.05 0.05 0.5 -0.02 —0.02
A=1005 0.1 005), A2=1{-0.02 05 -0.02],
0.05 0.05 0.1 —-0.02 —-0.02 0.5
—0.04 0.01 -0.02 0.01 0.001 0.01
By=1{ 005 0.07 -0.013 ), B;=10.001 0.01 0.001 ],
0.011 0.09 0.06 0.01 0.001 0.01
2 02 02
0=102 2 02
02 02 2
. 1 q
By computatlon, ||A’]"f]1 |+ A5 Azl — 5 - M’W = —0.1544, || B} B:|| +
gL . ¢ . S
| B5 B2 || 2r TGrho-T+ = 0.2831. According to Theorem 2.2, using iteration

(2.2) and iterating 15 steps, then we get the unique positive definite solution to Eq.

(1.1):

B 1.8026 0.2190 0.2168
X =~ X5=10.2190 1.8077 0.2191
0.2168 0.2191 1.8025

with the residual || X5 +ATX T4, + A3 X Az Bi"Xl_SrBl B X - 0|l =
4.4524e¢ — 016 or

. 1.8026 0.2190 0.2168
X ~Y;5=0.2190 1.8077 0.2191
0.2168 0.2191 1.8025

with the residual ||Yis + ATY, T A| + A3Y "A> — B{Y{'Bi — B;Y;{' B, — Q|| =
4.4593¢ — 016.
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Example 4.2 Letm = n = 1 and

1 00 01
110 01
3 A+ A*
PREEN B p=at4
Sl i1 2
11 —1-11

g =05r=03, X =diag(0.725,2,3,2,1), 0 = X + A*X YA — B*X"B.

Consider the perturbed matrix equation

X+ AX1A; - B]X"B; = Qy,

where ¢; = 0.1, Aj = A+¢;(I +E), Bj = B+e;(I +2E) Xj =X +¢;(I —
E), Qj =X, +A* qu—B*X;qéj,withe=(1,1,1,1,1)andE=e/e.
Now we compute the perturbation bounds for Eq. (1.1).
By computation, 6; = # —2IAI210~ et = 03378 > 0, 6, =

W —2IBIFIQ~ It = 0.7891 > 0, and A, (X — Q) = 04821 >0
which implies that X is the unique positive definite solution of Eq. (1.1) by Theo-
rem 2.2. Obviously, X ; are positive definite solutions of the perturbed matrix equations
X+ A;‘f( A i f?;‘f( —4B = 0 j- Moreover, it is not difficult to verify that for each
j=1,2,3,4,5, the corresponding equations X +A*.)~(_4Aj — E;‘.‘f(_qéj = Qj and

1 r+1
20 A 2107 T > 0,05 = L —

2||1§j ||2|| Q]—l "1 > 0, and the conditions A, (XJ q+1 Qj) > (,respectively. Thus
by Theorem 2.2, X; (j = 1,2, ..., 5) are the unique positive definite solutions of the

corresponding perturbed matrix equations, respectively. We denote AX ) = X/ — X.
All the conditions of Theorem 3.1 are satisfied for j = 1, 2, 3,4, 5. The results are
given in the following table.

X ; satisfy the assumption 0} =

=1 j=2 i=3 j=4 i=s
True error [AXU)|| 0.0400  4.0000e—004  4.0000e—006  4.0000e—008  4.0000e—010
Our result (3.5) 0.0985  6.9607¢—004  6.9346e—006  6.9343¢—008  6.9343¢—010

Example 4.3 Consider Eq. (1.1) withg =r =0.5,m =2,n =1 and

_ 0 a _(Oa (00 (110
Al_(o.oz o)’ AZ_(O 0)’ B_(bo)’ Q‘(o 1.2)’
where a; = 0.25+ 107%, ap = 0.15 + 107* andb_o35+10—’< Denote 6; =

r+1
A% A + [|ASAsl — 4 6, = |B*B| —

1 g7
2 (g+DH Q- T|atT> For k from

2’ lg+D Q=T+t
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1 to 6, we compute 01 and 6, to see that the conditions of Theorem 3.3 are always
satisfied. Results for Ce1(X) by (3.19) with different vales of k are listed below where
Cie1(X) is the relative condition number of the unique positive definite solution of
Eq.(1.1).

k 1 2 3 4 5 6

01 —0.037027 —0.128827 —0.136225 —0.136947 —0.137019 —0.137026
() —0.019527 —0.092427 —0.098826 —0.099457 —0.099520 —0.099526
Crel(X1) 1.014454 1.000561 0.999674 0.999590 0.999582 0.999581

The numerical results listed in the second line show that the unique positive definite
solution X is well-conditioned in such cases.

Acknowledgements The authors wish to thank the anonymous referees for providing valuable comments
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