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Abstract In this paper, we discuss PD-type learning control law for linear differential
equations of fractional order α ∈ (1, 2). We derive convergence results for open-loop
and closed-loop iterative learning schemes with zero initial error and random but
bounded initial error in the sense of λ-norm by utilizing properties of Mittag–Leffler
functions. Numerical examples are presented to demonstrate the validity of the design
methods.
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1 Introduction

It is well known that fractional differential equations are gaining more and more
attention in different research areas, such as physics, engineering and control (see
[1–11]). In recent years, there are many important quality analysis and control results
for various fractional differential equations (see for example, [12–18]).
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18 S. Liu et al.

On the other hand, iterative learning control is a useful control method in terms of
basic theory and experimental applications by adjusting the past control experience
again and again to improve the current tracking performance. Recently, there are
many contribution on P-type and D-type iterative learning control for integer order
ordinary differential equations [19–29], linearization theorem of fenner and pinto [30]
and varieties of local integrability [31] and few work on iterative learning control
of fractional order differential equations [32–36]. In particular, the authors obtain the
robust convergence of the tracking errorswith respect to initial positioning errors under
P-type iterative learning control scheme for fractional order nonlinear differential
equations [34] and noninstantaneous impulsive fractional order differential equations
[36]. Meanwhile, the authors discuss D-type iterative learning control to fractional
order linear time-delay equations [35]. We remark that the above convergence results
are valid for fractional order α ∈ (0, 1).

In this paper, we consider the following linear differential equations of fractional
order: ⎧

⎪⎪⎨

⎪⎪⎩

c
0D

α
t xk(t) = axk(t) + buk(t), t ∈ [0, T ], α ∈ (1, 2),

ẋk(0) = 0,

yk(t) = cxk(t) + d
∫ t
0 uk(s)ds,

(1)

where k denotes the iterative times, T denotes pre-fixed iteration domain length, and
the symbol c0D

α
t xk(t) is the Caputo derivative with lower limit zero of order α to the

function xk at the point t (see Definition 2.1, [37, p. 91]), xk, yk, uk ∈ R and a ∈ R
+,

b, c, d ∈ R.
Consider the boot time of the machine, xk(t)may not change immediately on a very

small finite time interval [0, δ]. Letting δ → 0, we obtain the condition ẋk(0) = 0
in (1). Then the solution of (1) can be formulated by (see [37, p. 140–141, (3.1.32)–
(3.1.34)]):

xk(t) = Eα(atα)xk(0) + tEα,2(at
α)ẋk(0) +

∫ t

0
(t − s)α−1

Eα,α(a(t − s)α)buk(s)ds

= Eα(atα)xk(0) +
∫ t

0
(t − s)α−1

Eα,α(a(t − s)α)buk(s)ds, (2)

where the Mittag–Leffler functions Eα(z) and Eα,β(z) are described as:

Eα(z) =
∞∑

i=0

zi

�(iα + 1)
, Eα,β(z) =

∞∑

i=0

zi

�(iα + β)
,

z ∈ R and α, β are positive real numbers.
Let

yd(t) = cxd(t) + d
∫ t

0
ud(s)ds, t ∈ [0, T ],
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Analysis of iterative learning control for a class... 19

be a desired trajectorywhere xd (t), ud(t) are the desired state trajectory and the desired
control, respectively. As usual, we denote ek(t) := yd(t) − yk(t) be a tracking error
and δuk(t) := ud(t) − uk(t).

The main objective of this paper is to design open-loop and closed-loop iterative
learning schemes with zero initial error and random but bounded initial error in the
sense of λ-norm. We adopt the PD-type iterative learning law.

The paper is organized as follows. In Sect. 2, we present integral and derivative
properties of Mittag–Leffler functions. In Sects. 3 and 4, we give main results, open-
loop and closed-loop iterative learning schemes with zero initial error and random but
bounded initial error in the sense of λ-norm respectively. Examples are presented in
Sect. 5 to demonstrate the validity of the design methods.

2 Preliminaries

LetC ([0, T ],R) be the space ofR-valued continuous functions on [0, T ].We consider
three possible norms: λ-norm: ‖x‖λ = maxt∈[0,T ] e−λt |x(t)| and C-norm: ‖x‖C =
maxt∈[0,T ] |x(t)| and L2-norm: ‖x‖L2 =

(∫ T
0 |x(s)|2ds

) 1
2
.Obviously, ‖x‖λ ≤ ‖x‖C

for any x ∈ C ([0, T ],R).

Definition 2.1 (see [37, p. 91]) The Caputo derivative of order γ for a function f :
[a,∞) → R can be written as

c
a D

q
t f (t) = RL

a Dq
t

[

f (t) −
n−1∑

k=0

tk

k! f
(k)(a)

]

, t > a, q ∈ (n − 1, n),

where

RL
a Dq

t f (t) = 1

�(n − q)

dn

dtn

∫ t

a

f (τ )

(t − τ)q+1−n
dτ.

The following properties of Mittag–Leffler functions will be used in the sequel.

Lemma 2.2 (see [38, (4.3.1)] ) Let α > 0, β ∈ R,

d

dz
[zβ−1

Eα,β(zα)] = zβ−2
Eα,β−1(z

α).

Lemma 2.3 (see [39, (7.1)] or [38, (4.9.3)]) Let λ, α, β ∈ R
+, and |aλ−α| < 1,

∫ ∞

0
e−λx xβ−1

Eα,β(±axα)dx = λα−β

λα ∓ a
.

Lemma 2.4 (see [40, p. 1861]) Let z ∈ R, α > 0,

d

dz
Eα(z) = 1

α
Eα,α(z).
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20 S. Liu et al.

Lemma 2.5 (see [41]) Let ᾱ ∈ (0, 2) and β̄ ∈ R be arbitrary. Then for p̄ = [ β̄
ᾱ
], the

following asymptotic expansion hold:

Eᾱ,β̄ (z) = 1

ᾱ
z
1−β̄
ᾱ exp(z

1
ᾱ ) −

p̄∑

k=1

z−k

�(β̄ − ᾱk)
+ O(z−1− p̄) as z → ∞.

By inserting ᾱ = α, β̄ = α and z = atα , we give asymptotic expansions for Mittag–
Leffler functions Eα,α .

Lemma 2.6 For any a > 0, α ∈ (0, 2), it holds

tα−1Eα,α(atα) ∼ exp(a
1
α t)

αa
α−1
α

as t → ∞.

It is clearly that tα−1Eα,α(atα) is an increasing function for any t ∈ [0, T ] since
a > 0.

To end this section, we recall the following convergence theorem.

Lemma 2.7 (see [42, Lemma 3]) Let {ak}, k ∈ N be a real sequence defined as

ak ≤ pak−1 + dk,

where dk is a specified real sequence. If p < 1, then

lim sup
k→∞

dk ≤ d

implies that

lim sup
k→∞

ak ≤ d

1 − p
.

3 Convergence analysis of open-loop law

In this section, we investigate (1) with the following PD-type learning control law:

uk+1(t) = uk(t) + kpek(t) + kd ėk(t). (3)

Now we are ready to give the first results for zero initial error.

Theorem 3.1 Assume that the ILC scheme (3) is applied to (1) and the initial condition
at each iteration remains the desired, i.e., xk(0) = xd(0), k = 0, 1, 2, . . . . If |1 −
kdd| < 1, then limk→∞ yk(t) = yd(t) uniformly on t ∈ [0, T ].
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Analysis of iterative learning control for a class... 21

Proof It follows from (2), we have

ek(t) = yd(t) − yk(t)

= c
∫ t

0
(t − s)α−1

Eα,α(a(t − s)α)bδuk(s)ds + d
∫ t

0
δuk(s)ds. (4)

Taking the derivative on both side of (4), we have

ėk(t) = c
d

dt

[∫ t

0
(t − s)α−1

Eα,α(a(t − s)α)bδuk(s)ds

]

+ dδuk(t)

= c
∫ t

0

d

dt

[
(t − s)α−1

Eα,α(a(t − s)α)
]
bδuk(s)ds + dδuk(t)

= c
∫ t

0
(t − s)α−2

Eα,α−1(a(t − s)α)bδuk(s)ds + dδuk(t), (5)

where we set z = a
1
α (t − s) and use Lemma 2.2 to derive

d

dt

[
(t − s)α−1

Eα,α(a(t − s)α)
]

= d

dt

[
a

1−α
α zα−1

Eα,α(zα)
]

= a
2−α
α

d

dz

[
zα−1

Eα,α(zα)
]

= a
2−α
α

[
a

α−2
α (t − s)α−2

Eα,α−1(a(t − s)α)
]

= (t − s)α−2
Eα,α−1(a(t − s)α).

By using (3), (4) and (5), we have

δuk+1(t) = δuk(t) − kpek(t) − kd ėk(t)

= (1 − kdd)δuk(t) − kpc
∫ t

0
(t − s)α−1

Eα,α(a(t − s)α)bδuk(s)ds

− kdc
∫ t

0
(t − s)α−2

Eα,α−1(a(t − s)α)bδuk(s)ds + kpd
∫ t

0
δuk(s)ds.

(6)

Taking the absolute value on both side of (6) and multiplying both side by e−λt , we
obtain

|δuk+1(t)|e−λt ≤ |1 − kdd||δuk(t)|e−λt + |kpd|e−λt
∫ t

0
|δuk(s)|ds

+ |kpc|e−λt
∫ t

0
(t − s)α−1

Eα,α(a(t − s)α)|bδuk(s)|ds

+ |kdc|e−λt
∫ t

0
(t − s)α−2

Eα,α−1(a(t − s)α)|bδuk(s)|ds. (7)
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22 S. Liu et al.

By using Lemma 2.3, we have

∫ t

0
(t − s)α−1

Eα,α(a(t − s)α)|δuk(s)|ds

=
∫ t

0
e−λ(t−s)(t − s)α−1

Eα,α(a(t − s)α)eλ(t−s)|δuk(s)|ds

≤ eλt‖δuk‖λ

∫ t

0
e−λ(t−s)(t − s)α−1

Eα,α(a(t − s)α)ds

≤ eλt‖δuk‖λ

∫ ∞

0
e−λ(t−s)(t − s)α−1

Eα,α(a(t − s)α)ds

= eλt

λα − a
‖δuk‖λ. (8)

Repeating the similar computation in (8) and using Lemma 2.3 again, one has

∫ t

0
(t − s)α−2

Eα,α−1(a(t − s)α)|δuk(s)|ds ≤ λeλt

λα − a
‖δuk‖λ. (9)

Substituting (8) and (9) into (7), and taking λ-norm, we obtian

‖δuk+1‖λ ≤
(

|1 − kdd| + |kpcb|
λα − a

+ |kdcb|λ
λα − a

+ |kpd|
λ

)

‖δuk‖λ, (10)

where

e−λt
∫ t

0
|δuk(s)|ds =

∫ t

0
|δuk(s)|e−λse−λ(t−s)ds

≤ ‖δuk‖λ

∫ t

0
e−λ(t−s)ds ≤ 1

λ
‖δuk‖λ. (11)

Note that the condition 0 ≤ |1 − kdd| < 1, it is possible to make

ρ = |1 − kdd| + |kpcb|
λα − a

+ |kdcb|λ
λα − a

+ |kpd|
λ

< 1,

for some λ large enough. Thus, (10) derives that

lim
k→∞ ‖δuk‖λ = 0.

By using (4), (8) and (11), we have

‖ek‖λ ≤
( |cb|

λα − a
+ |d|

λ

)

‖δuk‖λ.
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This implies that

lim
k→∞ yk(t) = yd(t),

uniformly on t ∈ [0, T ]. 	

In general, the initial condition may be varying with the change of iterative times

but in a small range. That is, the initial condition is always in the neighborhood of
xd(0) at each iteration such that

|δxk(0)| := |xd(0) − xk(0)| ≤ 
̄, (12)

The expression (12) implies that the initial output error is also bounded.
Next, we are ready to give the Robustness results for random but bounded initial

error.

Theorem 3.2 Assume that the ILC scheme (3) is applied to (1) and the initial condition
at each iteration conform to (12). If |1 − kdd| < 1, then the error between yd(t) and
yk(t) is bounded and its bound depends on 
̄, |kp| and |kd |.
Proof Similar to the proof of Theorem 3.1, we obtain

ek(t) = yd(t) − yk(t)

= cEα(atα)δxk(0) + c
∫ t

0
(t − s)α−1

Eα,α(a(t − s)α)bδuk(s)ds

+ d
∫ t

0
δuk(s)ds. (13)

Taking the derivative on both side of the above equality, we obtain

ėk(t) = cδxk(0)
d

dt
Eα(atα) + c

d

dt

[∫ t

0
(t − s)α−1

Eα,α(a(t − s)α)bδuk(s)ds

]

+ dδuk(t)

= catα−1
Eα,α(atα)δxk(0) + c

∫ t

0
(t − s)α−2

Eα,α−1(a(t − s)α)bδuk(s)ds

+ dδuk(t),

where we use Lemma 2.4 to derive

d

dt
Eα(atα) = aαtα−1 d

aαtα−1dt
Eα(atα)

= aαtα−1 d

d(atα)
Eα(atα)

= atα−1
Eα,α(atα).

123



24 S. Liu et al.

By learning law (3), we have

δuk+1(t) = δuk(t) − kpek(t) − kd ėk(t)

= (1 − kdd)δuk(t) − kpc
∫ t

0
(t − s)α−1

Eα,α(a(t − s)α)bδuk(s)ds

− kdc
∫ t

0
(t − s)α−2

Eα,α−1(a(t − s)α)bδuk(s)ds − kpd
∫ t

0
δuk(s)ds

− kpcEα(atα)δxk(0) − kdcat
α−1

Eα,α(atα)δxk(0).

Taking λ-norm, we have

‖δuk+1‖λ ≤ ρ‖δuk‖λ + |kpc||δxk(0)|‖Eα(a(·)α)‖λ

+|kdca||δxk(0)|‖(·)α−1
Eα,α(a(·)α)‖λ. (14)

Keeping inmind ofEα(atα) and tα−1
Eα,α(atα),α ∈ (1, 2) are increasing functions

(see Lemma 2.6) for t ≥ 0 and the relationship between λ-norm andC-norm, we have

‖Eα(a(·)α)‖λ ≤ ‖Eα(a(·)α)‖C ≤ Eα(aT α),

and

‖(·)α−1
Eα,α(a(·)α)‖λ ≤ ‖(·)α−1

Eα,α(a(·)α)‖C ≤ T α−1
Eα,α(aT α).

Thus, (14) becomes

‖δuk+1‖λ ≤ ρ‖δuk‖λ + |kpc|
̄Eα(aT α) + |kdca|
̄T α−1
Eα,α(aT α).

Using Lemma 2.7, we have

lim sup
k→∞

‖δuk‖λ ≤ 1

1 − ρ

(
|kpc|Eα(aT α) + |kdca|T α−1

Eα,α(aT α)
)


̄.

It follows (13) that we have

‖ek‖λ ≤
( |cb|

λα − a
+ |d|

λ

)

‖δuk‖λ + |c|
̄‖Eα(a(·)α)‖λ

≤
( |cb|

λα − a
+ |d|

λ

)

‖δuk‖λ + |c|
̄Eα(aT α). (15)
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Let iterative time k → ∞, we have

lim sup
k→∞

‖ek‖λ

≤
( |cb|

λα − a
+ |d|

λ

)

lim sup
k→∞

‖δuk‖λ + |c|
̄Eα(aT α)

≤ |c|
̄
(( |cb|

λα − a
+ |d|

λ

)
1

1 − ρ

(
|kp|Eα(aT α) + |kd ||a|T α−1

Eα,α(aT α)
)

+ Eα(aT α)
)
. (16)

The proof is completed. 	

Remark 3.3 For some pre-fixed iteration domain length T . Linking the formula (16),
one can make the tracking error decreasing by applying two possible methods: (i)
Adjusting the learning law, i.e., making |kp| decrease, (ii) Improving the system initial
state tracking accuracy, i.e., making 
̄ decreasing. But we can’t see that |kd | increase
or decrease will effect on the tracking error by (16). In fact, 1

1−ρ
would increase if |kd |

decrease.

Remark 3.4 Suppose that the initial error satisfy xd(0) �= x0 and |xk(0) − x0| ≤ 
∗.
Denote |xd(0) − x0| = 
∗∗. Then (12) becomes to |δxk(0)| ≤ 
∗ + 
∗∗ := 
̄. One
can obtain similar results in Theorem 3.2.

4 Convergence analysis of close-loop law

In this section, we investigate the following PD-type learning control law:

uk+1(t) = uk(t) + kpek+1(t) + kd ėk+1(t). (17)

In this law, proportional closed-loop learning algorithm can provide faster convergence
speed.We assume that ėk(t) = limτ→t−

ek(τ )−ek (t)
τ−t without violate the lawof causality.

Below is the first result in this section.

Theorem 4.1 Assume that the ILC scheme (17) is applied to (1) and the initial con-
dition at each iteration remains the desired, i.e., xk(0) = xd(0), k = 0, 1, 2, . . . . If
|1 + kdd| > 1, then limk→∞ yk(t) = yd(t) uniformly on t ∈ [0, T ].
Proof By repeating the same argument as Theorem 3.1, it can be proved easily that

(1 + kdd)δuk+1(t) = δuk(t) − kpc
∫ t

0
(t − s)α−1

Eα,α(a(t − s)α)bδuk+1(s)ds

− kdc
∫ t

0
(t − s)α−2

Eα,α−1(a(t − s)α)bδuk+1(s)ds − kpd
∫ t

0
δuk+1(s)ds,

and

|1 + kdd|‖δuk+1‖λ ≤ ‖δuk‖λ +
( |kpcb|

λα − a
+ |kdcb|λ

λα − a
+ |kpd|

λ

)

‖δuk+1‖λ.
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26 S. Liu et al.

From above, we obtain

‖δuk+1‖λ ≤
(

|1 + kdd| − |kpcb|
λα − a

− |kdcb|λ
λα − a

− |kpd|
λ

)−1

‖δuk‖λ.

Owning to |1 + kdd| > 1, there exists a sufficiently large λ such that:

ρ̄ = |1 + kdd| − |kpcb|
λα − a

− |kdcb|λ
λα − a

− |kpd|
λ

> 1.

Now the rest of proof is similar to that of Theorem 3.1, so we omit it here. 	

We also give the Robustness results for random but bounded initial error.

Theorem 4.2 Assume that the ILC scheme (17) is applied to (1) and the initial condi-
tion at each iteration conform to (12). If |1 + kdd| > 1, then the error between yd(t)
and yk(t) is bounded and its bound depends on 
̄, |kp| and |kd |.
Proof From the learning law (17) that

(1 + kdd)δuk+1(t) = δuk(t) − kpc
∫ t

0
(t − s)α−1

Eα,α(a(t − s)α)bδuk+1(s)ds

− kdc
∫ t

0
(t − s)α−2

Eα,α−1(a(t − s)α)bδuk+1(s)ds

− kpd
∫ t

0
δuk+1(s)ds

− kpcEα(atα)δxk(0) − kdcat
α−1

Eα,α(atα)δxk(0). (18)

Substituting (8), (9) into (18), we obtain

‖δuk+1‖λ ≤ 1

ρ̄
‖δuk‖λ + 
̄

ρ̄

(
|kpc|Eα(aT α) + |kdca|T α−1

Eα,α(aT α)
)

.

Since |1 + kdd| > 1, it is possible to choose λ sufficiently large that ρ̄ > 1. By
using Lemma 2.7, we have

lim sup
k→∞

‖δuk‖λ ≤ 
̄
(|kpc|Eα(aT α) + |kdca|T α−1

Eα,α(aT α)
)

ρ̄ − 1
.

By using (15), we obtain

lim sup
k→∞

‖ek‖λ

≤ |c|
̄
(( |cb|

λα − a
+ |d|

λ

)
1

ρ̄ − 1

(
|kp|Eα(aT α) + |kd ||a|T α−1

Eα,α(aT α)
)

+ Eα(aT α)
)
.
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The proof is completed. 	

To end this section, we give two remarks as the extension of Sects. 3 and 4.

Remark 4.3 When α = 1, the Eq. (1) become an one-order ordinary differential
equation as follows:

{
ẋk(t) = axk(t) + buk(t), t ∈ [0, T ],
yk(t) = cxk(t) + d

∫ t
0 uk(s)ds.

(19)

It is well known that the solution of (19) is given as

xk(t) = eat xk(0) +
∫ t

0
ea(t−s)buk(s)ds.

By repeating some elementary computation, we obtain the error formula:

ek(t) = ceat xk(0) + c
∫ t

0
ea(t−s)buk(s)ds + d

∫ t

0
δuk(s)ds.

Taking the derivative, we have

ėk(t) = caeat xk(0) + c
∫ t

0
aea(t−s)buk(s)ds + dδuk(t).

Similar to the contents of Sects. 3 and 4, one can give the convergence analysis of
open-loop and closed-loop law immediately.

Remark 4.4 For learning law (3) and (17), the main results of Sects. 3 and 4 can be
extended to the following the fractional relaxation semilinear differential equations

⎧
⎪⎪⎨

⎪⎪⎩

c
0D

α
t xk(t) = axk(t) + f (t, xk(t), uk(t)), t ∈ [0, T ], α ∈ (1, 2),

ẋk(0) = 0,

yk(t) = cxk(t) + d
∫ t
0 uk(s)ds,

(20)

when f : [0, T ] × R × R is a Lipschitz type continuous function with respect to the
second and third variables. We will give more details in our forthcoming paper.

5 Simulation examples

In this section, numerical examples are presented to demonstrate the validity of the
design methods.

In order to describe the stability of the system which is associated with the increase
of iterations, we denote the total energy in kth iteration as Ek = ‖uk‖L2 .
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Fig. 1 The system output, the L2-norm of the tracking errors, and the total energy in each iteration

Example 5.1 Consider the following fractional order differential system:

{ c
0D

1.5
t xk(t) = 0.5xk(t) + 0.5uk(t), t ∈ [0, 1],

yk(t) = 0.8xk(t) + 0.5
∫ t
0 uk(s)ds.

(21)

The learning law in the system is set as (3), where kp = 1, kd = 1.2. The initial
state and the 1st control are proposed as xk(0) = 0, k = 1.2, . . . , and u1(t) = 1,
t ∈ [0, 1], respectively.

Next, we set the desired trajectory as yd(t) = 12t (1− t), t ∈ [0, 1]. Obviously, all
the conditions of Theorem 3.1 are satisfied.

The upper figure of Fig. 1 shows the system (21) output yk of the first 25 iterations
and the referenced trajectory yd . The middle figure shows the L2-norm of the tracking
error in each iteration. The tracking error at the 25th iteration is 0.0378, which is very
small. The lower figure shows the total energy in each iteration. We can see the total
energy become stable gradually with increase of iterations.

Example 5.2 Consider the following one-order differential system:

{
ẋk(t) = 0.5xk(t) + 0.5uk(t), t ∈ [0, 1],
yk(t) = 0.8xk(t) + 0.5

∫ t
0 uk(s)ds.

(22)

The learning law in the system, the initial state, the 1st control and the desired
trajectory are proposed as Example 5.1, respectively.

The upper figure of Fig. 2 shows the system (22) output yk of the first 25 iterations
and the referenced trajectory yd . The middle figure shows the L2-norm of the tracking
error in each iteration. The tracking error at the 25th iteration is 0.0042, which is very
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Fig. 2 The system output, the L2-norm of the tracking errors, and the total energy in each iteration
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Fig. 3 The tracking error by the different paramenters of learning law

Table 1 The corresponding
error of different kp and kd

Figure kp kd
1

180
∑200

k=21 ‖ek‖L2
(a) 1 0.9 0.0101

(b) 1 1.2 0.0075

(c) 1 1.6 0.0056

(d) 3 1.2 0.0105
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small. The lower figure shows the total energy in each iteration. We can see the total
energy become stable gradually with increase of iterations.

Between Examples 5.1 and 5.2, we need to more input energy in order to offset the
memory of the fractional order system.

Example 5.3 Consider the system, initial control and the desired trajectory in Example
5.1. In this example, the initial errors are assumed to be random but bounded. We
set the initial condition xk(0) is a random number which is uniformly distributed in
[−0.1, 0.1].

Next we analysis the tracking error to by the different parameters of learning
law. Due to the initial state of random, we take the average tracking error of the
20th to 200th iterations as the evaluation criteria of tracking error (Fig. 3; Table
1).

By figures (a), (b) and (c), the |kd | decrease will result in ‖ek‖L2 increased. By (b)
and (d), the |kp| decrease will lead to ‖ek‖L2 decrease.
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