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Abstract A novel fully discrete Crank—Nicolson finite element method, which is
obtained by finite difference in time and finite element in space, is presented to
approximate the fractional Cable equation. Compared to the L1-formula for discretiz-
ing fractional derivatives at time f,1, the proposed approximate scheme is directly
obtained at time 7, 1 in which some new coefficients (k + %)1_"‘ — (k — %)1_"‘

instead of (k 4 1)!7% — k!~ are derived. Based on the new approximate formula,
the stability and error estimate are analyzed in detail and the optimal convergence rate
O (gmintltar,I4ea} 4 prtly i obtained. Numerical examples in one-dimensional and
two-dimensional spaces are shown to illustrate the effectiveness and feasibility of the
studied algorithm.
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method - Finite element method - Stability - Error estimate
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1 Introduction

Fractional partial differential equations (PDEs), which mainly include time, space
and space-time fractional PDEs, have a lot of applications (such as in chaos, mechan-
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ical systems, control, continuous-time random walks and so forth). Recently, some
numerical solutions for Fractional PDEs have been obtained based on some different
numerical methods. These numerical methods mainly cover finite element meth-
ods [6,8,15,16,18,22,27-29,38,42-44,46,47,49], finite difference methods [1,3,7,
10,11,13,17,23,26,30-35,37,39,41,45,48], spectral approximations [2,24,25], DG
methods [9,40] and so forth.

Here, we mainly give some introductions on finite element approximations of frac-
tional PDEs in detail. Deng [8] discussed a finite element method for the space-time
fractional Fokker—Planck equation. Zhang et al. [42] presented a Galerkin finite ele-
ment scheme for symmetric space-fractional PDEs. In 2011, Li et al. [22] gave some
detailed numerical analysis of finite element methods for fractional subdiffusion and
superdiffusion equations. In 2012, Zhao and Li [46] gave some numerical analysis
of time-space fractional telegraph equation based on finite element approximations.
Wang et al. [38] studied space-fractional diffusion equations’ inhomogeneous Dirichlet
boundary-value problems and analyzed their finite element approximations. In 2011,
Jiang and Ma [15] considered a high-order finite element method for one-dimensional
time-fractional PDE. Jiang and Ma [16] presented the moving finite element method
for a time fractional PDE. In [44], Zhang et al. gave some analysis and numerical
results on finite element method for Grwiinwald—Letnikov time-fractional PDE. In
[28,29], some mixed finite element methods are studied for second and fourth order
fractional PDEs. In 2010, Zheng et al. [47] gave a note on the finite element method
for the advection diffusion equation with space-fractional derivative. Jin et al. [18]
studied lumped mass Galerkin finite element method for the homogeneous diffusion
equation with time-fractional derivative.

In this paper, our main purpose is to introduce finite element (FE) method to solve
the following time-fractional Cable equation

du(x,t _ _
% = —yoD; ™ u+oD; " Au, xef,1el0,T], (1)
subject to the initial condition

u(x,0) =up(x), xe 82, (2)

and the boundary condition

u(x,t) =0, xe082,te[0,T] 3)

Here 2 C RY(d = 1,2) is a bounded space domain with the boundary 02, A =
%(d =1)and A = % + ;{—zz(d = 2) represent the Laplacian operators, and ¢ Df
1

2
means to take the left Riemann—Liouville fractional derivative with respect to the time
variable 7 by order o (0 < o < 1), which is defined by

o _ 1 a ! f(-x’s)
DF I = s [ FE s, o)

where I"(-) denotes the Gamma function.
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Based on the anomalous electrodiffusion in nerve cells, an important model—the
fractional Cable equation has been derived and developed by many authors [5,12,
19-21]. Recently, some numerical methods for numerically solving the fractional
Cable equation have been developed. Lin and Xu [24] discussed the spectral discrete
method for fractional Cable equation, some detailed error analysis are made and some
calculated data are provided to verify their theoretical results. Bhrawy and Zaky [4]
considered an accurate spectral collocation algorithm for solving nonlinear fractional
Cable equations in one- and two-dimensional cases. Zhuang et al. [49] considered
a Galerkin finite element approximation for one-dimensional time fractional Cable
equation and obtained a good approximation accuracy in time. Hu and Zhang [14]
solved numerically the fractional Cable equation by using implicit compact difference
schemes. In [32], Quintana-Murillo and Yuste gave the explicit numerical method for
fractional Cable equation including two temporal Riemann—Liouville derivatives.

In this discussion, we mainly present a novel discrete scheme of fractional derivative
differing from the approximate method in [24,35], and formulate then analyze a new
fully discrete Crank—Nicolson type Galerkin finite element scheme, which is different
from the one in [49]. In [24,35], the time fractional derivative was discretized at time
t = t,41. Compared to the approximate formula proposed in [24,35], our approximate
method is made directly attime 7, , 1 and a new discrete scheme is formulated based on

some different coefficients (k + %)1_"‘ —(k— %)1_"‘ from the ones (k + 1)!=* — k1-«
in [24,35]. In the full text, we give some detailed analysis on stability and error
estimates for two-dimensional problem of the fractional Cable equation. Moreover,
two numerical tests are made to confirm our theoretical analysis.

In this paper, the functional spaces we adopted are the standard Sobolev spaces as
follow

Hy(2) := {v e H'(2), vlpe = 0},
H™(2) := {v e L*(2), DPv e L*(2), for all |8 < m},

where L?(£2) is the space of measurable functions whose squares are Lebesgue inte-
grable in £2. The inner products of L%(£2) and H'(£2) are defined by

(u, v) =/ uvdx, (u,v); = W, v)+ (Vu, Vv),
2
and the corresponding norms are defined as

1 1
lullo = @, )2, Jluly = (u,u)i,

respectively. Furthermore, H" (§2) is equipped with the norm
1

b = (> 1DPul})”.

0=<|Bl=m
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2 The fully discrete scheme

Set v = % andlet0 =9 < 11 < --- < ty = T be the uniform partition of the

time interval [0, T'], where #, = nt. In the following, we denote u" = u(, t,) and the

terms of time derivatives will be approximated at intermediate nodes 7, , 1 = tﬁ%
2
The first order time derivative ‘3—'; att =1, 1 can be approximated as
2
ou(x,t 1) n+l n
’nt5 u —u
o’ 2 = +0@xY), n=0,1,....,N—1. 5)
T

Recalling the relationship between the Caputo fractional derivative and Riemann—
Liouville fractional derivative

f(x,0)

o _ Cno
ODf 0t = GDF 0+

, 0<a <1, (6)

as well as the definition of Caputo fractional derivative of order o

C ra B 1 Tof(x,s) ds
§0ffn = ps [ TS 0,

we can approximate the Caputo fractional derivative as the following

nglf(xv tn+%)
_ 1 nil/’m of  ds +/tn+£ of  ds
I'd-—o) _j:O t as (tn-i-% B s)ﬂt tn as (tn+% — s)a
) ni‘ll it — fi /f./+l ds
T ra- : ’
( ) _j:0 T fi (tn-ﬁ—% - S)
n+l _ penopt 1 ds
+u/ |+
T th (tn-i-% — S
o n-1 . 1 A 1 AN
=To=m DI =g [(HE—J) - (”‘5_])
j=0
+ (T = g

—a n
= > G- b =012 N1 ()
r@e-a) &
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where ¢ = (k+ 5™ —(k— )%, (k=1,2,..)), co = 57z andr; = O(¢>7%),
which can be proved by the similar method in [24,35].
Combining (6) and (7), we have that forn =0,1,2,...,N — 1

—1 n
l—ay T L, n+l—k n—k
oD u(t 1)=— c, (u —u""")
f ") I+ ,; '
u(x,0
+ (r.0) + O(t'r),

[ [+ D] ™

n
ODtl_azAu(t,ﬁ%) = Tdta Zc,% (Au"+1_k - Au”_k)

k=0
Au(x,0)

(o) [(n + Hr]' ™

.L,otz—l

+ + O(c1te2), ®)

where
1 1\ N 1
d=(k+=) —(k=2) . ¢f=—
¢ ( 2) ( 2) 0 o
5 k 1\*? r 1\*2 5 1 9
Cr = + E - - 5 , Cp = 272 ( )
A %1 A T2 a1l T 22 __ T
Denotex; = 1‘(1+a1),052 = F(l—i—az)"Bn = F(al)[(n+%)r]l’°‘1 aIBn = F(sz)[(l’l-‘r%)‘[]liaz s

and R, = O (z2 + 1121 4 ¢1+@) then the variational problem can be stated as: Find
u" e HJ(£2) such that for all v € H (£2),

n
Wt v) = W', v) — yé le "Ry )y
k=0

n
—& Zc,%(Vu”'H_k —vu" 7k Vo) — y B, v)
k=0
—B2(vu®, Vo) + t(R;,v), n=0,1,2,...,N—1.  (10)

The following properties can be proved directly.

Lemma 1 The coefficients c,i and c,% defined by (9) satisfy that

>0, ¢2>0, j=0,1,2,...

ch>cl>ch> >l >0, ¢f = 0k — o0); (11)

c(2)>c%>c%>~~>c,%>0, c,%—>0(k—>oo).
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A %1 A ™2 Al T 22
Lemma2 o) = ey %2 = Tiray B, = Fanlot har and B; =
. .
— Y satisfy that
I(a)[(n+3)7] 7y
5l A 1 p2 _a 2
B, <aic,, B, <ax,, n=>1. (12)

1

ne

Proof Firstly we prove that B,i <dQjc
From the definition of c,‘1, we have

~ 1 al
aic, — B,

T N\ N T
Ny

0l (Rt N (e Mt et V)
ra+anfn+1) ™

B (At et V1 ek .
ra+an[(n+i)™™ '

Considering the differential mean-value theorem, we know

1 1—ay 1 o 1 o]
[ 6]
1—
= n+l alalgo”_l—oq, &€ n—l,n+1
2 2 2

>a; —oap =0. (14)

After substituting the result of (14) to (13), we reach that &1c}l — ,3,% > 0, which is
,é,% < (351C,1,.

Similarly, we can prove that 2 < &ac2

e O

Now we consider approximating the variational problem in space. Let I = {3}
be a quasi-uniform partition of £2. 3y, is a triangle of §2, h, is the diameter of 3, and
h = max{h,}. Let " C HO1 (£2) be a family of finite element space with the accuracy
of orderr > 1, i.e.,

S"={x e HH(2)NC(2): xl3, € Pr, Y35 €3},

where P, denotes the set of polynomials of degree up to r. The Crank—Nicolson type
fully discrete finite element scheme can be stated as following: for n > 1, to find
uZ‘H € S" such that Vv, € S" satisfies
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(1 + y&lc(l)) (uZ“ vh) + aoch (Vu"+1 Vvh)
n—1
o476 S b i)+ (k= 2 ()
k=0
» (c,% — c,%H) (vug—", Vvh) n (&zcﬁ — B,f) (Vug, Vvh) . (5)

When n = 0, it equals that the two terms of sum in the above formulation don’t appear,
which means: to find ”;11 € S" such that for Vv, € S" it holds

(1 + y&ic)) ), vp) + 5626(2)(VM111, Vup)

= (up, vn) + y @iy — ﬂo)(uh,vh)+(azco ﬂo)(Vuh,Vvh) (16)

here u2 is the approximation to the original value uq(x).

3 Stability and error estimation for the fully discrete scheme

In this section, we will give the stability analysis and error estimation for the fully
discrete scheme (15) and (16). Throughout the following C will denote positive con-
stants, not necessarily the same at different occurrences, which is independent of the

finite element mesh size / and time step size t.

Theorem 1 The fully discrete formulations (15) and (16) are unconditionally stable,
and it holds that

yt™! 0,2 T 0,2
——uyI” + ——— IV, lI©, n=1, (17)
I +a) I+

02
" < uy |l
2 oy k)2 =l k2
N n— R n—
where " = |luj||* + yayr X cplluy, " IIF 4+ a2 D il Vu, "I
k=0 k=0
Proof When n > 1, taking vy, = u"Jrl in (15), we get

(14 véned) I 12 + Gac Va2

nel
(uh, uZH)—i—y&l Z (c,lc — Cll-s—l) (u';fk "H) +y (otlc - ﬂ ) (uh, uZH)
k=0

n—

—_

(c,% - CI%H) (Vuz k Vu"“)—l—(&zcﬁ — ,3,%) (Vug, VuZ“). (18)
k=0
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Noting (11) and (12), we can get the following by Holder inequality and Young
inequality

(14 véach) 12 + Gacd Va1

—1 —k 2 n+1)2
78 P | g | ™)
< 4 > + yay Z(c,i—c,l+l)T+(c(l)—cn)T

2 k=0
n—1 n—k 2 n+1,2

N 2 2 ”Vuh Il 2 2 ”v”h l

+052 |:k_0 (Ck — Ck+1) T + (CO — Cn) T
a1 a2
T ( Ay )( 2 T2
IVadl? Va2

1 (az 2 - p? ) S+ . (19)

Rearranging the terms, we obtain

1 1— k
a1 +yalzcknu"+

+ozchk||W"+1 1P+ v Bally P+ BRIV

n=0
n—1 n—1

2 ~ 1 —k 2 ~ 2 —k 2
< > +vén D cplluy ™ 17 + @2 D g lIVag )1, (20)
k=0 k=0

n—1 n—1

. 2 S 1y, n—ky2 | A 2 —k 2

Denoting o" = ||ul}]|* + yé kEOckllu’Z [ +azk§lock||V“Z |12, the above for-
mula becomes

<" <o <. <ol 21

When n = 0, taking v, = u,l1 in (15), we have

(14 véch) lu 12 + Gacd I Vih I
= (ug, u;lz) +vy (&]c(l) - ,3&) (ug, u},) + (&zcg - ,33) (Vug, Vu,l,)

1 1
B 1 (awo :30) AP U5
= > > i ) ya1c0—2
alco

(Wo ﬂo) Va2 Vb |2
h +azc(2)Th (22)

)

azco 2
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where
~o1 A
(“100 _:30) _( T T )2 I'(l+ap)2*
&10(1) T\ 4 ap)2v F(al)(%)l—“l ol
T (1 = 2ap)? (1 + )2
(N +ap)20)? ™
(1 =2a)? (‘L’)al ™
T I(l4a) \2) T Td+ap’
and
A2 22\2 a
(azc(z By) - T .
(xzc(z) I'(l1+an)
Thus we obtain from (22) that
o" < o' = (14 yaico) luyll® + @acgl| Vuy |1
< IR + =L+ = vadP. 23)
'+ o) '+ w)
This complete the proof of (17). ]

Next, we define the Ritz projection operator P : H} (£2) — S" as
(VP"u, Vv) = (Vu, Vv), Vv e S (24)
This projection operator P" satisfies the following estimation (see [36])
| Py —v| + R V(P"v — v)|| < CR vy, Vv e HSN Hol, s>1. (25
Lemma 3 Suppose

Ultps1) —ult)  Plultnrr) = Plult)

R! = >0,
S T T -
then it satisfies the following estimate
IR"| < C (12 +h’+1) . n>0. (26)
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Proof Forn > 0, by (5) and (25), we get

w(tn1) — ultn) P utyyr) = Phuty)
T T
u(tyg1) — ulty) O (es) | ]2 (1) _ (1)

T Jt + Jt ot

IRY| =

o (1,1) _ PhuCuyn) = Phu)

ph
+ ot T

<C@E?+nth. (27)

Lemma 4 Suppose
5 o
1 — — 1 — —
Qn 1 cx (un—i-l k u” k) _er cx (Phun-i-l k Phun k) . n>0,
T T
k=0 k=0

then it satisfies the following estimate
i =c (e +nt), n=o0. 28)

Proof Forn > 0, by (7) and (25), we obtain

A

n
a1 ( n+1—k nfk) l—a ( )
— E cr (u —u —oD Yult 1
T k oLt n+§

k=0

1051 <

1—oy _ ph 1—oay
oo (1) = Pony = (1, )|

n
By 1—a o hontl—k _ ph n—k
P"oD; “(%4—%) . Eck P'u P'u
k=0

+

el (AR ARk (29)
O
Theorem 2 Assume u"™ = u(x, y, t,,) is the exact solution of (1), (2) and (3), ”‘Z is the

FE approximate solution of the fully discrete scheme (15) and (16). Then u}, satisfies
the following error estimation

max ”un _ MZ” S C F(al)Tlfail(rmin{1+a1,1+ﬂt2} + hr+1). (30)
1<n<N V4
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Proof Splitting " = u(t,) — uf} = (u(ty) — PMu(ty)) + (PMu(t,) —ull) = p" + 6",
we only need to estimate |0 || by virtue of (25).
Noting that u" satisfies (10), it holds that
(14 yarcd) !, v) + dacd(Vu', Vv)
= %, v) + y@icy — B’ v) + (@acj — ﬂo)(Vu Vv) + 7(Rs, v). B1)

Therefore, subtracting (16) from (31), then setting v, = 0!, we get
(14 yéic) 1017 + éac§ | VO ||

= (0%, 0Y) + y @ich — BH©O°, 0") + (@acd — B2)(VO°, V")
+7(R, 4+ R + Q" 6",

91 2 90 2 R 90 2 91 2
S” l +|| l +y e 50)(” l +|| II)

2 2 2 2
ﬁ N n Ive'|?
0 2 2
2 n ni2 2
R R” ! 0!
LR RN A )
v B}
Just take u% = P"uyq for simplicity, then #° = 0 and consequently,
(14 yéic) 10" 11* + éac§ I Vo' |2 T+ QY
Vﬂ()
<c I'(ay) L2 (tmin{l+a1,1+a2} +hr+l)2
}/21 oq :
(33)
When n > 1, subtracting (10) by (15) and taking v, = 6"*!, we get
(A + yaic) 0" 1I? + dacg VO |12
n—1
— (9}’1’ 6)’!+1) + )/&1 Z(Cll _ C]1+])(9n_k7 9”-‘1—1)
k=0
n—1
+y@ich = B©°. 0" + & D (g — g (VO F, vt
k=0
+(@acy — BHI(VO?, VO 4 T(R, + RI + Q). 0"H). (34)

In the above deduction, (24) is used. Using Holder inequality, Young inequality, (12)
and (13), then we have
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(14 yaicp)lo" > + @acp | VO" 1P
n—1
< 10" 1% + véun D _(ep — iy DI 1% + v @icy — BDIO°I
k=0
n—1
—y Ballo" P = BEIVO" T 4+ @2 D (e — iy IVOTTE|?
k=0
A 2 22 02 n n pn+l
+ @y — BOIVOI® +2T|(R: + RY + QF, 0"F1)]. (35)

Since we have taken u% = Phuo, 9% = 0 and VO° = 0 are used in the above derivation
process. After transposition, it holds

n+1 n+1
12 ~ 1 1—k 2 ~ 2 1—k 2
10" + yén D cpllo™ R IR 4 a2 D] g Vet
n=0 n=0
n n
2 ~ 1 —k 2 ~ 2 —k 2
< N0"17 +yér D ello" 1P + a2 Y el Ve
k=0 k=0

—yBallo" T + 27 |(R, + R + Q0™ Th)
n n
< 10" 1P 4y &1 D ctl0" IR + 82 D VeI
k=0 k=0

+——7%|R; + R" + Q"|°. (36)

B

n n
Denotes 1" = (0”712 4+ ya1 > cx 0" 7|12 + & 3. di|| V6" *|?, and the above
k=0 k=0
formula becomes

P < gt ¢ 2 (Tmin{l+a1,1+a2}+hr+l)2 ...

VB
= 771 -|-g Ail+ } +...+L 2 (Tmin{1+al,l+o¢2}+hr+l)2
Y\ B Bl

N |

1 CF(O[l) 1 1—o 1 1—a
'+ ——— 1+ +(n—- +o
y 2
3 1—ay . 2
+ (E) T27oz| (_L,mm{l+oz1,1+ot2} + hr+1)
1 CI'(a1) 1 e 2—a min{l+ay,14a2} r+1 2
n + nin+ = Al (r LTI 4 h )

y 2
't CI"V(Otl)Tzfol1 (tmin{l+a1,l+0!2} +hr+1)2, 37

IA
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Substitute (33) to the above inequality, we obtain

nn+l <C I'(ay) _L_Z—Otl (Tmin{1+a1,1+a2} +hr+l)2

— yzl—al
+CF(O[1) T2,a| (Tmin{l+0(1s1+012} + hr+])2
14
2_

< T ittt | o) @9

- 14

SO
”en-‘rl | = ”9n+1 + pn+1|| < ||9n+1 I+ 11p"

—c F(O”)Tl‘%l (Tmin{1+«x1,l+az} + h’“). (39)

- 14
Thus (30) is proved. .

4 Numerical examples
In this section, we show two numerical examples to verify and illustrate the theoretical
results of finite element approximation for the fractional Cable equation. Now we

compute some numerical data based on one-dimensional case and two-dimensional
case, respectively.

4.1 One-dimensional example
Based on the fully discrete scheme (15) and (16), we first check the convergence rate

by the example of one-dimensional space. Therefore, we consider the Cable equation
with a forcing term f:

ur = —yoD; " u+ oD} Cur + fx,1), x€l[0,1],1€[0,T];  (40)
Considering the following exact solution
u(x,t) = 12 sin(2m x),
the associated forcing term is

2
y e 4

f<"’”=2(f+m TCt+a)

t1+“2) sin(2m x).

Let S" be the space of continuous piecewise linear functions on J. We first make
the step of space & = 1/1000 to be small enough to test the convergence order in
time. The value of y is taken as y = 1 and y = 1000, respectively. From the results
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Table 1 The convergence results in time when y = 1, h = 1/1000at T = 1

a1 =0.9 a1 =05 o)1 =0.2

T =01 Rate =05 Rate =06 Rate
1/8 4.8713e—003 - 6.4240e—003 - 5.5563e—003 -

1/16 2.1492e—003 1.1805 2.1061e—003 1.6089 1.7146e—003 1.6962
1/32 9.6707e—004 1.1521 7.0170e—004 1.5857 5.3830e—004 1.6714
1/64 44111e—004 1.1325 2.3699e—004 1.5660 1.7185e—004 1.6472
1/128 2.0298e—004 1.1198 8.0895e—005 1.5507 5.5735e—005 1.6245
TCRs - 1.1000 - 1.5000 - 1.2000
Table 2 The convergence results in time when y = 1000, 7 = 1/1000at T = 1

T Zé = 8? Rate zé = 82 Rate g; = 8% Rate
1/8 4.0640e—003 - 6.5472e—003 - 7.1902e—003 -

1/16 9.0639e—004 2.1647 2.1457e—003 1.6094 2.9373e—003 1.2915
1/32 2.4907e—004 1.8636 7.1371e—004 1.5881 1.2229e—003 1.2642
1/64 7.0563e—005 1.8196 2.3972e—004 1.5740 5.1586e—004 1.2452
1/128 2.0828e—005 1.7604 8.0462e—005 1.5750 2.1909e—004 1.2354
TCRs - 1.1000 - 1.5000 - 1.2000
Table 3 The convergence results in space when y = 1000, r = 1/1000 at T = 1

h g; = 8? Rate g; = 82 Rate a; = 8% Rate
1/8 3.4089e—002 - 3.5260e—002 - 3.5715e—002 -

1/16 8.4840e—003 2.0065 8.7609e—003 2.0089 8.8579e—003 2.0115
1/32 2.1170e—003 2.0027 2.1834e—003 2.0045 2.1963e—003 2.0119
1/64 5.2819e—004 2.0029 5.4291e—004 2.0078 5.3503e—004 2.0374
TCRs - 2.0000 - 2.0000 - 2.0000

listed in Tables 1 and 2, we can see that the value of y affects the convergence order
in time, which also verifies that the error results is related to the constant y. Taking
y = 1000, T = 1/1000 for the purpose of testing the convergence order in space, we
find from Table 3 that the convergence rates, which bring into correspondence with the
theoretical convergence results (TCRs), almost reach to the second order for different
values of o1 and 5.

4.2 Two-dimensional example
For validating the correctness of convergence results for the case in two-dimensional

space, we need to consider the following two-dimensional problem with an exact
solution
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Table 4 The convergence results at 7 = 1

0.9

a1 =0.5 a;=0.2

o

T=h aé i Rate G035 Rate »=06 Rate
1/8 2.0988e—002 - 2.1333e—002 — 2.0543e—002 -
1/16 5.8736e—003 1.8373 5.6993¢—003 1.9042 5.3969¢—003 1.9284
1/32 1.7458e—003 1.7503 1.5408¢—003 1.8871 1.4284e—003 1.9177
1/64 5.6682¢—004 1.6229 4.2554¢—004 1.8563 3.8430e—004 1.8941
TCRs - 1.1000 - 1.5000 - 1.2000

u — _pl= D! 2 A 2 0,71

or — 0 t M+0 t u+f(-xayat)a (X,)’)e ’te[v ]a

u(x,y,t) =0, (x,y) €02,1€[0,T]; (41)

u(x,y,0) =0, (x,y) € £,

where the source term is chosen as

2 2
S, y,1)=2 I+ il )t1+"2) sin( x) sin(y),

(;+— _am
r+oap) C+o

which results in an exact solution of (41)
u(x,y, t) = 12 sin( x) sin(y).

Now we take the isosceles right triangle mesh for the spatial domain £2 = [0, 1] x
[0, 1] and choose the continuous piecewise linear space to get the convergence results.
In Table 4, we give some numerical results of errors and orders of convergence with
different space-time mesh t = h = 1/8,1/16/1/32, 1/64 and changed values of
parameters o1, «2. From the results in Table 4, we easily find that on every case the
rate of convergence, which are inclined to the spatial convergence order, is higher than
the theoretical convergence results (TCRs) min{l 4 «1, 1 + «»}. This is due to the
dominant position of space in our numerical example of two-dimensional space.

In view of the discussion on the numerical results for two examples in one and
two dimensional spaces, we claim that the theoretical results derived in this paper are
correct.
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