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Abstract In option pricing and hedging problems where the price process has jumps,
the corresponding pricing equation becomes a partial integro-differential equation.
This partial integro-differential equation is often difficult to solve analytically, and
one should rely on numerical methods. We study a few finite difference methods for
partial integro-differential equations driven by non-Levy type jumps and compare their
performances.
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1 Introduction

Processes with jumps have been popular alternatives for the Black-Scholes model.
While those models correct the heavy tail problem of the Black-Scholes model, they
make the market incomplete in general, and corresponding pricing equations become
partial integro-differential equations (PIDE). Although solving those PIDE is prac-

B Kiseop Lee
kiseop.lee@louisville.edu

Taeyoung Ha
tha@nims.re.kr

Myoungnyoun Kim
gmnkim@nims.re.kr

1 National Institute for Mathematical Sciences, Daejeon 305-811, South Korea

2 Department of Mathematics, University of Louisville, Louisville, KY 40292, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12190-015-0931-5&domain=pdf


88 T. Ha et al.

tically important, not many studies have been done on this topic. In addition, most
studies on a PIDE are on the pricing equations under Levy models, and little is known
about how to solve or properties of solutions of the pricing equations under non-Levy
type jumps.

The most popular asset pricing models with jumps are those with Levy type jumps.
For a nice summary of studies on a PIDE in this case, we refer to Chapter 11 of
Cont and Tankov [4]. Although models with Levy type jumps are a rich class, often
it is not enough. More general jump processes such as compound Poisson type jumps
are necessary to model more complicated factors in a price process. For instance,
compound Poisson processes and doubly stochastic Poisson processes are useful when
we deal with information effect on the price process, andmarketmicrostructure noises.
Such models are introduced in Lee and Protter [11], Lee and Song [12], Lee and Zeng
[13], Kang and Lee [9] and Park and Lee [10]. In this study, we deal with partial
integro-differential equations arising from the hedging and pricing problem when the
price process contains non-Levy jumps, differently from other works on the same
topic.

Lee and Protter [11] introduced a model where the price process gets instantaneous
feedbacks from the past price history, and the feedback comes through the intensity
of the arrival rate in a doubly stochastic Poisson process. Lee and Song [12] studied
a jump diffusion model with a doubly stochastic Poisson process which is affected
by another stochastic process, which is typically understood as information. In both
papers, they found a closed form of the local risk minimization hedging strategy. In
Lee and Zeng [13], the microstructure noise of the market microstructure movement
was modeled by a compound Poisson process with a stochastic intensity. Still, one
needs to solve the pricing PIDE to obtain the hedging strategy, and the resulting PIDE
is different from one in a Levy model. The goal of this paper is to introduce and
compare a few different numerical schemes solving those PIDEs.

We emphasize that we do not assume that the physical measure is already a risk-
neutralmeasure. In otherwords, the price process is not amartingale under the physical
measure, and one needs to choose an equivalent martingale measure for a pricing
purpose. Since we use the local risk minimization as our hedging criteria, we use the
minimal martingale measure to find the pricing equation. Other measure choices are
possible, butwhichever equivalentmartingalemeasurewe choose,wewill get a similar
type PIDE, andwe believe that those schemes introduced here are still applicable under
other choices of a measure.

The remaining of the paper is as follows. Section 2 reviews previous studies on
numerical methods in PIDE from option pricing. Section 3 introduces PIDE in Lee
and Protter [11] and Lee and Song [12]. We compare a couple of numerical methods
in Sect. 4 and conclude in Sect. 5.

2 Numerical methods in partial integro-differential equations

Numerical methods on a PIDE have been studied in a few application areas such as
finance and physics. Cont and Tankov [4], d’Halluin, Forsyth and Vetzal [6], Matache,
Nitsche and Schwab [14], Cont and Voltchkova [5], Carra and Mayo [2], Hilber,
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Reich, Schwab and Winter [7], Clift and Forsyth [3], Zhang [18], Zhang and Wang
[17], Anderson and Anderson [1], and Huang, Cen, and Le [8] are in this category.

Among those, Cont and Tankov [4] summarized several numerical methods used in
financial application such as multinomial trees, finite difference schemes, the analytic
method of lines, and Galerkin schemes.

In multinomial trees, we use a weakly converging discrete time Markov chain,
typically a multinomial tree, with transition probabilities under some converging
conditions. Finite difference methods are approximation schemes for partial differ-
ential equations (PDE) based on replacing derivatives by finite differences. In PIDE,
we need to discretize the additional integral terms into finite Riemann sums. The
analytic method of lines discretizes time derivatives only and solves a series of
integro-differential equations in a spatial domain. Galerkin methods use the func-
tional representation of the solution in the linear combination of basis functions. Due
to their settings, Galerkin methods with a natural interpolation scheme make it easier
to compute the solution at points not belonging to the initial grid.

Thus we can say that in tree methods the solution is represented by its values on
the nodes of a tree, in finite difference methods by its values on a grid and in Galerkin
methods by its coefficients on a basis of functions. In general, multinomial trees are
special cases of explicit finite difference schemes, and finite difference schemes are
seen as special cases of finite element methods, which are themselves special cases
of the Galerkin approach. The Galerkin method is the most general one among these
approximate methods and special choices of basis lead to the other methods including
the finite difference and FFT methods.

However, more general method does not imply that it is simpler to implement: the
complexity of implementation increases as we go from trees to general Galerkin meth-
ods. On the other hand, Galerkin methods become interesting when there are delicate
boundary conditions and irregular boundaries involved as in the case of American
options.

3 Hedging of options

We consider a market with one risky asset and one riskless asset. The risky asset does
not pay the dividend and the interest rate is assumed to be 0. A portfolio is a pair
(ξt , ηt ) where ξt denotes the amount of the risky asset at time t , and ηt is the amount
of the riskless asset at time t . The value of the portfolio is then defined by

Vt = ξt St + ηt . (1)

A self-financing strategy is a portfolio satisfying dVt = ξt dSt . A perfect hedging
strategy is a self-financing portfolio with VT = C(ST ) where C(ST ) is the option
payoff. Since we are interested in an incomplete market, a perfect hedging strategy
does not exist. In this study, we choose the local risk minimization strategy as our
hedging criterion.
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For a portfolio (ξt , ηt ), the cost process is defined by

Ct = Vt −
∫ t

0
ξsdSs . (2)

In otherwords, the cost process is a difference between the value of the portfolio and the
cumulative gain from the portfolio. If a portfolio is self-financing, the cost process is
constant. Since there is no self-financing strategy with VT = C(ST ) in an incomplete
market, the cost process cannot be a constant. Instead, the local risk minimization
strategy chooses one with a constant mean. The local risk minimization strategy is the
portfolio with VT = C(ST ) and whose cost process is a square integrable martingale.

The most common jumps are ones from a Levy process. In other word, the process
is still stationary and independent, and the jump type is Poisson. Models with Levy
type jumps have been studied by many researchers, and their corresponding PIDEs
have been discussed both theoretically and numerically. To name a few, Cont and
Tankov [4], d’Halluin, Forsyth and Vetzal [6], Matache, Nitsche and Schwab [14],
Cont and Voltchkova [5], Carra and Mayo [2], Hilber, Reich, Schwab and Winter [7],
Clift and Forsyth [3], Zhang [18], and Zhang andWang [17] are in this category.While
Levy process provides a good solution to the heavy tail problem in the Black-Scholes
model, often we need more than Levy jumps. A simple extension of it is a compound
Poisson process, where a jump has a form

Nt∑
i=1

Ui ,

where Nt is Poisson and Ui ’s are i.i.d. Even this simple extension makes the entire
process including it a nonLevy.Onemore step of extension gives us a doubly stochastic
Poisson process, or a Cox process, where the counting process Nt has a intensity
process which is not a constant. We want to study two cases where the most general
Cox process is used. Therefore, as price processes with more general jumps than Levy
processes, we consider two slightly different models. The first one is the one in Lee
and Protter [11], where they studied a price process with feedback jumps. The other is
a slightly modified version in Lee and Song [12], where the intensity of a Non-Levy
jump depends on an additional stochastic process.

3.1 Model with feedback jumps

In Lee and Protter [11], the price process of a risky asset S is given as a solution to
the stochastic differential equation:

dSt = f (St−)dBt + g(St−)dRt + h(St−)dt, 0 ≤ t ≤ T (3)
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where B is a standard Brownian motion,

Rt =
Nt∑
n=1

Un, (4)

and N is a doubly stochastic Poisson processwith a bounded intensity function λ(St−).
In other words,

Nt −
∫ t

0
λ(Ss−)ds = a local martingale under P. (5)

Nt denotes the number of jumps up to time t , and Un denotes the size of n-th jump.
Here,Un’s are i.i.d. random variables with mean 0 and a finite secondmoment σ 2 with
density function ν(dx), and f, g, h are bounded measurable Lipschitz functions. The
following technical condition is necessary to guarantee an existence of the unsigned
minimal martingale measure.

h(x)g(x)

f (x)2 + g(x)2λ(x)σ 2 < 1 (6)

for all x . Without this condition, the minimal martingale measure may not exist under
the current model, since it becomes a signed measure.

In Lee and Protter [11], they chose the minimal martingale measure as a equivalent
martingale measure, and found the local risk minimization hedging strategy. Under
their setting, the pricing equation becomes the following integro-differential equation.

vt (t, x) + vx (t, x)h(x) + 1

2
vxx (t, x) f (x)

2 − vx (t, x)
f (x)2h(x)

f (x)2 + g(x)2λ(x)σ 2

+
∫
R

[{
v

(
t, x

(
1 + z

g(x)

x

))
− v(t, x)

}

×
{
1 − g(x)h(x)

f (x)2 + g(x)2λ(x)σ 2 z

}
λ(x)

]
ν(dz) = 0 (7)

for almost all x and

v(T, x) = H(x), (8)

where H is a pay-off function at the final time T . Also, the locally risk minimizing
hedging strategy ξ(t, x) is given by
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ξ(t, x) = vx (t, x)
f (x)2

f (x)2 + g(x)2λ(x)σ 2

+
∫
R

[
v

(
t, x

(
1 + z

g(x)

x

))
− v(t, x)

]

× g(x)

f (x)2 + g(x)2λ(x)σ 2 λ(x)zν(dz). (9)

The above Eq. (7) can be written in the following form:

vt (t, x) + Dv(t, x) + Iv(t, x) = 0 (10)

where the associated operators and coefficients are defined as follows:

Dv(t, x) = 1

2
vxx (t, x) f (x)

2 + vx (t, x) [1 − F(x)] h(x) − v(t, x)λ(x), (11)

Iv(t, x) =
∫
R

v (t, x + zg(x)) [1 − G(x)h(x)z] λ(x)ν(dz), (12)

F(x) = f (x)2

f (x)2 + g(x)2λ(x)σ 2 , G(x) = g(x)

f (x)2 + g(x)2λ(x)σ 2 , (13)

3.2 A model with additional process in jumps

In this section, using the model in Lee and Song [12], we study a similar equation
when the intensity of the counting process Nt depends on additional stochastic process.
Eqs. (3) and (4) are the same, but the intensity of the doubly stochastic Poisson process
N becomes λ(Xt ) where X is another diffusion process such as

dXt = α(Xt )dt + β(Xt )dB
′
t , (14)

where B ′ is another Brownian motion with 〈B, B ′〉t = ρt . This additional process is
used for the generation of the stock price at Sect. 4.3. In other word, we have

Nt −
∫ t

0
λ(Ss−)ds = a local martingale under P. (15)

The technical condition (6) becomes

h(x)g(x)

f (x)2 + g(x)2λ(y)σ 2 < 1 (16)
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for all x, y. The pricing equation becomes

vt (t, x, y) + vx (t, x, y)h(x) + vy(t, x, y)α(y)

+1

2
vxx (t, x, y) f (x)

2 + 1

2
vyy(t, x, y)β(x)2

+ρ

2
vxy(t, x, y) f (x)β(y) + f (x)vx (t, x, y)

h(x)

f (x)2 + g(x)2λ(y)σ 2 f (x)

+ρβ(y)vy(u, x, y)
h(x)

f (x)2 + g(x)2λ(y)σ 2 f (x)

−
∫
R

[
v

(
t, x

(
1 + z

g(x)

x

)
, y

)
− v(t, x, y)

]

×
(
1 − g(x)h(x)

f (x)2 + g(x)2λ(y)σ 2 z

)
λ(y)ν(dz) = 0, (17)

The local risk minimization strategy is given by

ξ H
t = j (t, St−, Xt ) + f (St )2vs(t, St−, Xt )

f (St−)2 + g(St−)2σ 2λ(Xt )
, (18)

where

j (t, St−, Xt ) = f (St−)vx (t, St−, Xt )β(Xt )ρ

+ g(St−)

∫
R

[
v

(
u, Su−

(
1 + g(Su−)

Su−
x

)
, Xu

)

− v(u, Su−, Xu)

]
xν(dx)λ(Xt ). (19)

4 Numerical methods

We use the change of variables from t to τ by τ = T − t and set u(τ, x) = v(T − t, x).
The new function u(τ, x) is the solution of

uτ (τ, x) = Du(τ, x) + Iu(τ, x) (20)

for almost all x under an initial value at τ = 0, or a pay-off value at t = T ,

u(0, x) = H(x).

Given integers N and M , let Δt = T/N , Δx = (xmax − xmin)/M , τn = nΔt for
n = 0, . . . , N and xm = xmin+mΔx form = 0, . . . , M . Also,we set fm = f (xm) and
unm = u(tn, xm). For the convenience of notations and representation of the schemes,
we will use t as τ from now on.

In this section, we introduce the Crank-Nicolson scheme and the predictor correc-
tor method to approximate the solution and the optimal trading strategy. We derive
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approximation schemes in vector matrix forms and depict the option prices according
to the simulated stock prices.

4.1 The Crank-Nicolson scheme

We know that the Crank-Nicolson scheme is implicit, unconditionally stable, and
second-order accurate when it is applied to the parabolic equations, see Strikwerda
[16]. Furthermore, it is dissipative of order 2 if Δt/(Δx)2 is constant, but not dissi-
pative if Δt/Δx is constant. The last means that there would be some high-frequency
oscillations in the solutions calculated by it when Δt/Δx is constant.

The Crank-Nicolson scheme to (20) is as follows

ut (tn+ 1
2
, xm) ≈ un+1

m − unm
Δt

,

Du(tn+ 1
2
, xm) ≈ 1

2

un+1
m+1 − 2un+1

m + un+1
m−1 + unm+1 − 2unm + unm−1

2 (Δx)2
f 2m

+un+1
m+1 − un+1

m−1 + unm+1 − unm−1

4Δx
[1 − Fm] hm

−un+1
m + unm

2
λm

Iu(tn+ 1
2
, xm) ≈ ūn+1

m + ūnm
2

,

where ūnm is the integral

ūnm =
∫
R

u (tn, xm + zgm) [1 − Gmhmz] λmν(dz).

By inserting these schemes into the equation, we obtain

un+1
m

Δt
− un+1

m+1 − 2un+1
m + un+1

m−1

4 (Δx)2
f 2m − un+1

m+1 − un+1
m−1

4Δx
am + λm

2
un+1
m − ūn+1

m

2

= unm
Δt

+ unm+1 − 2unm + unm−1

4 (Δx)2
f 2m + unm+1 − unm−1

4Δx
am − λm

2
unm + ūnm

2

where am = [1 − Fm] hm , which can be written in the following matrix form,

(
1

Δt
I − 1

2
A

)
un+1 − 1

2
ūn+1 =

(
1

Δt
I + 1

2
A

)
un + 1

2
ūn + cn + cn+1

2
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where un = [
unm

]M−1
m=1 , ū

n = [
ūnm

]M−1
m=1 , A = [Amk]

M−1
m,k=1 is a tridiagonal matrix,

Amk =
[

f 2m
2 (Δx)2

− am
2Δx

]
δm−1 k +

[
f 2m

2 (Δx)2
+ am

2Δx

]
δm+1 k

−
[

f 2m
(Δx)2

+ λm

]
δm k,

for the usual Kronecker delta notation, and a vector cn = [
cnm

]M−1
m=1 by

cnm =
[
f 2M−1/[2 (Δx)2] + aM−1/[2Δx]

]
unMδm M−1.

The quadrature rule applied to ūn generates another matrix form, denoted by a quadra-
ture matrixQ, for example, a trapezoidal rule at Sect. 4.3. We rewrite the matrix form
of the scheme as follows

(
1

Δt
I − 1

2
A − 1

2
Q

)
un+1 =

(
1

Δt
I + 1

2
A + 1

2
Q

)
un + bn + bn+1 + cn + cn+1

2
.

(21)
The additional source bn = [

bnm
]M−1
m=1 has entries bnm = QmMunM .

4.2 Predictor-corrector method

By adjusting the decreasing order formula from n + 1 step to n step of t in Miri and
Benhamou [15] to the increasing order formula from n step to n+1 step of τ , we split
operators and apply the predictor-corrector method to (20) through following several
steps:

u(tn+ 1
3
, xm) ≈ u(tn, xm) + Δt Iu(tn, xm),

u(tn+ 2
3
, xm) ≈ u(tn+ 1

3
, xm) + Δt

2
Du(tn+ 1

3
, xm),

u(tn+1, xm) ≈ u(tn+ 2
3
, xm) + Δt

2
Du(tn+1, xm).

Here, we use t as the time variable instead of τ , already remarked after (20) at the
beginning of Sect. 4. The predictors can be written

un+ 1
3 = un + Δt Iu(tn, xm),

un+ 2
3 = un+ 1

3 + Δt

2

[
Aun+ 1

3 + cn+ 1
3

]
,

un+1 = un+ 2
3 + Δt

2

[
Aun+1 + cn+1

]
.
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Now, Iu(tn, xm) of the first equation can be calculated as

Iu(tn, xm) ≈ k1 + k4
6

+ k2 + k3
3

+ bn,

where

k1 = Qun

k2 = Q
[
un + Δt

2
k1

]
=

[
Q + Δt

2
Q2

]
un,

k3 = Q
[
un + Δt

2
k2

]
=

[
Q + Δt

2
Q2 + (Δt)2

4
Q2

]
un,

k4 = Q
[
un + Δt k3

] =
[
Q + ΔtQ2 + (Δt)2

2
Q3 + (Δt)3

4
Q4

]
un .

Combining these terms and rearrangement of resulting terms gives us

Iu(tn, xm) ≈
[
Q + Δt

2
Q2 + (Δt)2

6
Q3 + (Δt)3

24
Q4

]
un + bn .

Inserting the above expression into the predictor gives us the following

un+ 1
3 =

[
I + Δt Q + (Δt)2

2
Q2 + (Δt)3

6
Q3 + (Δt)4

24
Q4

]
un + Δt bn,

un+ 2
3 =

[
I + Δt

2
A

]
un+ 1

3 + Δt

2
cn+ 1

3 ,

un+1 =
[
I − Δt

2
A

]−1 [
un+ 2

3 + Δt

2
cn+1

]
. (22)

The source vector cn+ 1
3 can be set as a linear combination of cn and cn+1 with their

corresponding weights or a multiple of u
n+ 1

3
M .

4.3 Numerical simulations

The inequality is the strong condition to ensure the positive kernel in the integral part.
Consider the following model by Lee and Song [12]:

⎧⎨
⎩

f (x) = 1.5x, g(x) = x, h(x) = 0.01x, λ(x) = 0.01x, σ = 0.01
H(x) = (x − K )+, T = 0.1, ν(x) = 1

2a 1[−a,a](x), a = 0.1,
v(t, x0) = 0, v(t, xM ) = xM − K ,
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where the interest rate is assumed to be zero as stated in Sect. 3. Under these settings,
(6) is satisfied. Further, we set the boundary conditions,

un0 = 0, unM = xM − K , u0m = (xm − K )+, 0 ≤ m ≤ M,

when x0 < K < xM . The integral value ūnm is expanded as

ūnm = 1

2axm

∫ xm2

xm1

u (tn, z)

[
1 + Gmhm − Gmhm

z

xm

]
λmdz

m1 = max

{⌊
(1 − a)xm − x0

Δx

⌋
, 0

}

m2 = min

{⌈
(1 + a)xm − x0

Δx

⌉
, M

}

through the usual floor �·� and ceil 	·
 functions. Thus, the quadrature matrixQ under
the trapezoidal rule is expressed as

Qmk = Δx

2axm

[
(1 + Gmhm)Tmk − Gmhm

xm
T x
mk

]
λm,

Tmk = 1

2
δm1k +

m2−1∑
j=m1+1

δ jk + 1

2
δm2k,

T x
mk = 1

2
xm1δm1k +

m2−1∑
j=m1+1

x jδ jk + 1

2
xm2δm2k .

Note that the trapezoidal rule is expected to be cubic order when the objective function
is good enough. The hedging strategy ξ is computed and stored in ξn = [ξnm]M−1

m=1 using
a matrix P = [Pmk]M−1

m,k=1 as

ξn = PuN−n,

Pmk = Δx

2axm
Gmλm

[
1

xm
T x
mk − Tmk

]
+ 1

2Δx

[
δm+1 k − δm−1 k

]
Fm .

Table 1 shows the computational costs and the maximum differences between the
solutions by the Crank-Nicolson (21) and the predictor-corrector (22) schemes.
Figure 1 illustrates a sample stock price with random jumps generated from an addi-
tional process defined at Sect. 3.2, and its corresponding option value as in Lee and
Song [12]. We observe that the predictor-corrector (PC) method is at least 7 times
faster than the Crank-Nicolson (CN) scheme, and its solution converges to that by the
latter method as the number of time steps grows.
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Table 1 Computational costs CCN and CPC by the Crank-Nicolson (CN) and predictor-correction (PC)
schemes with respect to the number of time steps N measured in seconds

N CCN CPC ‖uCN − uPC‖/‖uCN‖
100 1502 234 0.007634985327190

200 3268 304 0.003823642809145

300 3901 408 0.002550469012167

400 5107 519 0.001913367969581

The last column shows the relative maximum differences between uCN and uPC when a = 0.1 and
K = 1000

Fig. 1 A sample stock price St (upper) generated from an additional process defined at Sect. 3.2. Corre-
sponding option value Vt (lower) when a = 0.1, K = 1000 and S0 = K

5 Conclusion

We test and illustrate the numerical results for the theory proposed by Lee and Protter
[11], who didn’t carry out the numerical simulation. From the results in the Table 1 of
Sect. 4.3, we conclude that the predictor-corrector method can save the computational
cost and keep pace with the Crank-Nicolson scheme known as an accurate method by
increasing the number of time steps.
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