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Abstract Recently, a globally convergent variant of Peaceman–Rachford splitting
method (PRSM) has been proposed by He et al. In this paper, motivated by the idea of
the generalized alternating direction method of multipliers, we propose, analyze and
test a generalized PRSM for separable convex programming, which removes some
restrictive assumptions of He’s PRSM. Furthermore, both subproblems are approxi-
mated by the linearization technique, and the resulting subproblems thus may have
closed-form solution, especially in some practical applications. We prove the global
convergence of the proposed method and report some numerical results about the
image deblurring problems, which demonstrate that the new method is efficient and
promising.

Keywords Peaceman–Rachford splitting method · Convex programming ·
Image deblurring problems
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1 Introduction

Many problems arising from compressed sensing, image deblurring, and statistical
learning can be casted as the following canonical convex programming with linear
constraints and a separable objective function:
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min {θ1(x1) + θ2(x2)|A1x1 + A2x2 = b, x1 ∈ X1, x2 ∈ X2} , (1)

where θi : Rni → R(i = 1, 2) are closed proper convex but not necessarily smooth
functions, Ai ∈ Rl×ni (i = 1, 2), b ∈ Rl and Xi ⊆ Rni (i = 1, 2) are nonempty
closed convex sets. Throughout our discussion, the solution set of (1) is assumed to
be nonempty and the matrices A1, A2 are assumed to have full column rank.

To solve (1), there are many efficient augmented Lagrangian method (ALM) based
solvers, such as the alternating direction method of multipliers (ADMM) [1,2], the
generalized ADMM [3,4], and the Peaceman–Rachford splitting method (PRSM) [5–
9], and so on. Recently, it was discovered that theADMM, the PRSMand their variants
are quite efficient for solving some practical problems. For example, in the compressed
sensing, the subproblems in the iterative schemes of these methods often have closed-
form or easily computable solutions. Due to their high efficiency, these methods are
well studied by many researchers.

In this paper, let us focus on the PRSM, which was original proposed in [5]. Apply-
ing it to problem (1), we get the following iterative scheme [6]:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

xk+1
1 = argminx1∈X1

{
θ1(x1) − (λk)�A1x1 + β

2 ‖A1x1 + A2xk2 − b‖2
}

,

λ
k+ 1

2 = λk − β
(
A1x

k+1
1 + A2xk2 − b

)
,

xk+1
2 = argminx2∈X2

{

θ2(x2) −
(

λ
k+ 1

2

)�
A2x2 + β

2 ‖A1x
k+1
1 + A2x2 − b‖2

}

,

λk+1 = λ
k+ 1

2 − β
(
A1x

k+1
1 + A2x

k+1
2 − b

)
,

(2)

where λ ∈ Rl is the Lagrange multiplier associated with the linear constraints in (1)
and β > 0 is a penalty parameter. Compared with the ADMM, the PRSM updates the
Lagrange multiplier twice at each iteration. The PRSM is always efficient when it is
convergent. However, according to [6], it “is less ‘robust’ in that it converges under
more restrictive assumptions than alternating direction method of multipliers”. Thus,
compared with the ADMM, the PRSM has received much less attention. To ensure
the global convergence of the PRSM, He et al. [7] developed a strictly contractive
PRSM (SCPRSM) by attaching an underdetermined relaxation factor r to the penalty
parameter β in the steps of Lagrange multiplier updating, and yield the following
iterative scheme:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

xk+1
1 = argminx1∈X1

{
θ1(x1) − (λk)�A1x1 + β

2 ‖A1x1 + A2xk2 − b‖2
}

,

λ
k+ 1

2 = λk − rβ
(
A1x

k+1
1 + A2xk2 − b

)
,

xk+1
2 = argminx2∈X2

{

θ2(x2) −
(

λ
k+ 1

2

)�
A2x2 + β

2 ‖A1x
k+1
1 + A2x2 − b‖2

}

,

λk+1 = λ
k+ 1

2 − rβ
(
A1x

k+1
1 + A2x

k+1
2 − b

)
,

(3)
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where the parameter r ∈ (0, 1). Obviously, when r = 1, the iterative scheme (3)
reduces to (2). However, to ensure the global convergence of (3), the parameter r
must be restricted in the interval (0, 1). The global convergence of SCPRSM was
proved via the analytic framework of contractive type methods and its efficiency was
verified numerically by some applications in statistical learning and image processing.
Furthermore, the experiments in [7] also indicate that some aggressive values of r close
to 1 (e.g., [0.8, 0.9]) are preferred.

It is well known that the generalized ADMM [3,4] includes the original ADMM as
a special case, and can numerically accelerate the original ADMM with some values
of the relaxation factor. Therefore, inspired by the relationship between the ADMM
and the generalized ADMM, we propose the following generalized version of the
SCPRSM:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk+1
1 = argminx1∈X1

{
θ1(x1)−(λk)�A1x1+ β

2 ‖A1x1+A2xk2−b‖2+ 1
2‖x1−xk1‖2G1

}
,

λ
k+ 1

2 = λk − rβ
(
A1x

k+1
1 + A2xk2 − b

)
,

xk+1
2 = argminx2∈X2

{
θ2(x2) − (λ

k+ 1
2 )�A2x2 + β

2 ‖αA1x
k+1
1 − (1 − α)(A2xk2 − b)

+ A2x2 − b‖2 + 1
2‖x2 − xk2‖2G2

}
,

λk+1 = λ
k+ 1

2 − β
[
αA1x

k+1
1 − (1 − α)(A2xk2 − b) + A2x

k+1
2 − b

]
,

(4)

where α ∈ (0, 2), r ∈ (0, 2 − α) are two relaxation factors, and G1 � 0, G2 � 0 or
G1 � 0, G2 � 0. Here for a matrix G, G � 0 (resp., � 0) means that G is positive
definite (resp., semidefinite). Note that: (I)We don’t attach any relaxation factor before
β in the second update of the Lagrangian multiplier. The reasons are: (i) If we attach
a factor, then the matrix H (defined in (8)) will be nonsymmetric; (ii) As pointed out
in [7], aggressive values of r are preferred in (3). (II) At each iteration, the iterative
scheme (3) require solving a constrained subproblem with respect to x1, which is in
the form

min

{

θ1(x1) + β

2
‖A1x1 − a1‖2|x1 ∈ X1

}

with a given vector a1 ∈ Rl .When A1 	= In1 , this subproblem is not easy to solve even
whenX1 = Rn1 , and the resolvent of ∂θ1, that is (In1 + 1

β
∂θ1)

−1(·), has a closed-form
representation. Thus some iterative solver is needed to get an approximate solution
of this subproblem. However, in this case, we can set G1 = τ In1 − βA�

1 A1 in the
x1 subproblem of (4) with the requirement τ > β‖A�

1 A1‖, where ‖ · ‖ denotes the
spectral norm of a matrix. With this choice, the quadratic term β

2 ‖A1x1 + A2xk2 − b‖2
is linearized, and the x1-subproblem in (4) reduces to estimating the resolvent of ∂θ1:

xk+1
1 = argmin

x1∈Rn1

{
θ1(x1) + τ

2
‖x1 − uk‖2

}
,
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608 M. Sun, J. Liu

where uk = 1
τ
(Gxk1 − βA�

1 A2xk2 + A�λk + βA�
1 b), and thus it has closed-form

solution. For example, when θ1(x1) = ‖x1‖1 (here ‖x1‖1 = ∑n1
i=1 |(x1)i |) or θ1(x1) =

‖x1‖ (here ‖ · ‖ denotes the Euclidean 2-norm), then

xk+1
1 = shrink1,2(u

k, 1/τ)
.= sign(uk) · max{0, |uk | − 1/τ },

or

xk+1
1 = shrink2,2(u

k, 1/τ)
.= uk

‖uk‖ · max{0, ‖uk‖ − 1/τ },

where sign(·) is the sign function.
The rest of this paper is organized as follows. In Sect. 2, we give some preliminaries

and characterize (1) by the variational inequality problem. In Sect. 3, we describe the
generalized PRSM and prove its global convergence in detail. In Sect. 4, we apply
the proposed method to solve the image deblurring problem and verify its numerical
efficiency. Finally, we give some concluding remarks in Sect. 5.

2 Preliminaries

In this section, we summarize some preliminaries which are useful for further discus-
sions. In particular, we characterize problem (1) by the variational inequality problem.

First, we define some auxiliary variables which will help us alleviate the notation
in the following analysis. Set x = (x1, x2), which is a column vector by stacking
vectors x1, x2. Similarly, set w = (x,λ) and θ(x) = θ1(x1)+ θ2(x2). By invoking the
first-order optimality condition for convex programming, we reformulate problem (1)
as the following variational inequality problem (denoted by VI(W, F, θ)): Finding a
vector w∗ ∈ W such that

θ(x) − θ(x∗) + (w − w∗)�F(w∗) ≥ 0, ∀w ∈ W, (5)

where W = X1 × X2 × Rl , and

w =
(
x
λ

)

=
⎛

⎝
x1
x2
λ

⎞

⎠ and F(w) =
⎛

⎝
−A�

1 λ

−A�
2 λ

A1x1 + A2x2 − b

⎞

⎠ . (6)

Obviously, the mapping F(w) defined in (6) is affine with a skew-symmetric matrix;
it is thus monotone. We denote byW∗ the solution set of (5). Then,W∗ is nonempty
under assumption of the solution set of problem (1), and if w∗ = (x∗

1 , x
∗
2 ,λ

∗) ∈ W∗,
then (x∗

1 , x
∗
2 ) is a solution of (1).

Now, we define some matrices in order to present our analysis in a compact way.
Set
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M=
⎛

⎝
In1 0 0
0 In2 0
0 −βA2 (r + α)Il

⎞

⎠ , and Q=
⎛

⎝
G1 0 0
0 βA�

2 A2 + G2 (1 − r − α)A�
2

0 −A2
1
β
Il

⎞

⎠,

(7)
and

H =
⎛

⎜
⎝

G1 0 0

0 1
r+α

βA�
2 A2 + G2

1−r−α
r+α

A�
2

0 1−r−α
r+α

A2
1

β(r+α)
Il

⎞

⎟
⎠ . (8)

The matrices M, Q, H just defined have the following nice properties.

Lemma 2.1 If α ∈ (0, 2), r + α < 2 and G1 � 0,G2 � 0 or G1 � 0, G2 � 0, then
we have

(1). The matrices M, Q, H defined, respectively, in (7), (8) have the following rela-
tionship:

HM = Q. (9)

(2). If G1 � 0,G2 � 0, then H � 0; If G1 � 0, G2 � 0, then

H1 =
( 1

r+α
βA�

2 A2 + G2
1−r−α
r+α

A�
2

1−r−α
r+α

A2
1

β(r+α)
Il

)

� 0.

(3). Q� + Q − M�HM � 0.

Proof (1) By (7) and (8), we have

HM =
⎛

⎜
⎝

G1 0 0

0 1
r+α

βA�
2 A2 + G2

1−r−α
r+α

A�
2

0 1−r−α
r+α

A2
1

β(r+α)
Il

⎞

⎟
⎠

⎛

⎝
In1 0 0
0 In2 0
0 −βA2 (r + α)Il

⎞

⎠

=
⎛

⎜
⎝

G1 0 0

0 βA�
2 A2 + G2 (1 − r − α)A�

2

0 −A2
1
β
Il

⎞

⎟
⎠ = Q.

Then the first assertion is proved.

(2) The proof is divided into two cases.

Case (I) If G1 � 0,G2 � 0. For any w = (x1, x2,λ) 	= 0, since r > 0, α ∈
(0, 2) and r + α < 2, we get

w�Hw

= ‖x1‖2G1
+‖x2‖2G2

+ 1

r + α
(β‖A2x2‖2+2(1−r−α)λ

�A2x2 + 1

β
‖λ‖2)

≥ ‖x1‖2G1
+ ‖x2‖2G2

+ 2

r + α
min{2 − r − α, r + α}‖A2x2‖ · ‖λ‖, (10)
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610 M. Sun, J. Liu

where the inequality follows from the Cauchy-Schwartz inequality. If x1 	= 0,
then from (10), we have w�Hw > 0. Otherwise (x2,λ) 	= 0: if x2 = 0 or
λ = 0, then from the equality in (10) and the full column rank of A2, we also have
w�Hw > 0; if x2 	= 0 and λ 	= 0, then from (10) again, we have w�Hw > 0.
Thus, H � 0.

Case (II) If G1 � 0,G2 � 0. For any v = (x2,λ) 	= 0, as the above discussion,
we have v�H1v > 0. Thus, H1 � 0.

(3) Using (7) and (9), we have

Q� + Q − M�HM

= Q� + Q − M�Q

=
⎛

⎝

G1 0 0
0 G2 0
0 0 2−(r+α)

β
Il

⎞

⎠ � 0,

where the inequality follows from r + α < 2 and G1 � 0,G2 � 0 or G1 � 0,
G2 � 0. The proof is complete. �

3 Algorithm and global convergence

In this section, we first describe the generalized PRSM (denoted by GPRSM) for
VI(W, F, θ) formally. Then, we establish its global convergence in a contraction
perspective.

Algorithm 1 A generalized PRSM for VI(W, F, θ)

Input α ∈ (0, 1),r ∈ (0, 2 − α), and G1 � 0,G2 � 0 or G1 � 0, G2 � 0. Initialize (x1, x2, λ) =
(x01 , x02 ,λ0), k = 0.
while “not converged”, do
(1) Compute wk+1 = (xk+1

1 , xk+1
2 , λk+1) according to (4).

(2) k = k + 1.
end while
Output xk+1

1 , xk+1
2 .

For further analysis, we define an auxiliary sequence {ŵk} as

ŵk =
⎛

⎜
⎝

x̂ k1
x̂ k2

λ̂
k

⎞

⎟
⎠ =

⎛

⎜
⎜
⎝

xk+1
1

xk+1
2

λk − β(A1x
k+1
1 + A2xk2 − b)

⎞

⎟
⎟
⎠ . (11)

Thus, from (4) and (11), we get

λ
k+ 1

2 = λ
k − r(λk − λ̂

k
),
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Generalized Peaceman–Rachford splitting method... 611

and

λ
k+1 = λ

k+ 1
2 − β

[
αA1 x̂

k
1 − (1 − α)

(
A2x

k
2 − b

)
+ A2 x̂

k
2 − b

]

= λ
k − r

(

λ − λ̂
k
)

−
[
αβ

(
A1 x̂

k
1 + A2x

k
2 − b

)
+ βA2(x̂

k
2 − xk2 )

]

= λ
k − r

(

λ − λ̂
k
)

−
[
α

(

λ
k − λ̂

k
)

− βA2

(
x̂ k2 − xk2

)]

= λ
k −

[
(r + α)

(

λ
k − λ̂

k
)

− βA2

(
xk2 − x̂ k2

)]
,

which together with (7) and (11) shows that

wk+1 = wk − M
(
wk − ŵk

)
. (12)

Now, we start to prove the global convergence of GPRSM.

Lemma 3.1 If Ai xki = Ai x
k+1
i (i = 1, 2) and λk = λk+1, then wk+1 =

(xk+1
1 , xk+1

2 ,λk+1) produced by the GPRSM is a solution of VI(W, F, θ ).

Proof Deriving the first-order optimality condition of x1-subproblem in (4), for any
x1 ∈ X1, we have

θ1(x1) − θ1

(
xk+1
1

)
+

(
x1 − xk+1

1

)� {
−A�

1

[

λ
k − β

(
A1x

k+1
1 + A2x

k
2 − b

)]

+G1

(
xk+1
1 − xk1

)}
≥ 0.

By the definition of λ̂
k
in (11) and using x̂ k1 = xk+1

1 , the above inequality can be
written as

θ1(x1) − θ1

(
x̂ k1

)
+

(
x1 − x̂ k1

)� {
−A�

1 λ̂
k + G1

(
x̂ k1 − xk1

)}
≥ 0, ∀ x1 ∈ X1.

(13)
Similarly, from the x2-subproblem in (4), we have

θ2(x2)−θ2(x
k+1
2 )+

(
x2−xk+1

2

)� {

−A�
2 [λk+ 1

2 −αβA1x
k+1
1 − (1−α)β(b−A2x

k
2 )

−βA2x
k+1
2 + βb] + G2

(
xk+1
2 − xk2

)}
≥ 0, ∀x2 ∈ X2. (14)

By (11), we have

λ
k+ 1

2 − αβA1x
k+1
1 − (1 − α)β

(
b − A2x

k
2

)
− βA2x

k+1
2 + βb

= λ
k − r

(

λ
k − λ̂

k
)

− α
(

λ
k − λ̂

k
)

− βA2

(
xk+1
2 − xk2

)

= λ̂
k + (1 − r − α)

(

λ
k − λ̂

k
)

− βA2

(
xk+1
2 − xk2

)
.
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612 M. Sun, J. Liu

Substituting this into (14) and using x̂ k2 = xk+1
2 , we have

θ2(x2) − θ2
(
x̂ k2

) + (
x2 − x̂ k2

)� {
−A�

2 λ̂
k − (1 − r − α)A�

2

(

λ
k − λ̂

k
)

+βA�
2 A2

(
x̂ k2 − xk2

)
+ G2

(
x̂ k2 − xk2

)}
≥ 0,∀ x2 ∈ X2.

(15)

In addition, follows from (11) again, we have

(
A1 x̂

k
1 + A2 x̂

k
2 − b

)
− A2

(
x̂ k2 − xk2

)
+ 1

β

(

λ̂
k − λ

k
)

= 0. (16)

Then, combining (13), (15), (16), for any w = (x1, x2,λ) ∈ W , it holds that

θ(x) − θ
(
x̂ k) + (w − ŵk

)�
⎧
⎪⎨

⎪⎩

⎛

⎜
⎝

−A�
1 λ̂

k

−A�
2 λ̂

k

A1 x̂ k1 + A2 x̂ k2 − b

⎞

⎟
⎠

+

⎛

⎜
⎜
⎝

G1(x̂ k1 − xk1 )

(1 − r − α)A�
2

(

λ̂
k − λk

)
+ βA�

2 A2
(
x̂ k2 − xk2

) + G2
(
x̂ k2 − xk2

)

−A2
(
x̂ k2 − xk2

) +
(

λ̂
k − λk

)
/β

⎞

⎟
⎟
⎠

⎫
⎪⎪⎬

⎪⎪⎭

≥0.

Then, recalling the definition of Q in (7), the above inequality can be written as

θ(x) − θ
(
x̂ k

)
+

(
w − ŵk

)�
F

(
ŵk

)
≥

(
w − ŵk

)�
Q

(
wk − ŵk

)
, ∀w ∈ W.

(17)

In addition, if Ai xki = Ai x
k+1
i (i = 1, 2) and λk = λk+1, then we have Ai xki =

Ai x̂ki (i = 1, 2) and λk = λ̂
k
. Thus,

Q(wk − ŵk) = 0,

which together with (17) indicates that

θ(x) − θ
(
x̂ k

)
+

(
w − ŵk

)�
F

(
ŵk

)
≥ 0, ∀w ∈ W.

This implies that ŵk = (x̂ k1 , x̂
k
2 , λ̂

k
) is a solution of VI(W, F, θ ). Since ŵk = wk+1,

therefore wk+1 is also a solution of VI(W, F, θ ). This completes the proof. �
According to (17), the accuracy of ŵk to a solution of VI(W, F, θ ) is measured by

the quantity (w − ŵk)�Q(wk − ŵk). In the next lemma, we further refine this term
and express it in terms of some quadratic terms.
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Generalized Peaceman–Rachford splitting method... 613

Lemma 3.2 Let the sequence {wk}begenerated by theGPRSM.Then, for anyw ∈ W ,
we have

(
w − ŵk

)�
Q

(
wk − ŵk

)
≥ 1

2

(
‖w−wk+1‖2H − ‖w−wk‖2H

)
+ 1

2
‖wk − ŵk‖2N ,

(18)

where N = Q + Q� − M�HM.

Proof Setting a = w, b = ŵk, c = wk, d = wk+1 in the identity

(a − b)�H(c − d) = 1

2
(‖a − d‖2H − ‖a − c‖2H ) + 1

2
(‖c − b‖2H − ‖d − b‖2H ),

we obtain

(w − ŵk)�H(wk − wk+1) = 1

2

(
‖w − wk+1‖2H − ‖w − wk‖2H

)

+1

2

(
‖wk − ŵk‖2H − ‖wk+1 − ŵk‖2H

)
.

Combining the above inequality, (9) and (12), we have

(w − ŵk)�Q(wk − ŵk) = 1

2

(
‖w − wk+1‖2H − ‖w − wk‖2H

)

+1

2

(
‖wk − ŵk‖2H − ‖wk+1 − ŵk‖2H

)
. (19)

For the last term of (19), we have

‖wk − ŵk‖2H − ‖wk+1 − ŵk‖2H
= ‖wk − ŵk‖2H − ‖(wk − ŵk) − (wk − wk+1)‖2H
= ‖wk − ŵk‖2H − ‖(wk − ŵk) − M(wk − ŵk)‖2H
= 2(wk − ŵk)�HM(wk − ŵk) − (wk − ŵk)�M�HM(wk − ŵk)

= (wk − ŵk)(Q� + Q − M�HM)(wk − ŵk)

= ‖wk − ŵk‖2N .

Substituting the above equality into (19), we obtain (18). The proof is complete.
�

The following theorem indicates the the sequence generated by the GPRSM is Fejèr
monotone with respect toW∗.

Theorem 3.1 Let {wk} be the sequence generated by the GPRSM. Then, for any
w∗ ∈ W∗, we have
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614 M. Sun, J. Liu

‖wk+1 − w∗‖2H ≤ ‖wk − w∗‖2H −
(
‖xk1 − x̂ k1‖2G1

+ ‖xk2 − x̂ k2‖2G2

+2 − r − α

β
‖λk − λ̂

k‖2
)

. (20)

Proof Setting w = w∗ in (17) and (18), we get

θ(x∗) − θ(x̂ k) + (w∗ − ŵk)�F(ŵk)

≥ (w∗ − ŵk)�Q(wk − ŵk)

≥ 1

2

(
‖w∗ − wk+1‖2H − ‖w∗ − wk‖2H

)
+ 1

2
‖wk − ŵk‖2N .

On the other hand, by w∗ ∈ W∗ and the monotonicity of F , we have

θ(x̂ k) − θ(x∗) + (ŵk − w∗)�F(ŵk)

≥ θ(x̂ k) − θ(x∗) + (ŵk − w∗)�F(ŵ∗)
≥ 0.

Adding the above two inequalities yields (20). The theorem is proved.
We are now ready to prove the global convergence of the proposed GPRSM. �

Theorem 3.2 Let {wk} be the sequence generated by the GPRSM. Then, if α ∈
(0, 2), r ∈ (0, 2 − α) and G1 � 0,G2 � 0 or G1 � 0,G2 � 0, the sequence
{wk} converges to some w∞, which belongs toW∗.
Proof Since α ∈ (0, 2), r ∈ (0, 2 − α) and G1 � 0,G2 � 0 or G1 � 0,G2 � 0, by
(20), we have

‖wk+1 − w∗‖2H ≤ ‖wk − w∗‖2H ≤ · · · ≤ ‖w0 − w∗‖2H . (21)

The following proof is divided into three cases.
Case (I) If G1 � 0,G2 � 0, by Lemma 2.1, we have H � 0. Then, by (21), the
sequence {wk} is bounded. Furthermore, summing (20) over k = 0, 1, . . . ,∞, it
yields

∞∑

k=0

(

‖xk1 − x̂ k1‖2G1
+ ‖xk2 − x̂ k2‖2G2

+ 2 − r − α

β
‖λk − λ̂

k‖2
)

≤ ‖w0 − w∗‖2H < +∞,

which implies that

lim
k→∞ ‖xk1 − x̂ k1‖ = 0, lim

k→∞ ‖xk2 − x̂ k2‖ = 0, and lim
k→∞ ‖λk − λ̂

k‖ = 0.

Then, by (17), we can get

lim
k→∞

{
θ(x) − θ(x̂ k) + (w − ŵk)�F(ŵk)

}
≥ 0, ∀w ∈ W. (22)
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Since the sequence {ŵk} is bounded, it has at least one cluster point. Let w∞ be
a cluster point of {ŵk} and the subsequence {ŵk j } converges to w∞. It follows from
(22) that

θ(x) − θ(x∞) + (w − w∞)�F(w∞) ≥ 0, ∀w ∈ W,

which implies that w∞ ∈ W∗. From limk→∞ ‖wk − ŵk‖H = 0 and {ŵk j } → w∞,
for any given ε > 0, there exists an integer l, such that

‖wkl − ŵkl‖H <
ε

2
, and ‖ŵkl − w∞‖H <

ε

2
.

Therefore, for any k ≥ kl , it follows from the above two equalities and (21) that

‖wk − w∞‖H ≤ ‖wkl − w∞‖H ≤ ‖wkl − ŵkl‖H + ‖ŵkl − w∞‖H < ε.

This shows that the sequence {wk} converges to w∞ ∈ W∗.

Case (II) If G1 � 0,G2 = 0, by Lemma 2.1, we also have H � 0. Then, by (21), the
sequence {wk} is also bounded. Furthermore, summing (20) over k = 0, 1, . . . ,∞, it
yields

∞∑

k=0

(

‖xk1 − x̂ k1‖2G1
+ 2 − r − α

β
‖λk − λ̂

k‖2
)

≤ ‖w0 − w∗‖2H < +∞,

which implies that

lim
k→∞ ‖xk1 − x̂ k1‖ = 0, and lim

k→∞ ‖λk − λ̂
k‖ = 0. (23)

Note that the optimality condition for the x2 subproblem in (4) can be written:

θ2(x2) − θ2(x
k+1
2 ) + (x2 − xk+1

2 )�(−A�
2 λ

k+1) ≥ 0, ∀x2 ∈ X2. (24)

Since (24) is true for any integer k ≥ 0, thus we have

θ2(x2) − θ2(x
k
2 ) + (x2 − xk2 )

�(−A�
2 λ

k) ≥ 0, ∀x2 ∈ X2. (25)

Setting x2 = xk2 and x2 = xk+1
2 in (24) and (25), respectively, we get

θ2(x
k
2 ) − θ2(x

k+1
2 ) + (xk2 − xk+1

2 )�(−A�
2 λ

k+1) ≥ 0,

and

θ2(x
k+1
2 ) − θ2(x

k
2 ) + (xk+1

2 − xk2 )
�(−A�

2 λ
k) ≥ 0.
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Adding the above two inequalities, we get

(λ
k − λ

k+1)�A2(x
k
2 − xk+1

2 ) ≥ 0. (26)

On the other hand, from the equality above (12), we have

‖λk − λ̂
k‖2 = 1

(r + α)2
‖(λk − λ

k+1) + βA2(x
k
2 − xk+1

2 )‖2

≥ 1

(r + α)2
(‖λk − λ

k+1‖2 + β2‖A2(x
k
2 − xk+1

2 )‖2),

where the inequality follows from (26). The above inequality, (23) and xk+1
2 = x̂ k2

imply that

lim
k→∞ ‖A2(x

k
2 − x̂ k2 )‖ = 0.

By the full column rank assumption of A2, we get

lim
k→∞ ‖xk2 − x̂ k2‖ = 0.

Therefore, by (17), we also have the inequality (22). The following proof is similar
to that of Case (I).

Case (III) If G1 = 0,G2 � 0, by Lemma 2.1, we have H1 � 0. Thus, from (21), we
can deduce

‖vk+1 − v∗‖2H1
≤ ‖vk − v∗‖2H1

≤ · · · ≤ ‖v0 − v∗‖2H1
, (27)

where v = (x2,λ). Thus the sequence {vk} is bounded, and

lim
k→∞ ‖xk2 − x̂ k2‖ = 0, lim

k→∞ ‖λk − λ̂
k‖ = 0.

Thus, the sequence {v̂k} is also bounded. On the other hand, by (11), we have

A1x
k+1
1 = (λ

k − λ̂
k
)/β − A2x

k
2 + b. (28)

This and the full column rank of A1 imply the sequences {xk1 } and {x̂ k1 } are also
bounded. Overall, the sequences {wk} and {ŵk} are bounded. In addition, by (17), we
can get (22). Thus, a cluster point of the sequence {ŵk} is a solution of VI(W, F, θ ).
From limk→∞ ‖vk − v̂k‖H1 = 0 and {v̂k j } → v∞, for any given ε > 0, there exists
an integer l, such that

‖vkl − v̂kl‖H1 <
ε

2
, and ‖v̂kl − v∞‖H1 <

ε

2
.
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Therefore, for any k ≥ kl , it follows from the above two equalities and (27) that

‖vk − v∞‖H1 ≤ ‖vkl − v∞‖H1 ≤ ‖vkl − v̂kl‖H1 + ‖v̂kl − v∞‖H1 < ε.

This shows that the sequence {vk} converges to v∞. Then, by (28) again, the
sequence {wk} converges to w∞ ∈ W∗. This completes the proof. �

4 Numerical experiments

In this section, we apply GPRSM to solving some constrained image deblurring prob-
lems, and compare its numerical performance with the linearized ADMM [10]. All
the codes were written by Matlab 7.10 and were conducted on ThinkPad notebook
with Pentium(R) Dual-Core CPU T4400@2.2GHz, 2GB of memory.

Given original image concatenated into an n-vector x̄ ∈ Rn , and let A ∈ Rn×n

be a blurring operator (integral operator) acting on the image. Let ω ∈ Rn be the
Gaussian noise added onto the image. The observed image c ∈ Rn can be modeled
by c = Ax̄ + ω. The constrained image deblurring problem (CIDPλ) is to recover x̄
from c, which can be depicted as

min
l≤x≤u

1

2
‖Ax − c‖2 + μ2

2
‖Bx‖2, (29)

where l, u ∈ Rn+; B ∈ Rn×n is a regularization operator (differential operator);
μ2 ∈ R is the regularization parameter; x ∈ Rn is the restored image. The box
constraints l ≤ x ≤ u represent the dynamic range of the image (e.g., li = 0 and
ui = 255 for an 8-bit gray-scale image).

Obviously, introducing an auxiliary variable y ∈ Rn , we can change CIDPλ to the
equivalent form

min
1

2
‖Ay − c‖2 + μ2

2
‖Bx‖2

s.t. x − y = 0,
x ∈ 	, y ∈ Rn,

(30)

where 	 = {y|l ≤ y ≤ u}. In fact, (30) is a special case of (1) where x1 = y, x2 = x ,

θ1(x1) = 1
2‖Ay − c‖2, θ2(x2) = μ2

2 ‖Bx‖2, A1 = −In, A2 = In, d = 0, and
X1 = Rn,X2 = 	. Then, the iterative scheme of the GPRSM (4) for (30) is
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⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

yk+1 = argminy∈Rn

{
1

2
‖Ay − c‖2 + β

2
‖y − xk + 1

β
λ
k‖2 + 1

2
‖y − yk‖2G1

}

,

λ
k+ 1

2 = λk + rβ(yk+1 − xk),

xk+1 = argminx∈	

{
μ2

2
‖Bx‖2+ β

2
‖x−αyk+1 − (1−α)xk− 1

β
λ
k+ 1

2 ‖2+ 1

2
‖x−xk‖2G2

}
}

,

λk+1 = λ
k+ 1

2 + β(yk+1 − xk+1).

(31)

Now, let us elaborate on the two subproblems in (31).

• For the given yk , xk and λk , set G1 = 0. With this choice, the y subproblem in
(31) is amount to solving the normal equation

(A�A + β In)y = A�c + βxk − λ
k .

Under the periodic boundary conditions for y, A�Awill be a block circulantmatrix
with circulant blocks. Hence it can be diagonalized by the two-dimensional fast
Fourier transform (FFT). Thus, the above equation can be solved exactly using
two FFTs.

• For the given yk+1, xk and λ
k+ 1

2 , set G2 = μ2(τ In − B�B), where τ > ‖B�B‖,
and the x subproblem in (31) reduces to

xk+1 = argminx∈	

{

μ2[(Bxk)�B(x − xk) + τ

2
‖x − xk‖2] + β

2
‖x

−αyk+1 − (1 − α)xk − 1

β
λ
k+ 1

2 ‖2
}

.

The optimality condition of the above problem leads to the following variational
inequality

(x ′ − xk+1)�
{
μ2[B�Bxk + τ(x − xk)] + β(x − αyk+1

−(1 − α)xk − 1

β
λ
k+ 1

2 )

}

≥ 0, ∀x ′ ∈ 	.

Then, xk+1 can be given explicitly by

xk+1 = P	

{
1

μ2τ +β

[
−μ2B�Bxk +

(
β−αβ+μ2τ

)
xk+αβyk+1 + λ

k+ 1
2

]}

,

where P	(·) denotes the projection operator onto 	 under the Euclidean norm.

The test images are 256-by-256 (li = 0, ui = 255 for all i = 1, 2, . . . , n) images
as shown in Fig. 1: Fruits, Peppers, Lena and Cameraman. According, n = 2562

in model (1) for these images. The blurring matrix A is chosen to be the out-
of-focus blur and the matrix B is taken to be the gradient matrix. The observed
image c is expressed as c = Ax̄ + ω, where ω is the Gaussian or impulse noise.
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Fig. 1 The original test images: Fruits, Peppers, Lena and Cameraman

Here, we employ the Matlab scripts: A = fspecial(‘average’,alpha) and
c = imfilter(x,A, ‘circular’,‘conv’)+ω, in which alpha is the size of the
kernel. To assess the restoration performance qualitatively, we use the peak signal to
noise ratio (PSNR) defined as

PSNR = 20log10
xmax√

Var(x, x̄)
with Var(x, x̄) =

∑n2
j=1[x̄( j) − x( j)]2

n2
.

Here x̄ is the true image, and x̄max is the maximum possible pixel value of the
image. Furthermore, the stopping criterion of all the tested methods is

‖xk−1 − xk‖
‖xk−1‖ ≤ 10−4.

In the experiment, we apply our proposed GPRSM and the linearized ADMM in
[10] (denoted by LADMM) to solve model (30) with Gaussian noise and μ = 0.16.
Here, we set the Gaussian noise ω = η ∗ randn(n,n), and η is the level of noise.
For the GPRSM, we set α = 1.1, β = 0.1, r = 0.89, τ = 1.01 · ρ(B�B). For the
parameters of LADMM, we use the default values in [10]. All iterations start with the
blurred images. For alpha = 5 and η = 5, the blurred images, the restored images
by the two methods are showed in Fig. 2. From Fig. 2, we can see that both methods
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 CPU: 1.68s,PSNR: 25.05dBPSNR: 22.62dB  CPU: 1.26s, PSNR: 25.05dB

 CPU: 1.78s,PSNR: 27.08dBPSNR: 24.80dB  CPU: 1.22s, PSNR: 27.08dB

 CPU: 1.70s,PSNR: 27.39dB CPU: 1.22s, PSNR: 27.39dBPSNR: 24.98dB

 CPU: 1.68s,PSNR: 25.62dBPSNR: 23.73dB  CPU: 1.22s, PSNR: 25.62dB

Fig. 2 From left to right: the blurred images, the restored images by GPRSM, LADMM

Table 1 Comparison of GPRSM with LADM

Image alpha η GPRSM LADMM

Time Iter PSNR Time Iter PSNR

Fruits 3 3 0.81 11 28.41 1.00 12 28.41

5 5 1.26 17 25.62 1.53 20 25.62

Peppers 3 3 0.94 11 30.72 1.25 16 30.72

5 5 1.36 18 27.39 1.59 21 27.39

Lena 3 3 0.83 11 30.69 1.51 16 30.69

5 5 1.11 18 27.08 1.97 22 27.08

Cameraman 3 3 0.97 11 28.36 1.22 16 28.36

5 5 1.47 18 25.05 1.68 22 25.05

can recover the four blurred images very well, and our method is always faster than the
LADMM. More numerical results are given in Table 1, and we report the CPU time
(in seconds), the number of iterations (Iter) required for the whole deblurring process.
The numerical results in Table 1 indicate that both methods reach almost the same
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Fig. 3 Comparison results for Fruits

restored PSNR. In addition, GPRSM is always faster than LADMM, and the number
of iterations of GPRSM is always smaller than that of LADMM. Thus, GPRSM is
more efficient and robustness than the famous LADMM. Furthermore, in Fig. 3, we
plot the evolution of the PRSN value and the objective function value with respect to
the number of iterations for the Fruits with alpha = 3 and η=3. From Fig. 3, we see
that, compared with the LADMM, the GPRSM is more efficient.

5 Conclusions

In this paper, we have proposed a generalized PRSM, which removes some restrictive
assumptions of the strictly contractive PRSM proposed by He et al., and includes
the original PRSM as a special case. Under mild conditions, we have proved the
global convergence of the new method. Numerical results about the image deblurring
problems indicate that the new method performs better than the linearized ADMM.
In the future, we shall investigate the inexact version of our generalized PRSM and
apply the generalized PRSM to solve other problems, such as the statistical learning
problems, the compressive sensing etc.
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