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Abstract In this paper, we consider the weak viscoelastic wave equations with
dynamic boundary conditions related to the Kelvin Voigt damping and delay term
acting on the boundary in a bounded domain. Under appropriate conditions on μ1
and μ2, we prove the asymptotic behavior by making use an appropriate Lyapunov
functional.
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1 Introduction

In this paper, we consider the following wave equation with dynamic boundary con-
ditions and time varying delay term:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

utt − �u − δ�ut − α(t)
∫ t

0
g(t − s)�u(s)ds = |u|p−2u, in Ω × (0, +∞),

u = 0, on Γ0 × (0,+∞),

utt = −a

[
∂u

∂υ
(x, t) + δ

∂ut
∂υ

(x, t) + α(t)
∫ t

0
g(t − s)�u(s)

∂u

∂υ
(x, s)ds

+ μ1ut (x, t) + μ2ut (x, t − τ(t))

]

, on Γ1 × (0, +∞),

u(x, 0) = u0(x), ut (x, 0) = u1(x), x ∈ Ω,

ut (x, t − τ(t)) = f0(x, t − τ(t)), on Γ1 × (0,+∞)

(1)

where u = u(x, t) , t ≥ 0 , x ∈ Ω, � denotes the Laplacian operator with respect
to the x variable, Ω is a regular and bounded domain of RN , (N ≥ 1), ∂Ω =
Γ1 ∪ Γ0, Γ1 ∩ Γ0 = ∅ and ∂

∂ν
denotes the unit outer normal derivative, μ1 and μ2

are positive constants. Moreover, τ(t) > 0 represents the time varying delay term and
u0, u1, f0 are given functions belonging to suitable spaces that will be precised later.
This type of problems arises (for example) in modeling of longitudinal vibrations in
a homogeneous bar on which there are viscous effects. The term �ut , indicates that
the stress is proportional not only to the strain, but also to the strain rate see [5]. This
type of problem without delay (i.e μi = 0), has been considered by many authors
during the past decades and many results have been obtained (see [2,4,6,7,13,32–
36]). The main difficulty of the problem considered is related to the non ordinary
boundary conditions defined on Γ1. Very little attention has been paid to this type
of boundary conditions. We mention a few particular results in the one dimensional
without delay term for a linear damping (m = 1) and g = 0 see [9–23,32]. From
the mathematical point of view, these problems do not neglect acceleration terms on
the boundary. Such types of boundary conditions are usually called dynamic bound-
ary conditions. They are not only important from the theoretical point of view but
also arise in several physical applications. For instance in one space dimension, prob-
lem (1) can modelize the dynamic evolution of a viscoelastic rod that is fixed at
one end and has a tip mass attached to its free end. The dynamic boundary condi-
tions represent the Newton’s law for the attached mass, (see [1,4,6]) for more details.
Which arise when we consider the transverse motion of a flexible membrane whose
boundary may be affected by the vibrations only in a region. Also some of them as
in problem (1) appear when we assume that is an exterior domain of R3 in which
homogeneous fluid is at rest except for sound waves. Each point of the boundary is
subjected to small normal displacements into the obstacle (see [2] for more details).
Among the early results dealing with the dynamic boundary conditions are those
of Grobbelaar-Van Dalsen [7,8] in which the author has made contributions to this
field and in Gerbi and Said-Houari [13] the authors have studied the following prob-
lem:
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

utt − �u + δ�ut = |u|p−1u, in Ω × (0,+∞),

u = 0, on Γ0 × (0,+∞),

utt = −a

[
∂u

∂υ
(x, t) + δ

∂ut
∂υ

(x, t) + α|ut |m−1ut (x, t)

]

, on Γ1 × (0,+∞),

u(x, 0) = u0(x), ut (x, 0) = u1(x), x ∈ Ω,

and they have obtained several results concerning local existence which extended to
the global existence by using stable sets, the authors have obtained also the energy
decay and the blow up of the solutions for initial energy positive.

In absence of delay (μ2 = 0), the problem of existence and energy decay have
been extensively studied by several authors (see [2,4,6,7,13,32–36]) andmany energy
estimates have been derived for arbitrary growing feedbacks (polynomial, exponential
or logarithmic decay). Very recently the authors in [31] studied the following problem:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

utt − �u + b(x) + f (u) = 0, in Ω × (0,+∞),

u(x, t) = 0, on Γ0 × (0,+∞),

∂u

∂ν
+ g(ut (x, t)) = 0, on Γ1 × (0,+∞),

u(x, 0) = u0(x), ut (x, 0) = u1(x), x ∈ Ω,

they proved the existence, uniqueness and uniform stability of strong and weak solu-
tions of the nonlinear wave equation in bounded domains with nonlinear damped
boundary conditions with restrictions on function f (u) ; g(ut ) and b(x). They proved
the existence by means of the Galerkin method and obtain the asymptotic behavior by
using perturbed energy method and combining some ideas of Kmornik and Zuazua
(see [37]).

It is widely known that delay effects, which arise inmany practical problems, source
of some instabilities, in this way Datko and Nicaise [10,12,21] showed that a small
delay in a boundary control turns a well-behave hyperbolic system into a wild one
which in turn, becomes a source of instability, where they proved that the energy is
exponentially stable under the condition

μ2 < μ1. (2)

Recently, inspired by the works of Al and Nicaise [11], Sthéphane Gherbi and Said-
Houari [15] considered the following problem in bounded domain:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

utt − �u − α�ut = 0, in Ω × (0,+∞),

u = 0, on Γ0 × (0,+∞),

utt = −a

[
∂u

∂υ
(x, t) + α

∂ut
∂υ

(x, t)

+μ1ut (x, t) + μ2ut (x, t − τ)

]

, on Γ1 × (0,+∞),

u(x, 0) = u0(x), ut (x, 0) = u1(x), x ∈ Ω,

ut (x, t − τ) = f0(x, t − τ), on Γ1 × (0,+∞),
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512 M. Ferhat, A. Hakem

and obtained several results concerning global existence and exponential decay rates
for various signs of μ1,μ2.

The case of time varying delay in the wave equation has been studied recently by
Nicaise, Valein and Fridman [11] in one-space dimension and in the linear case in
problem (1) and proved an exponential stability result under the condition

μ2 <
√
1 − dμ1,

where the constant d satisfies

τ ′(t) ≤ d < 1, ∀t > 0.

Nicaise et al. [12] extended the above result to higher-space dimension and established
an exponential decay.

Very recently, Zhang et al. [30], have studied a more general model than the above
one, namely

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

utt − �u +
∫ t

0
h(t − s)ds + aut (x, t − τ(t)) = 0, in Ω × (0,+∞),

u(x, t) = 0, on Γ0 × (0,+∞),

∂u
∂ν

+ g(ut (x, t)) = 0, on Γ1 × (0,+∞),

u(x, 0) = u0(x), ut (x, 0) = u1(x), x ∈ Ω,

ut (x, t − τ(t)) = f0(x, t − τ(t)), on Γ1 × (0,+∞).

Since it contains nonlinear term in the boundary. They investigated a nonlinear vis-
coelastic equation with interior time-varying delay and nonlinear dissipative boundary
feedback. Under suitable assumptions on the relaxation function and time-varying
delay effect together with nonlinear dissipative boundary feedback, they proved the
global existence of weak solutions and asymptotic behavior of the energy by using
the Faedo-Galerkin method and the perturbed energy method, respectively. This result
improves earlier ones in the literature, such as Kirane and Said-Houari [38].

Motivated by the previous works, it is interesting to investigate the rate of decay
of solutions by using an appropriate Lyapunov functional precisely, we show that the
decay rate of energy function is exponential depending on both functions σ(t) and
α(t) that will be precised later.

The plan of this paper is organized as follows. In Sect. 2, we provide assumptions
that will be needed for our work. In Sect. 3, we prove stability result that is given in
Theorem 2.

2 Preliminary results

In this section, we present some material for the proof of our result. For the relaxation
function g, α and σ we assume
(A0) g, α : R+ → R+ are nonincreasing differentiable functions satisfying
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g(0) > 0, l0 =
∫ ∞

0
g(s)ds < ∞, α(t) > 0,

1 − α(t)
∫ t

0
g(s)ds = l > 0 for t > 0, (3)

there exists a nonincreasing differentiable function σ : R+ → R+ satisfying

g′(t) ≤ −σ(t)g(t), σ (t) > 0, for t > 0, lim
t→∞

−α′(t)
σ (t)α(t)

= 0.

(A1) τ is a function such that

τ ∈ W 2,∞([0, T ]), ∀ T > 0, (4)

0 < τ0 ≤ τ(t) ≤ τ1, ∀ t > 0, (5)

τ ′(t) ≤ d < 1, ∀ t > 0, (6)

where τ0 and τ1 are two positive constants.
(A2)

μ2 <
√
1 − dμ1. (7)

As in [17] we choose ξ such that

μ2√
1 − d

< ξ < 2μ1 − μ2√
1 − d

. (8)

As in [16] we denote

V =
{
υ ∈ H1

0 (Ω) : υ = 0 on Γ0

}
= H1

Γ0
(Ω),

we denote 〈., .〉 the scalar product in L2(Ω) i.e. 〈u, υ〉 = ∫

Ω
u(x, t)υ(x, t)dx . Also

we mean by ‖.‖q the Lq(Ω) norm for 1 ≤ q ≤ ∞, and by ‖.‖q.Γ1 the Lq(Γ1) norm.
Let T > 0 be a real number and X a Banach space endowed with the norm ‖.‖X .

L p(0, T ; X), 1 ≤ p < ∞ denotes the space of functions f which are L p over (0, T )

with values in X , which are measurable and f ∈ L p(0, T ; X). This space is a Banach
space endowed with the norm

‖ f ‖L p(0,T ;X) =
(∫ T

0
‖ f ‖p

Xdt

) 1
p

.

L∞(0, T ; X) denotes the space of functions f :]0, T [→ X which are measurable and
f ∈ L∞(0, T ). This space is a Banach space endowed with the norm :

‖ f ‖L∞(0,T ;X) = ess sup
0<t<T

‖ f ‖X .
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514 M. Ferhat, A. Hakem

We recall that if X and Y are two Banach spaces such that X ↪→ Y ( continuous
embedding), then

L p(0, T ; X) ↪→ L p(0, T ; Y ), 1 ≤ p ≤ ∞.

We will also use the embedding

H1
Γ0

(Ω) ↪→ L p(Ω), 2 ≤ p ≤ p̄ where p̄ =
{

2N
N−2 if N ≥ 3,

+∞ if N = 1, 2,

and also

H1
Γ0

(Ω) ↪→ L p(Γ1), 2 ≤ q ≤ q̄ where q̄ =
{

2(N−1)
N−2 if N ≥ 3,

+∞ if N = 1, 2.

We denote V = H1
Γ0

(Ω) ∩ L2(Γ1).

Lemma 1 (Sobolev–Poincaré inequality). Let 2 ≤ p ≤ 2n
n−2 . The inequality

‖u‖p ≤ cs‖∇u‖2 f or u ∈ H1
Γ0

(Ω),

holds with some positive constant cs .

Nowwegive some estimates related to the convolution operator. By direct calculations,
as in [18,19] we find

σ(t)(g ∗ u, ut ) = −σ(t)

2
g(t)‖u(t)‖22

− d

dt

[
σ(t)

2
(g o u)(t) − σ(t)

2

(∫ ∞

0
g(s)ds

)

‖u(t)‖22
]

+ σ(t)

2
(g′ o u)(t) + σ ′(t)

2
(g o u)(t)

− σ ′(t)
2

∫ ∞

0
g(s)ds‖u(t)‖22,

(9)

where

(g ∗ u)(t)=
∫ ∞

0
g(t − s)u(s)ds, g o u=

∫ ∞

0
g(t−s)u(s)ds‖u(t)−u(s)‖22ds, (10)

and

(g ∗ u, u) ≤ 2

(∫ t

0
g(s)ds

)

‖u(t)‖22 + 1

4
(g o u)(t). (11)
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Let us consider the new variable z as in [12],

z(x, k, t) = ut (x, t − τ(t)k), x ∈ Γ1, k ∈ (0, 1),

which implies that

τ(t)zt (x, k, t) + (1 − τ ′(t)k)zk(x, k, t) = 0, in Γ1 × (0, 1) × (0,∞).

Therefore, problem (1) is equivalent to:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

utt − �u − δ�ut + α(t)
∫ t

0
g(t − s)�u(s)ds = |u|p−2u, in Ω × (0,∞),

utt = −a

[
∂u

∂υ
(x, t) + δ

∂ut
∂υ

(x, t) + α(t)
∫ t

0
g(t − s)�u(s)

∂u

∂υ
(x, s)ds

+ μ1ut (x, t) + μ2zk(x, 1, t)

]

, on Γ1 × (0,+∞),

τ (t)zt (x, k, t) + zk(x, k, t) = 0, in Γ1 × (0, 1) × (0,∞),

z(x, k, 0) = f0(x,−τk), x ∈ Γ1,

u(x, 0) = u0(x), ut (x, 0) = u1(x), x ∈ Ω,

u(x, t) = 0, x ∈ Γ0, t ≥ 0.

(12)

Remark 1 For seeking of simplicity, we take a = 1 in (12).

Now inspired by [15,16,18], we define the modified energy functional related with
problem (12) by

E(t) = 1

2

(

1 − α(t)
∫ t

0
g(s)ds

)

‖∇u(t)‖22 + ξ(t)τ (t)

2

∫

Γ1

∫ 1

0
z2(γ, k, s))dkdγ

+ 1

2
‖ut (t)‖22 + 1

2
‖ut (t)‖22.Γ1

− 1

p
‖u(t)‖p

p + α(t)(g o ∇u)(t). (13)

Lemma 2 Let 2 ≤ p ≤ q̄ and (u, z) be a solution of the problem (12). Then the
energy functional defined by (12) satisfies

E ′(t) ≤ −
(

ξ(1 − τ ′(t))
2

− μ2
√
1 − d

2

) ∫

Γ1

z2(γ, 1, t)dγ − δ‖∇ut (t)‖22

−
(

μ1 − ξ

2
− μ2

2
√
1 − d

)

‖ut (t)‖22.Γ1
+ α(t)

2
(g′ o ∇u)(t)

− α′(t)
2

∫ t

0
g(s)ds‖∇u(t)‖22 − α(t)

2
g(t)‖∇u(t)‖22. (14)

Proof By multiplying the first and second equation in (12) by ut (t), and integrating
the first equation over Ω and the second equation over Γ1, using the Green’s formula,
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516 M. Ferhat, A. Hakem

we get

d

dt

[
1

2
‖ut (t)‖22 + 1

2
‖ut (t)‖22.Γ1

+ 1

2
‖∇u(t)‖22 − 1

p
‖u(t)‖p

p

]

+ μ1

∫

Γ1

‖ut (t)‖22.Γ1
dγ +

∫

Γ1

μ2z(γ, 1, t)ut (t)dγ

+ α(t)(g′o∇u)(t) − α′(t)
(∫ t

0
g(s)ds

)

‖∇u(t)‖22

− α(t)

2
g(t)‖∇u(t)‖22 + α′(t)

2
(g o ∇u)(t) + δ‖∇ut (t)‖22 = 0.

(15)

Wemultiply the third equation in (12) by ξ(t)z and integrate over Γ1×(0, 1) to obtain

ξ(t)τ (t)
∫

Γ1

∫ 1

0
zt z(γ, k, t)dkdγ = −ξ(t)

2

∫

Γ1

∫ 1

0
(1−τ ′(t)k) ∂

∂k
z2(γ, k, t)dkdγ.

(16)

Consequently,

d

dt

(
ξ(t)τ (t)

2

∫

Γ1

∫ 1

0
z2(γ, k, t)dkdγ

)

= −ξ(t)

2

∫ 1

0

∫

Γ1

∂

∂k
((1 − τ ′(t)k)z2(γ, k, t))dkdγ

+ξ ′(t)τ (t)

2

∫ 1

0

∫

Γ1

z2(γ, k, t)dkdγ

= ξ(t)

2

∫

Γ1

(z2(γ, 0, t) − z2(γ, 1, t))dγ + ξ(t)τ ′(t)
2

∫

Γ1

z2(γ, 1, t)dγ

+ξ ′(t)τ (t)

2

∫ 1

0

∫

Γ1

z2(γ, k, t)dkdγ

≤ ξ(t)

2

∫

Γ1

(z2(γ, 0, t) − z2(γ, 1, t))dγ + ξ(t)τ ′(t)
2

∫

Γ1

z2(γ, 1, t)dγ. (17)

From (15), (17) and Young’s inequality, we get

E ′(t) ≤ −
(

μ1 − ξ(t)

2

)

‖ut (t)‖22.γ1 −
(

ξ(t)(1 − τ ′(t))
2

)∫

Γ1

z2(γ, k, t)dγ

−μ2

∫

Γ1

z(γ, 1, t)ut (γ, t)dγ + α(t)

2
(g′ o ∇u)(t) − δ‖∇ut (t)‖22

−α′(t)
2

∫ t

0
g(s)ds‖∇u(t)‖22 − α(t)

2
g(t)‖∇u(t)‖22. (18)
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Due to Young’s inequality, we have

μ2

∫

Γ1

z(γ, 1, t)ut (γ, t)dγ ≤ μ2

2
√
1 − d

‖ut (t)‖22.Γ1
+ μ2

√
1 − d

2

∫

Γ1

z2(γ, 1, t)dγ.

(19)

Inserting (19) into (18), we obtain

E ′(t) ≤ −
(

ξ(1 − τ ′(t))
2

− μ2
√
1 − d

2

) ∫

Γ1

z2(γ, 1, t)dγ − δ‖∇ut (t)‖22

−
(

μ1 − ξ

2
− μ2

2
√
1 − d

)

‖ut (t)‖22.Γ1
+ α(t)

2
(g′ o ∇u)(t)

−α′(t)
2

∫ t

0
g(s)ds‖∇u(t)‖22 − α(t)

2
g(t)‖∇u(t)‖22. (20)

This completes the proof. ��
Remark 2 Since

−α′(t)
2

∫ ∞

0
g(s)ds‖∇u(t)‖2 > 0,

E(t) may not be non-increasing.

Remark 3 The following result to problem (12) can be established by combining
arguments of [16,17,31].

Theorem 1 Let 2 ≤ p ≤ q̄ and then given u0 ∈ H1
Γ0

(Ω), u1 ∈ L2(Ω), f0 ∈
L2(Γ1 × (0, 1)). Suppose that (A0) − (A2) hold. Then the problem (12) admits a
unique weak solution satisfying

u ∈ L∞((0, T ); H1
Γ0

(Ω)), ut ∈ L∞((0, T ); H1
Γ0

(Ω)) ∩ L∞((0, T ); L2(Γ1)),

utt ∈ L∞((0, T ); L2(Ω)) ∩ L∞((0, T ); L2(Γ1)).

3 Asymptotic behavior

In this section, we establish the asymptotic behavior for the solutions. We define the
following perturbed function:

L(t) = ME(t) + εα(t)ψ(t) + εα(t)I (t) + ε
δα(t)

2
‖∇u‖22, (21)

where

ψ(t) =
∫

Ω

uutdx +
∫

Γ1

uutdγ, (22)

123



518 M. Ferhat, A. Hakem

and

I (t) = ξ(t)
∫

Γ1

∫ 1

0
e−kτ(t)z2(γ, k, t)dkdγ. (23)

We need also the following lemma

Lemma 3 Let (u,z) be a solution of problem (12), then there exists two positive con-
stants λ1,λ2 such that

λ1E(t) ≤ L(t) ≤ λ2E(t), t ≥ 0, (24)

for M sufficiently large .

Proof Thank’s to the Cauchy Schwarz and Young’s inequalities, Lemma 1 and using
the fact that ‖u‖2.Γ1 ≤ B‖∇u‖2, we have

|ψ(t)| ≤ 1

ω
‖ut‖22 + 1

4ω
‖ut‖22.Γ + ω‖∇u‖22 + ωB2‖∇u‖22, (25)

it follows from (23) that ∀c > 0 :

|I (t)| =
∣
∣
∣
∣ξ(t)

∫

Γ1

∫ 1

0
e−kτ(t)z2(γ, k, s))dkdγ

∣
∣
∣
∣

≤ cξ(t)
∫

Γ1

∫ 1

0
z2(γ, k, s))dkdγ. (26)

Hence, combining (25), (26) and using the fact that α(t) < α(0), we get

|L(t) − ME(t)| = εα(t)ψ(t) + ξ(t)
∫

Γ1

∫ 1

0
e−kτ(t)z2(γ, k, t)dkdγ

≤ ε

ω
‖ut‖22 + ε

4ω
‖ut‖22.Γ1

+ (εω + εB2)‖∇u‖22

+ cξ(t)
∫

Γ1

∫ 1

0
z2(γ, k, t)dkdγ + ε

δα(t)

2
‖∇u‖22. (27)

Where c1 = ε
ω
, c2 = ε

4ω , c3 = (εω + εB2), c4 = c, then we can write

|L(t) − ME(t)| ≤ c5E(t), (28)

where c5 = max(c1, c2, c3, c4). Thus, from the definition of E(t) and selecting M
sufficiently large,

λ1E(t) ≤ L(t) ≤ λ2E(t). (29)

Where λ1 = (M − εc5), λ2 = (M + εc5). This completes the proof. ��
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Lemma 4 The functional defined in (23) satisfies

d

dt
I (t) ≤ ξ(t)

2τ0
‖ut‖22.Γ1

− ξ(t)

(
1 − d

2τ1

)∫

Γ1

∫ 1

0
z2(γ, 1, t)dγ

−τ ′(t)η1
2τ1

∫

Γ1

∫ 1

0
z2(γ, k, t)dkdγ.

where η1, η2 , τ0, τ1 and d are a positive constants and ξ(t) are positive and bounded
functions such that

ξ0 = sup
t≥0

ξ(t),

ξ1 = inf
t≥0

ξ(t).

Proof Taking derivative of (23) produces

d

dt
I (t) = d

dt

(

ξ(t)e−kτ(t)
∫

Γ1

∫ 1

0
z2(γ, k, t))dkdγ

)

=
[

ξ ′(t)e−τ(t)k
∫

Γ1

∫ 1

0
z2(γ, k, t))dkdγ

− ξ(t)ke−τ(t)kτ ′(t)
∫

Γ1

∫ 1

0
z2(γ, k, t))dkdγ

]

+ 1

τ(t)
e−τ(t)kτ(t)

∫

Γ1

∫ 1

0

d

dt
z2(γ, k, t))dkdγ

=
[

ξ ′(t)e−τ(t)k
∫

Γ1

∫ 1

0
z2(γ, k, t))dkdγ

− ξ(t)ke−τ(t)kτ ′(t)
∫

Γ1

∫ 1

0
z2(γ, k, t))dkdγ

]

+ 1

τ(t)
e−τ(t)k

∫

Γ1

∫ 1

0

∂

∂k
(1 − τ ′(t)k)z2(γ, k, t))dkdγ

≤
[

ξ ′(t)e−τ(t)k
∫

Γ1

∫ 1

0
z2(γ, k, t)dkdγ

− ξ(t)ke−τ(t)kτ ′(t)
∫

Γ1

∫ 1

0
z2(γ, k, t))dkdγ

]

+ 1

τ(t)

[

ξ(t)
∫

Γ1

[z2(γ, 0, t))dγ − z2(γ, 1, t)dγ ]

+ ξ(t)τ ′(t)
∫

Γ1

z2(γ, 1, t)dγ

]

≤ ξ(t)

2τ0
‖ut‖22.Γ1

− ξ(t)

(
1 − d

2τ1

) ∫

Γ1

z2(γ, 1, t)dγ

− τ ′(t)η1
∫

Γ1

∫ 1

0
z2(γ, k, t)dkdγ. (30)

��
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Lemma 5 The functional ψ(t) defined in (22) satisfies

d

dt
ψ(t) ≤ ‖ut‖22 + ‖ut‖22.Γ1

− (1 − 2n − η1)‖∇u‖22 + ‖u‖p
p

+α(t)

4
(g o ∇u)(t) + c

4η

∫

Γ1

|ut (γ, t))|2dγ

+ c

4η

∫

Γ1

|z(γ, 1, t))|2dγ, (31)

where n =
(
1 − 2α(t)

λ

∫ t
0 g(s)ds

)
> 0, η1 = 2εηc2s B

2 > 0 and (1− 2n − η1) > 0.

Proof Taking derivative of ψ and using the problem (11) and (12), we have

d

dt
ψ(t) ≤ ‖ut‖22 + ‖ut‖22.Γ1

− ‖∇u‖22 + ‖u‖p
p + α(t)(g ∗ ∇u.∇u)

−μ1

∫

Γ1

utudγ − μ2

∫

Γ1

z(γ, 1, t)udγ. (32)

Young’s inequality produces ∀ ε > 0 and put |σ(t)| ≤ c

∣
∣
∣
∣

∫

Γ1

ut (γ, t)u(γ, t)dγ

∣
∣
∣
∣ ≤ ηc2s B

2ε‖∇u‖22 + c

4η

∫

Γ1

|ut |2dγ (33)

∣
∣
∣
∣

∫

Γ1

z(γ, 1, t))u(γ, t)dγ

∣
∣
∣
∣ ≤ ηc2s B

2ε‖∇u‖22 + c

4η

∫

Γ1

|z(γ, 1, t))|2dγ, (34)

α(t)(g ∗ ∇u.∇u) ≤ 2α(t)

λ

∫ t

0
g(s)ds‖∇u‖22 + α(t)

4
(g o ∇u)(t), (35)

inserting (33)–(35) in (32) gives

d

dt
ψ(t) ≤ ‖ut‖22 + ‖ut‖22.Γ1

−
[

1 − 2α(t)

λ

∫ t

0
g(s)ds − 2εηc2s B

2
]

‖∇u‖22 + ‖u‖p
p

+α(t)

4
(g o ∇u)(t) + c

4η

∫

Γ1

|ut (γ, t)|2dγ + c

4η

∫

Γ1

|z(γ, 1, t)|2dγ,

(36)

then

d

dt
ψ(t) ≤ ‖ut‖22 + ‖ut‖22.Γ1

− (1 − 2n − η1)‖∇u‖22 + ‖u‖p
p

+α(t)

4
(g o ∇u)(t) + c

4η

∫

Γ1

|ut (γ, t))|2dγ

+ c

4η

∫

Γ1

|z(γ, 1, t))|2dγ, (37)
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where n =
(
1 − 2α(t)

λ

∫ t
0 g(s)ds

)
> 0, η1 = 2εηc2s B

2 > 0 and (1− 2n − η1) > 0,

which completes the proof. ��
Lemma 6 Let L(t) the functional defined in (21), then L(t) satisfies

d

dt
L(t) ≤ −α(t)C1E(t) + C2α(t)(g o ∇u)(t), ∀t ≥ 0. (38)

Proof We take the derivative of (21), we get

d

dt
L(t) = ME ′(t) + εα(t)ψ ′(t) + εα′(t)ψ(t) + εα′(t)I (t) + εα(t)I ′(t)

+ ε
δα′(t)
2

‖∇u‖22 + εδα(t)
∫

Ω

∇u∇utdx, (39)

making use of the inequalities

α′(t)
∣
∣
∣
∣

∫

Ω

uutdx

∣
∣
∣
∣ ≤ α′(t) c

2
s

α1
‖∇u‖22 + α′(t)α2

1‖ut‖22, (40)

and

α′(t)
∣
∣
∣
∣

∫

Γ1

uutdγ

∣
∣
∣
∣ ≤ α′(t)c

2
s B

2

α1
‖∇u‖22 + α′(t)α2

1‖ut‖22.Γ1
, (41)

using Lemmas 3, 4, so L ′(t) gives the form:

L ′(t) = −Ma1

∫

Γ1

z2(γ, 1, t)dγ − Ma2‖ut‖22.Γ1
+ Mα(t)

2
(g′ o ∇u)(t)

−Mα′(t)
2

∫ t

0
g(s)ds‖∇u‖22 − Mα(t)

2
g(t)‖∇u‖22 − Mδ‖∇ut‖22

+ εα(t)‖ut‖22 + εα(t)‖ut‖22.Γ1
− εα(t)(1 − 2n − η1)‖∇u‖22

+ εα(t)‖u‖p
p + ε

α(t)2

4
(g o ∇u)(t) + ε

α(t)

4η
‖ut‖22.Γ1

+ ε
α(t)

4η
‖z(γ, 1, t)‖22.Γ1

+ ε
α′(t)c2s

α1
‖∇u‖22 + εα′(t)α2

1‖ut‖22

+ ε
α′(t)c2s B2

α1
‖∇u‖22 + εα′(t)α2

1‖ut‖22.Γ1
+ ε

α(t)ξ(t)

2τ0
‖ut‖22.Γ1

+ εα′(t)ξ(t)
∫

Γ1

∫ 1

0
e−kτ(t)z2(γ, k, t)dkdγ + ε

δα′(t)
2

‖∇u‖22

− ετ(t)ξ(t)α(t)
τ ′(t)η1
2τ1ξ0

∫

Γ1

∫ 1

0
z2(γ, k, t)dkdγ

− εα(t)ξ(t)

(
1 − d

2τ1

) ∫

Γ1

z2(γ, 1, t)dγ, (42)
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using the fact that α(t) < α(0), we conclude

L ′(t) = −α(t)ε

(

(1 − 2n − η1) −
(

c2s (1 + B2) − δ

2

)
α′(t)
α(t)

)

‖∇u‖22

+ εα(t)

(

1+α2
1
α′(t)
α(t)

+ 1

4η
+ ξ(t)

2τ0

)

‖ut‖22.Γ1
+ εα(t)

(

1 + α2
1
α′(t)
α(t)

)

‖ut‖22

+ εα(t)‖u‖p
p − δM‖∇ut‖22 + ε

α(t)2

4
(g o ∇u)(t) + ε

α(t)

4η
‖z(γ, 1, t)‖22.Γ1

−α(t)

(
Ma2σ(t)

α(0)
− ε

ξ(1 − d)

2τ1α(0)

) ∫

Γ1

z2(γ, 1, t))dγ

−α(t)

(
Ma1σ(t)

α(0)
− ε

ξα2

τ0

)

‖ut‖22.Γ1
.

− ετ(t)ξ(t)α(t)
τ ′(t)η1
2τ1ξ0

∫

Γ1

∫ 1

0
z2(γ, k, t)dkdγ. (43)

Consequently, using the definition of the energy (13), for any positive constant M , we
obtain:

L ′(t) = −α(t)ε

(

(1 − 2n − η1) − (c2s (1 + B2) − δ

2
)
α′(t)
α(t)

)

‖∇u‖22

− εα(t)

(
M

2
− 1

)

‖u‖p
p − εα(t)

(
M

2
− α2

1

(

1 + α2
1
α′(t)
α(t)

))

‖ut‖22

− εα(t)

(
M

2
−

(

1 + α2
1
α′(t)
α(t)

+ 1

4η
+ ξ(t)

2τ0

))

‖ut‖22.Γ1
+ α(t)M

2
‖ut‖22

+ ε
α(t)M

2
‖ut‖22.Γ1

− ε
Mα(t)2

4
(g o ∇u)(t) + ε

Mα(t)2

2
(g o ∇u)(t)

− Mδ‖∇ut‖22 + ε
α(t)

4η
‖ut‖22.Γ1

+ ε
α(t)2

4η
‖z(γ, 1, t)‖22.Γ1

−α(t)

(
Ma2σ(t)

α(0)
− ε

ξα2

τ0

)

‖ut‖22.Γ1

−α(t)

(
Ma1σ(t)

α(0)
− ε

ξ(1 − d)

2τ1α(0)

) ∫

Γ1

z2(γ, 1, t)dγ

− εα(t)τ (t)ξ(t)
τ ′(t)η1
2τ1ξ0

∫

Γ1

∫ 1

0
z2(γ, k, t)dkdγ. (44)

First, we fix n − η1 > 0 such that 1 − 2n − η1 > 0 and then take M > 0 such that(M
2 − 1

)
> 0, since

lim
t→∞

α′(t)
α(t)

= 0,

we can choose t0 > 0 sufficiently large so that
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(
M

2
− α2

1

(

1 + α′(t)
α(t)

))

> 0,

(

(1 − 2n − η1) − (c2s (1 + B2) − δ

2
)
α′(t)
α(t)

)

> 0,

τ ′(t)η1
2τ1ξ0

> 0

(
Ma2σ(t)

α(0)
− ε

ξ̄α2

τ0

)

> 0,

(
Ma1σ(t)

α(0)
− ε

ξ̄ (1 − d)

2τ1α(0)

)

> 0,

(
M

2
−

(

1 + α2
1
α′(t)
α(t)

+ 1

4η
+ ξ(t)

2τ0

))

> 0.

By using the Poincaré and trace inequalities

‖ut‖22 ≤ C‖∇ut‖22, ‖ut‖22.Γ1
≤ C‖∇ut‖22.

Then (44) takes the form:

d

dt
L(t) ≤ −Mα(t)cεE(t)−(Mδ−εMα(0)C) ‖∇ut‖22 + ε

α(0)M

2
α(t)(g o ∇u)(t),

(45)

then, choosing ε small enough such that (Mδ − εMα(0)C) > 0, we obtain

d

dt
L(t) ≤ −Mα(t)cεE(t) + ε

α(0)M

2
α(t)(g o ∇u)(t), (46)

setting θ = Mε
λ2

,C1 = cθ,C2 = ε
α(0)M

2 and

d

dt
L(t) ≤ −α(t)C1E(t) + C2α(t)(g o ∇u)(t), ∀t ≥ 0. (47)

The proof is completed. ��
Theorem 2 There exist two positive constants C0, θ and t1 such that

E(t) ≤ C0e
−θ

∫ t
t1

α(s)σ (s)ds (48)

Proof Multiplying (47) by σ(t) and using the Lemma 1, we get

σ(t)
d

dt
L(t) ≤ −C1α(t)σ (t)E(t) + C2α(t)σ (t)(g o ∇u)(t)

≤ −C1α(t)σ (t)E(t) − C2α(t)σ (t)(g′ o ∇u)(t)

≤ −C1α(t)σ (t)E(t) + C2

(

−2
d

dt
E(t) − α′(t)

∫ t

0
g(s)ds‖∇u‖22

)

.

(49)
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Since σ is nonincreasing, from the definition of E(t) and assumption (A0), we have

d

dt
(σ (t)L(t) + 2C2E(t)) ≤ −α(t)σ (t)

(

C1 + 2C2l0α′(t)
λlα(t)σ (t)

)

E(t) for t > t0,

as we have

lim
t→∞

2C2l0α′(t)
λlα(t)σ (t)

= 0,

we can choose t1 > t0 such that C3 = C1 + 2C2l0α′(t)
λlα(t)σ (t) > 0 for t > t1. Now let

χ(t) = σ(t)L(t) + 2C2E(t). Then we can verify that

θ1E(t) ≤ χ(t) ≤ θ2E(t). (50)

where θ1, θ2 are two positive constants, thus we arrive at

d

dt
χ(t) ≤ −C4α(t)σ (t)χ(t) for t > t1.

Integrating the previous differential inequality between t1 and t gives the following
estimate for the function χ

χ(t) ≤ χ(t1)e
−C4

∫ t
t1

α(s)σ (s)ds
, ∀t ≥ t1.

Consequently, by using (50), we conclude

E(t) ≤ Ĉe
−C4

∫ t
t1

α(s)σ (s)ds
, ∀t ≥ t1.

This completes the proof. ��
Remark 4 We illustrate the energy decay rate given by Theorem 2 through the fol-
lowing examples which are introduced in [19,27].

1. If g(t) = ae−b(1+t)ν , α(t) = 1
1+t for a, b > 0 and 0 < ν ≤ 1, then σ(t) =

bν(1 + t)ν−1 satisfies (A0). Thus (48) gives the estimate

E(t) ≤ C0e
−θ(1+t)ν−1

.

2. If g(t) = ae−b lnν (1+t), α(t) = 1
ln(1+t) for a, b > 0 and 1 < ν, then σ(t) =

bν lnν−1(1+t)
(1+t) satisfies (A0). Thus (48) gives the estimate

E(t) ≤ C0e
−θ lnν (1+t).

3. If g(t) = e−at , α(t) = b
(1+t) for a, b > 0 then σ(t) ≡ a satisfies (A0). Thus

(48) gives the estimate

E(t) ≤ C0(1 + t)−θab.
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4. If g(t) = e−at , α(t) ≡ b. Note that in this case (48) reduces to one of [13].
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