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1 Introduction

Consider

min
x∈�n

f (x), (1.1)

where f : �n → � is a possibly nonsmooth convex function. The problem (1.1) is
equivalent to the following problem

min
x∈�n

F(x), (1.2)

where F : �n → � is the so-called Moreau-Yosida regularization of f and defined
by

F(x) = min
z∈�n

{
f (z) + 1

2λ
‖z − x‖2

}
, (1.3)

where λ > 0 is a parameter and ‖·‖ denotes the Euclidean norm. A remarkable feature
of problem (1.2) is that the objective function F is a differentiable convex function, even
when the function f is nondifferentiable. Furthermore, F has a Lipschitz continuous
gradient. But, in general, F is not twice differentiable [23]. However, it is shown that,
under some reasonable conditions, the gradient function of F can be proved to be semi-
smooth [9,32]. Based on these features, many algorithms have been proposed for (1.2)
(see [3,9,32] etc.). The proximal methods have been proved to be effective in dealing
with the difficulty of evaluating the function value of F(x) and its gradient ∇F(x) at
a given point x (see [5,7,19]). Lemaréchal [21] and Wolfe [39] initiated a giant stride
forward in nonsmooth optimization by the bundle concept, which can handle convex
and nonconvex f . All bundlemethods carry two distinctive features: (i) Theymake use
at the iterate xk of the bundle of information ( f (xk), g(xk)), ( f (xk−1), g(xk−1)), . . .

collected so far to build up a model of f ; (ii) If, due to the kinky structure of f , this
model is not yet an adequate one, then they mobilize even more subgradient infor-
mation close to xk (or see Lemaréchal [22] and Zowe [48] in detail), where xk the
kth iteration and g(xk) ∈ ∂ f (xk) (∂ f (x) is the subdifferential of f at x). Some fur-
ther results can be found (see [18,20,33,34] etc.). Recently, Yuan et al. [43] gave the
conjugate gradient algorithm for large-scale nonsmooth problems and get some good
results. In this paper, we will provide a new way to solve (1.2). The idea is motivated
by the differentiability of F . We all know that there are many efficient methods for
smooth optimization problems, where the nonlinear CG method is one of them. How-
ever the CG method for nonsmooth problems has not been studied. Considering the
differentiability of F(x) and the same solution set of (1.1) and (1.2), we present a CG
method for (1.2) instead of solving f (x).

The nonlinear conjugate gradient method is one of the most effective line search
methods for smooth unconstrained optimization problem

min
v∈�n

h(v), (1.4)
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A modified PRP conjugate gradient algorithm with nonmonotone… 399

where h : �n → � is continuously differentiable. The CG method has simplicity,
low storage, practical computation efficiency and nice convergence properties. The
PRP (βPRP, see [27,28]) method is one of the most efficient CG methods. It has been
further studied by many authors (see [8,10,12,29,30] etc.). The sufficiently descent
condition is often used to analyze the global convergence of the nonlinear conjugate
gradient method. Many authors hinted that the sufficiently descent condition may
be crucial for conjugate gradient methods [1,2]. There are many modified nonlinear
conjugate gradient formulas which possesses the sufficiently descent property without
any line search (see [14,15,36,41,46] etc.). At present, the CG methods are only used
to solve smooth optimization problems. Whether can the CG method be extent to
solve nonsmooth problem (1.2)?We answer this question positively. Another effective
method for unconstrained optimization (1.4) is quasi-Newton secant methods which
obey the recursive formula

vk+1 = vk − B−1
k ∇h(vk),

where Bk is an approximation Hessian of h at vk . The sequence of matrix {Bk} satisfies
the secant equation

Bk+1Sk = δk, (1.5)

where Sk = vk+1 − vk and δk = ∇h(vk+1) − ∇h(vk). Obviously, only two gradients
are exploited in the secant equation (1.5), while the function values available are
neglected. Hence, techniques using gradients values as well as function values have
been studied by several authors. An efficient attempt is due to Zhang et al. [44]. They
developed a new secant equation which used both gradient values and function values.
This equation is defined by

Bk+1Sk = δ1k , (1.6)

where δ1k = δk + γ 1
k Sk and γ 1

k = 3(∇h(vk+1)+∇h(vk))
T Sk+6(h(vk)−h(vk+1))

‖Sk‖2 . The new

secant equation is superior to the usual one (1.5) in the sense δ1k better approximates
∇2h(vk+1)Sk than δk . Consequently, the matrix which is obtained from the modified
quasi-Newton update better approximates the Hessian matrix (see [44] in detail).
Another significant attempt is due toWei et al. (see [37]) and the equation is defined by

Bk+1Sk = δ2k , (1.7)

where δ2k = δk + γ 2
k Sk and γ 2

k = (∇h(vk+1)+∇h(vk))
T Sk+3(h(vk)−h(vk+1))

‖Sk‖2 . A remarkable
property of this secant equation (1.7) is that, if h is twice continuously differentiable
and Bk+1 is updated by the BFGS method, then the equality

h(vk) = h(vk+1) + ∇h(vk+1)
T Sk + 1

2
STk Bk+1Sk

holds for all k. Moreover this property is independent of any convexity assumption on
the objective function. Furthermore, this equality does not hold for any update formula
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which is based on the usual secant condition (1.5), even for the new one (1.6). Addi-
tionally, comparing with the secant equation (1.6), one concludes that γ 2

k = 1
3γ

1
k . This

is a very interesting fact. The superlinear convergence theorem of the corresponding
BFGS method was established in [38]. Moreover, the work of [38] was extended to
deal with large-scale problems in a limited memory scheme in [40]. The reported
numerical results show that this extension is beneficial to the performance of the algo-
rithm. However, the method based on (1.6) does not possess the global convergence
and the superlinear convergence for general convex functions. In order to overcome
this drawback, Yuan and Wei [42] presented the following secant equation

Bk+1Sk = δ3k , (1.8)

where δ3k = δk + γ 3
k Sk and γ 3

k = max
{
0, (∇h(vk+1)+∇h(vk))

T Sk+3(h(vk)−h(vk+1))

‖Sk‖2
}

.

Numerical results show that this method is competitive to other quasi-Newton meth-
ods (see [42]). Can these modified quasi-Newton methods be used in CG methods
and extent to nonsmooth problems? One directive way is to replace the normal δk
by modified δ1k (δ2k or δ3k ) in CG formulas. Considering this view, we will present a
modified CG method for nonsmooth problem (1.2), where the CG formula possesses
not only the gradient values but also the function values.

The line search framework is often used in smooth and nonsmooth fields, where the
earliest nonmonotone line search technique was developed by Grippo, Lampariello,
and Lucidi in [11] for Newton’s methods. Many subsequent papers have exploited
nonmonotone line search techniques of this nature (see [4,16,24,47] etc.). Although
these nonmonotone technique work well in many cases, there are some drawbacks.
First, a good function value generated in any iteration is essentially discarded due
to the max in the nonmonotone line search technique. Second, in some cases, the
numerical performance is very dependent of the choice of M (see [11,35]). In order to
overcome these two drawbacks, Zhang and Hager [45] presented a new nonmonotone
line search technique. Numerical results show that this technique is better than the
normal nonmonotone technique and the monotone technique.

Motivated by the above observations, we will present a modified PRP conjugate
gradient method which combines with a nonmonotone line search technique for (1.2).
The main characteristics of this method are as follows.

• A conjugate gradient method is introduced for nonsmooth problem (1.1) and (1.2).
• All search directions are sufficient descent, which shows that the function values
are decreasing.

• All search directions are in a trust region, which hints that this method has good
convergent results.

• The global convergence is established under suitable conditions.
• Numerical results show that this method is competitive to other three methods.

This paper is organized as follows. In the next section, we briefly review some
known results of convex analysis and nonsmooth analysis. In Sect. 3, we deduce moti-
vation of the search direction and the given algorithm. In Sect. 4, we prove the global
convergence of the proposedmethod. Numerical results are reported in Sect. 5 and one
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A modified PRP conjugate gradient algorithm with nonmonotone… 401

conclusion is given in the last section. Throughout this paper, without specification,
‖ · ‖ denotes the Euclidean norm of vectors or matrices.

2 Results of convex analysis and nonsmooth analysis

Some basic results in convex analysis and nonsmooth analysis, which will be used
later, are reviewed in this section. Let

θ(z) = f (z) + 1

2λ
‖z − x‖2

and denote p(x) = argminθ(z), where λ > 0 is a scalar. Then p(x) is well-defined
and unique since θ(z) is strongly convex. By (1.3), F(x) can be expressed by

F(x) = f (p(x)) + 1

2λ
‖p(x) − x‖2.

In what follows, we denote the gradient of F by g. Some features about F(x) can be
seen in [5,7,17]. The generalized Jacobian of F(x) and the property of BD-regular
can be found in [6,31] respectively. Some properties are given as follows.

(i) The function F is finite-valued, convex, and everywhere differentiable with

g(x) = ∇F(x) = x − p(x)

λ
. (2.1)

Moreover, the gradient mapping g : �n → �n is globally Lipschitz continuous with
modulus λ, i.e.,

‖g(x) − g(y)‖ ≤ 1

λ
‖x − y‖, ∀ x, y ∈ �n . (2.2)

(ii) x is an optimal solution to (1.1) if and only if ∇F(x) = 0, namely, p(x) = x .
(iii) By the Rademacher theorem and the Lipschitzian property of ∇F, the set of

generalized Jacobian matrices (see [17])

∂Bg(x) = {V ∈ �n×n : V = lim
xk→x

∇g(xk), xk ∈ Dg}

is nonempty and compact for each x ∈ �n, where Dg = {x ∈ �n : g is differentiable
at x}. Since g is a gradient mapping of the convex function F, then every V ∈ ∂Bg(x)
is a symmetric positive semidefinite matrix for each x ∈ �n .

(iv) If g is BD-regular at x, namely all matrices V ∈ ∂Bg(x) are nonsingular. Then,
for all y ∈ �, there exist constants μ1 > 0, μ2 > 0 and a neighborhood � of x such
that

dT Vd ≥ μ1‖d‖2, ‖V−1‖ ≤ μ2, ∀ d ∈ �n, V ∈ ∂Bg(x).

It is obviously that F(x) and g(x) can be obtained through the optimal solution of
argminz∈�nθ(z).However, p(x), the minimizer of θ(z), is difficult or even impossible

123
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to exactly solve. Such makes that we can not apply the exact value of p(x) to define
F(x) and g(x). Fortunately, for each x ∈ �n and any ε > 0, there exists a vector
pα(x, ε) ∈ �n such that

f (pα(x, ε)) + 1

2λ
‖pα(x, ε) − x‖2 ≤ F(x) + ε. (2.3)

Thus, we can use pα(x, ε) to define approximations of F(x) and g(x) by

Fα(x, ε) = f (pα(x, ε)) + 1

2λ
‖pα(x, ε) − x‖2 (2.4)

and

gα(x, ε) = x − pα(x, ε)

λ
, (2.5)

respectively. A remarkable feature of Fα(x, ε) and gα(x, ε) is given as follows (see
[9]).

Proposition 2.1 Let pα(x, ε) be a vector satisfying (2.3), Fα(x, ε) and gα(x, ε) are
defined by (2.4) and (2.5), respectively. Then we get

F(x) ≤ Fα(x, ε) ≤ F(x) + ε, (2.6)

‖pα(x, ε) − p(x)‖ ≤ √
2λε, (2.7)

and

‖gα(x, ε) − g(x)‖ ≤ √
2ε/λ. (2.8)

The above proposition says thatwe can approximately compute Fα(x, ε) and gα(x, ε).
By choosing parameter ε small enough, Fα(x, ε) and gα(x, ε)may bemade arbitrarily
close to F(x) and g(x), respectively.

3 Motivation and algorithm

The following iterative formula is often used by CG method for (1.4)

vk+1 = vk + αkqk, k = 1, 2, . . . (3.1)

where vk is the current iterate point, αk > 0 is a steplength, and qk is the search
direction defined by

qk+1 =
{−∇hk+1 + βkqk, if k ≥ 1

−∇hk+1, if k = 0,
(3.2)
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where∇hk+1 = ∇h(vk+1) andβk ∈ � is a scalarwhichdetermines different conjugate
gradient methods. In order to ensure that search direction is sufficiently descent, Zhang
et al. [46] presented a modified PRP method with

qk+1 =
{−∇hk+1 + βPRP

k qk − ϑkδk, if k ≥ 1
−∇hk+1, if k = 0,

(3.3)

where ϑk = ∇hTk+1qk
‖∇hk‖2 , βPRP

k = ∇hTk+1δk

‖∇hk‖2 , and δk = ∇hk+1 − ∇hk . It is not difficult

to get qTk ∇hk = −‖∇hk‖2. This method can be reduced to a standard PRP method
if exact line search is used. Its global convergence with Armijo-type line search is
obtained, but fails to weak wolfe-Powell line search. Even though this method has
descent property, the direction search may not be a descent direction when vk is far
from the solution. In order to ensure the convergence of the given algorithm, the search
direction should belong to a trust region. Motivated by this consideration, the method
(3.3), and the observations in Sects. 1 and 2, we propose a modified PRP conjugate
gradient formula for (1.2)

dk+1 =
{

−gα(xk+1, εk+1) + gα(xk+1,εk+1)
T y∗

k dk−dTk gα(xk+1,εk+1)y∗
k

max{2‖dk‖‖y∗
k ‖,‖gα(xk ,εk )‖2} , if k ≥ 1

−gα(xk+1, εk+1), if k = 0,
(3.4)

where y∗
k = yk + Aksk, yk = gα(xk+1, εk+1) − gα(xk, εk), sk = xk+1 − xk, and

Ak = max

{
0,

(gα(xk+1, εk+1) + gα(xk, εk))T sk + 3(Fα(xk, εk) − Fα(xk+1, εk+1))

‖sk‖2
}

.

It is easy to see that the given method can be reduced to a standard PRP method
if exact line search is used. For all k, we can easily get dTk+1g

α(xk+1, εk+1) =
−‖gα(xk+1, εk+1)‖2,whichmeans that the proposed direction satisfies the sufficiently
descent properties. Many authors hinted that the sufficiently descent condition may
be crucial for conjugate gradient methods [1,2]. This property can ensure that the
function values is decreasing. Combining with a nonmonotone line search technique,
we list the steps of our algorithm as follows.

Algorithm 3.1 Nonmonotone Conjugate Gradient Algorithm.
Step 0. Initialization. Given x0 ∈ �n, E0 ∈ �, σ ∈ (0, 1), s > 0, λ > 0, ρ ∈

[0, 1], E0 = 1, J0 = Fα(x0, ε0), d0 = −gα(x0, ε0) and ε ∈ (0, 1). Let k = 0.
Step1.TerminationCriterion. Stop if xk satisfies termination condition‖gα(xk, εk)‖

< ε of problem (1.2).
Step 2: Choose a scalar εk+1 such that 0 < εk+1 < εk and compute step size αk by

the following Armijo-type line search rule

Fα(xk + αkdk, εk+1) − Jk ≤ σαkg
α(xk, εk)

T dk, (3.5)

where αk = s × 2−ik , ik ∈ {0, 1, 2, . . .}.
Step 3: Let xk+1 = xk + αkdk . If ‖gα(xk+1, εk+1)‖ < ε, then stop.
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Step 4: Update Jk by

Ek+1 = ρEk + 1, Jk+1 = ρEk Jk + Fα(xk + αkdk, εk+1)

Ek+1
. (3.6)

Step 5: Calculate the search direction by (3.4).
Step 6: Set k := k + 1 and go to Step 2.

Remark It is not difficult to see that Jk+1 is a convex combination of Jk and
Fα(xk+1, εk+1). Since J0 = Fα(x0, ε0), it follows that Jk is a convex combina-
tion of the function values Fα(x0, ε0), Fα(x1, ε1), . . . , Fα(xk, εk). The choice of ρ

controls the degree of nonmonotonicity. If ρ = 0, then the line search is the usual
monotone Armijo line search. If ρ = 1, then Jk = Ck, where

Ck = 1

k + 1

k∑
i=0

Fα(xi , εi )

is the average function value.

4 Properties and global convergence

In the section, we turn to the behavior of Algorithm 3.1 when it is applied to prob-
lem (1.1). In order to get the global convergence of Algorithm 3.1, the following
assumptions are needed.

Assumption A (i) The sequence {Vk} is bounded, i.e., there exists a positive constant
M such that

‖Vk‖ ≤ M, ∀ k. (4.1)

(ii) F is bounded from below.
(iii) For sufficiently large k, εk converges to zero.

The following lemma shows that the conjugate gradient direction possesses the
sufficiently descent property and belongs to a trust region.

Lemma 4.1 For all k ≥ 0, we have

gα(xk, εk)
T dk = −‖gα(xk, εk)‖2 (4.2)

and

‖dk‖ ≤ 2‖gα(xk, εk)‖. (4.3)

Proof For k = 0, d0 = −gα(x0, ε0), we get (4.2) and (4.3). For k ≥ 1, from the
definition of dk , we obtain

dTk+1g
α(xk+1, εk+1) = −‖gα(xk+1, εk+1)‖2
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+
[
gα(xk+1, εk+1)

T y∗
k dk − dTk g

α(xk+1, εk+1)y∗
k

max{2‖dk‖‖y∗
k ‖, ‖gα(xk, εk)‖2}

]T

gα(xk+1, εk+1)

= −‖gα(xk+1, εk+1)‖2.

Then the relation (4.2) holds. Now we turn to prove that (4.3) holds too. By the
definition of dk again, we get

‖dk+1‖ = ‖ − gα(xk+1, εk+1) + gα(xk+1, εk+1)
T y∗

k dk − dTk g
α(xk+1, εk+1)y∗

k

max{2‖dk‖‖y∗
k ‖, ‖gα(xk, εk)‖2} ‖

≤ ‖gα(xk+1, εk+1)‖
+‖gα(xk+1, εk+1)‖‖y∗

k ‖‖dk‖ + ‖dk‖‖gα(xk+1, εk+1)‖‖y∗
k ‖

max{2‖dk‖‖y∗
k ‖, ‖gα(xk, εk)‖2}

≤ 2‖gα(xk+1, εk+1)‖,

where the last inequality follows

max{2‖dk‖‖y∗
k ‖, ‖gα(xk, εk)‖2} ≥ 2‖dk‖‖y∗

k ‖.

Then this completes the proof. �

Based on the above lemma, similar to Lemma 1.1 in [45], it is not difficult to get

the following lemma. So we only state as follows but omit the proof.

Lemma 4.2 Let Assumption A hold and the sequence {xk} be generated by Algo-
rithm 3.1. Then for each k, we have Fα(xk, εk) ≤ Jk ≤ Ck . Moreover, there exists an
αk satisfying Armijo conditions of the line search update.

The above lemma shows that Algorithm 3.1 is well-defined.

Lemma 4.3 Let Assumption A hold and the sequence {xk} be generated by Algo-
rithm 3.1. Suppose that εk = o(α2

k‖dk‖2) holds. Then, for sufficiently large k, there
exists a positive constant m0 such that

αk ≥ m0. (4.4)

Proof Let αk satisfy the line search (3.5). If αk ≥ 1, the proof is complete. Otherwise
we have α′

k = αk
2 satisfying

Fα(xk + α′
kdk, εk+1) − Jk > σα′

kg
α(xk, εk)

T dk .

By Lemma 4.2, we have Fα(xk, εk) ≤ Jk ≤ Ck , then

Fα(xk+α′
kdk, εk+1) −Fα(xk, εk)≥Fα(xk+α′

kdk, εk+1)− Jk >σα′
kg

α(xk, εk)
T dk
(4.5)
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holds. Using (4.5), (2.6), and Taylor’s formula, we get

σα′
kg

α(xk, εk)
T dk < Fα(xk + α′

kdk, εk+1) − Fα(xk, εk)

≤ F(xk + α′
kdk) − F(xk) + εk+1

= α′
kd

T
k g(xk) + 1

2
(α′

k)
2dTk V (ξk)dk + εk+1

≤ α′
kd

T
k g(xk) + M

2
(α′

k)
2‖dk‖2 + εk+1, (4.6)

where V (ξk) ∈ ∂Bg(ξk), ξk = xk+θα′
kdk, θ ∈ (0, 1), and the last inequality follows

(4.1). It follows that from (4.6)

α′
k >

[
(gα(xk, εk) − g(xk))T dk − (1 − σ)gα(xk, εk)T dk − εk+1/(α

′
k)

2

‖dk‖2
]
2

M

≥
[
(1 − σ)‖gα(xk, εk)‖2 − √

2εk/λ‖dk‖ − εk

‖dk‖2
]
2

M

=
[
(1 − σ)‖gα(xk, εk)‖2

‖dk‖2 − o(αk)/
√

λ − o(1)

]
2

M

≥ (1 − σ)

2M
, (4.7)

where the second inequality follows (2.8), (4.2), and εk+1 ≤ εk, the equality follows
εk = o(α2

k‖dk‖2), and the last inequality follows (4.3). Thus, we have

αk ≥ 1 − σ

M
.

Let m0 ∈
(
0, 1−σ

M

]
, we complete the proof. �


Now we prove the global convergence of Algorithm 3.1.

Theorem 4.1 Let the conditions in Lemma 4.3 hold. Then, limk→∞ ‖g(xk)‖ = 0 and
any accumulation point of xk is an optimal solution of (1.1).

Proof We first show that

lim
k→∞ ‖gα(xk, εk)‖ = 0. (4.8)

Suppose that (4.8) is not true. Then there exist ε0 > 0 and k0 > 0 satisfying

‖gα(xk, εk)‖ ≥ ε0, ∀ k > k0. (4.9)

By (3.5), (4.2), (4.4), and (4.9), we get
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Fα(xk+1, εk+1) − Jk ≤σαkg
α(xk, εk)

T dk
= −σαk‖gα(xk, εk)‖2≤−σm0ε0, ∀ k>k0.

By the definition of Jk+1, we have

Jk+1 = ρEk Jk + Fα(xk + αkdk, εk+1)

Ek+1

≤ ρEk Jk + Jk − σm0ε0

Ek+1

= Jk − σm0ε0

Ek+1
. (4.10)

Since Fα(x, ε) is bounded from below and Fα(xk, εk) ≤ Jk holds for all k, we
conclude that Jk is bounded from below. It follows that from (4.10) that

∞∑
k=k0

σm0ε0

Ek+1
< ∞. (4.11)

By the definition of Ek+1, we get Ek+1 ≤ k + 2, then (4.8) holds. By (2.8), we have

‖gα(xk, εk) − g(xk)‖ ≤
√
2εk
λ

.

Together with Assumption A(iii), this means that

lim
k→∞ ‖g(xk)‖ = 0 (4.12)

holds. Let x∗ be an accumulation point of {xk}, without loss of generality, there exists
a subsequence {xk}K satisfying

lim
k∈K , k→∞ xk = x∗. (4.13)

From properties of F(x),we have g(xk) = (xk − p(xk))/λ.Then by (4.12) and (4.13),
x∗ = p(x∗) holds. Therefore x∗ is an optimal solution of (1.1). �


5 Numerical results

5.1 Small-scale problems

The nonsmooth problems of Table 1 can be found in [26]. Table 1 contains problem
dimensions and optimum function values.

The algorithm is implemented byMatlab 7.6, experiments are run on a PCwithCPU
Intel Pentium Dual E7500 2.93GHz, 2G bytes of SDRAMmemory, andWindows XP
operating system. The parameters were chosen as s = λ = 1, ρ = 0.5, σ = 0.8,
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Table 1 Small-scale
nonsmooth problems

No. Problems Dim fops (x)

1 Rosenbrock 2 0

2 Crescent 2 0

3 CB2 2 1.9522245

4 CB3 2 2.0

5 DEM 2 −3

6 QL 2 7.20

7 LQ 2 −1.4142136

8 Mifflin 1 2 −1.0

9 Mifflin 2 2 −1.0

10 Rosen-Suzuki 4 −44

11 Shor 5 22.600162

12 Colville 5 −32.348679

13 Maxq 20 0

14 Maxl 20 0

15 MXHILB 30 0

16 L1HILB 30 0

17 Shell Dual 15 32.348679

18 Maxquadl 10 −0.84140833

and εk = 1/(N I + 2)2 (NI is the iteration number). For problem min θ(x), we
use the function f minsearch of Matlab to get the solution p(x). We stopped the
iteration when the condition ‖gα(x, ε)‖ ≤ 10−10 was satisfied. In order to show the
performance of the given algorithm, we also list the results of paper [25] (proximal
bundle method, PBL) and the paper [34] (trust region concept, BT). The numerical
results of PBL and BT can be found in [25]. The columns of Table 2 have the following
meanings:

Problem: the name of the test problem.
NI: the total number of iterations.
NF: the iteration number of the function evaluations.
f (x): the function evaluations at the final iteration.
fops(x): the optimization function evaluation.

From the numerical results in Table 2, for most of the test problems, it is not difficult
to see that Algorithm 3.1 performs best among these three methods. The function
value of the PBL and the BT more approximate to the optimization evaluation than
Algorithm 3.1 does. Overall we think that the method provide a valid approach for
solving nonsmooth problems.

5.2 Large-scale problems

The following problems of Table 3 can be found in [13]. The numbers of variables
used were 1000. The values of parameters were similar to the small-scale problems.
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Table 2 Test results

No. Algorithm 3.1 PBL BT fops (x)
NI/NF/ f (x) NI/NF/ f (x) NI/NF/ f (x)

1 53/55/3.248983 × 10−7 42/45/0.381 × 10−6 79/88/0.130 × 10−11 0

2 13/15/2.851814 × 10−5 18/20/0.679 × 10−6 24/27/ × 10−6 0

3 12/14/1.952225 32/34/1.9522245 13/16/1.952225 1.9522245

4 3/7/2.000008 14/16/2.0 13/21/2.0 2.0

5 4/6/ − 2.999928 17/19/ − 3.0 9/13/−3.0 −3

6 19/21/7.20 13/15/7.2000015 12/17/−7.20 7.20

7 5/6/−1.414214 11/12/−1.4142136 10/11/−1.414214 −1.4142136

8 3/5/−0.9922728 66/68/−0.99999941 49/74/−1.0 −1.0

9 11/12/−0.9999205 13/15/−1.0 6/13/−1.0 −1.0

10 8/9/−43.99761 43/45/−43.999999 22/32/−43.99998 −44

11 7/8/22.60030 27/29/22.600162 29/30/−22.60016 22.600162

12 7/8/−32.32184 62/64/−32.348679 45/45/−32.3486 −32.348679

13 158/160/1.446425 × 10−5 161/162/0.166 × 10−6 125/128/0 0

14 14/18/3.451419 × 10−4 39/40/ × 10−12 74/84/0 0

15 34/39/2.200567 × 10−5 19/20/0.424 × 10−8 15/15/0.13 × 10−7 0

16 63/65/1.614436 × 10−5 19/20/0.99 × 10−12 16/16/0.77 × 10−8 0

17 20/23/34.95971 1410/1501/32.349129 191/600/32.3538 32.348679

18 14/17/−0.8814104 80/81/−0.84140833 45/56/−0.8414083 −0.84140833

Table 3 Large-scale nonsmooth problems

No. Problems Dim x0

1 Chained LQ 1000 (−0.5,−0.5, . . .)

2 Generalization of MXHILB 1000 (1, 1, . . .)

3 Nonsmooth generalization of Brown function 2 1000 (1, 0, . . .)

4 Chained Mifflin 2 1000 (−1, −1, . . .)

5 Chained Crescent I 1000 (−1.5, 2, . . .)

6 Chained Crescent II 1000 (1, 0, . . .)

The following experiments were implemented in Fortran 90. In order to show the
performance of the given algorithm, we compared it with the method (LMBM) of
paper [13]. The stop rule and parameters are the same as [13].

LMBM [13]. New limited memory bundle method for large-scale nonsmooth opti-
mization. The fortran codes are contributed by Haarala, Miettinen, andMäkelä, which
are available at
http://napsu.karmitsa.fi/lmbm/.

For these six large-scale problems, the iteration number of Algorithm 3.1 is com-
petitive to those of the LMBM method. The final gradient value of the LMBM is
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Table 4 Test results

No. Dim Algorithm 3.1 LMBM
NI/NF/‖g(xk )‖2 NI/NF/‖g(xk )‖2

1 1000 112/1076/0.3994 × 104 300/1824/0.288433737885047 × 104

2 1000 5296/275346/0.10197820736616 × 10−2 21492/22259/0.19520086832185 × 10−4

3 1000 202/2782/2.22714300277783 467/3873/0.249859802632258 × 104

4 1000 52/125/0.245600546442004 × 104 1254/7355/0.446064309620646 × 103

5 1000 187/2411/0.916993560367606 × 104 138/560/1.80388489502507

6 1000 187/1767/0.499346466626978 × 104 763/7522/0.728629687398744 × 103

better than those of the given algorithm. Taking everything together, the preliminary
numerical results indicate the proposed method is efficient (Table 4).

6 Conclusion

In this paper, we propose a conjugate gradient method for nonsmooth convex mini-
mization. The global convergence is established under suitable conditions. Numerical
results show that this method is interesting. The CG method has simplicity and low
memory requirement, the PRP method is one of the most effective CG methods, the
nonmonotone line search technique of [45] is competitive to other line search tech-
niques, and the secant equation of [42] possesses better properties for general convex
functions. Based on the above four cases, we present a modified PRP CG algorithm
with a nonmonotone line search technique for nonsmooth optimization problems. This
method has sufficiently descent property and the search direction belongs to a trust
region. Moreover this method possesses the gradients information but also the func-
tions information. The main work of this paper is to extend the CG method to solve
nonsmooth problems.
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