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Abstract The general sum-connectivity index of a graph G is a molecular descriptor
defined as x4 (G) = ZuveE(G)(dG (u) +dg (v))*, where dg (1) denotes the degree of
vertex 1 in G and « is a real number. In this paper, we obtain the first third graphs with
maximum general sum-connectivity index among the connected tricyclic graphs of
order n for@ > 1 by four transformations which increase the general sum-connectivity
index.
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1 Introduction

Let G = (V(G), E(G)) be a connected simple graph with |V(G)| = n and |E(G| =
m.If m =n 4+ c — 1, then G is called a c-cyclic graph. Specially, if ¢ = 0, 1, 2 and
3, then G is called a tree, a unicyclic graph, a bicyclic graph and a tricyclic graph,
respectively. Let P, and S, be respectively the path and the star with n vertices. Let
Ng (v) denote the neighbor set of vertex v in G, then dg (v) = |Ng(v)| is the degree
of v in G. A pendent path in G is a path having one end vertex of degree at least 3,
the other is of degree 1 and the intermediate vertices are of degree 2. An internal path
of G is defined as a walk vgvy, ..., vg(s > 1) such that the vertices vg, vy, ..., Vs
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are distinct, dg (vog) > 2,dg(vs) > 2 and dg(v;) = 2, whenever 0 < i < s. Other
undefined notation may refer to [1].
The well-known Randi¢ index R(G) of G, is defined as:

RG) = > (deuds(v) 2,

uveE(G)

which is proposed by Randi¢ in 1975 [2], has received intensive attention since its suc-
cessful applications in QSPR and QSAR [3]. Later, Bollobds and Erdos [4] generalized
this index to

Ry(G)= D (dgu)ds))"

uveE(G)

for every graph G and an arbitrary value of @. The mathematical properties of R(G) as
well as those of its generalization R, (G) have been studied extensively as summarized
in the books [5,6].

Recently, a closely related variant of Randi¢ index called the sum-connectivity
index [7], denoted by x (G), is defined as:

X(G) = > (dou)+dgw) 7.

uveE(G)

It has been found that x(G) and R(G) correlate well among themselves and with
m-electronic energy of benzenoid hydrocarbons [7]. Similarly, the general sum-
connectivity index [8] is defined as:

X(G) = D" (dw)+dcv)*.

uveE(G)

Several extremal properties of the general sum-connectivity index have already been
established for general graphs [8], multigraphs [6], trees [6,7,9], unicyclic graphs
[10,11] and bicyclic graphs [12].

In this paper we want to extend the extremal study of the general sum-connectivity
index to tricyclic graphs (connected graphs with n vertices and n + 2 edges). More
precisely, we will find the graphs with the first fourth largest value of x,(G) among
the tricyclic graphs of order n for « > 1 by four transformations which increase the
general sum-connectivity index.

2 Preliminaries

In this section, we introduce some graphic transformations and lemmas, which will
be used to prove our main results.

Transformation I [10] Let u and v be two adjacent vertices of a graph G such
that Ng(u) = {v,z1,...,2p}, N¢(v) = {u,wr,..., ws}, where {z1,...,zp} N
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Fig. 1 The graphs G and 71 (G)
in Transformation I

Fig. 2 The graphs G and 75(G) in Transformation II

{fwi,...,ws} =0, p>0,s > 1. Let T1(G) = G —vw] —vwy — -+ — VW5 +
uwy +uwy + - - - + uws. We say that T\ (G) is a Ty -transform of G (Fig. 1).

Lemma 2.1 [10] Let G and T1(G) be the graphs in Transformation I, if o« < 0, then
Xa(G) > xa(T1(G)) and if o > 0, then xo(G) < xa(T1(G)).

Lemma 2.2 [12] The real function defined by fu.(x) = (x + a)* — x% is strictly
increasing for all o« > 1, a > 0.

Transformation Il Ler G be a graph as shown in Fig. 2, and
Ng(u) = {uy, uz, ..., ug, u', v, wy, wo, ..., wsl,

where uy, us, ..., uy are all the pendent vertices which are adjacent to u, integers
k>1,8s >0, thendg(u) —k =s +2 > 2. Let vi, va, ..., v are all the pendent
vertices which are adjacent to v and dg(v) = t + 2. Define To(G) as the graph
obtained from G by deleting vvy, vva, ..., vv; and adding uvy, uvs, ..., uvy.

Lemma 2.3 Let G and T>(G) be the graphs in Transformation I, if uv € E(G),
integersk > 1,5 > 0,dg(v) =t +2,t > 1 and dg(u') > dg V'), then xo(G) <
X (T2(G)) for a > 1.

Proof By direct calculation, we have

Xa(T2(G)) — xa(G) = [(da () +k+1+5+2)% — (doW') + k + 5 +2)%]
+ [(d6 (') +2)% = (d6 (V) + 1 +2)°]
k414543 —hk+s+3T+tlk+1+s+3)% — ¢ +3)]

+ D [dowi) +k+1 45 +2)% — (do(wi) + k+ 5 +2)7].

i=1
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Furthermore, let

faidoW) +k+s4+2)=dcW) +k+1t+s+2)%—dcW) +k+s+2)%
far(dc) +2) = (dg(W) +1 +2)% — (dg(v') +2)°.

Note that dg(u’) > dg(v'), by Lemma 2.2, we have f,,(dg(u') +k +s +2) >
Jot(dG (V") + 2). Hence we have the desired results. O

Remark 1 Lemma 2.3 is a generalization of Lemma 3 from [12].

For a graph G, the base of G, denoted by G, is defined by the unique subgraph of G
containing no pendent vertex. Obviously, for a graph G, by repeated Transformations
I and II, finally, we can obtain a graph, denoted by G, which cannot carry on further
the Transformations I and II. Then by Lemmas 2.1 and 2.3, we have the following
results.

Theorem 2.4 For a graph G, let G be the graph defined as above, then

(1) All the cut-edges of G are pendent edges;
(i) LetU = {u |dGA0 (u) > 3}, all bunches of pendent edges to V(a)) —U are situated
at distances of at least two one from another;
(iii) xa(G) < Xxa(Go).

Transformation IIl For a graph G, let G be the graph defined as above. Let U =

{u|da)(u) > 3L v e V(G-B) — U and vy, va,...,v(t > 1) are all the pendent
vertices which are adjacent to v in G. For a vertexu € U, ifuv € E(Gy) or P(u, v)
is an internal path from u to v in Gy, let T3(Go) = Go — {vvy, vva, ..., vur} +
{uvy, uvy, ..., uv}.

Lemma 2.5 Let Go, T3(Gg) be the graphs in Transformation III, then xo(Go) <
Xe (T3(Go)).

Proof Case 1 If uv € E(Gy), by the definition of G¢, we know that dGAO(v) =2

Let Ng; (v) = {u,w} and uy, ..., ur(k > 0) be the all pendent vertices which are
adjacent to u in Gy.
Subcase 1.1 Ifw € U anduw € E(Gy),let Ng,(u) = {v, w, uy, ..., ug, wi, ..., Wy}

(s > 1). By direct calculation, we have

Xa (T3(Go)) — xa(Go)

= [k +1+54+2+dey(w)* — (k+5 42+ dg,(w))"]
+k[k+1+5+3)% = (k+s+3)"]
+ [d,(w) +2)% — (t + 2 + dgy(w)*] + t [(k + 1 +5 +3)* — (¢ +3)]

+ D [@oywi) +k+1+5+2)% = (dy(wi) + k + 5 +2)°]
i=1
> [k +14s+2+de,(w)* — (k+5+2+dg,(w)*]
— [t + 2+ dg,(w)* — (dg,(w) +2)%] > 0.
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Subcase 1.2 If w € U and uw ¢ E(Gy), without loss of generality, let dg,(w) <
dg, (u)(otherwise, we add the edges to w). Let NG, (1) = {v, uy, ..., ug, wi, ..., wy}
(s > 2), then dg,(#) = k + s + 1. Note that dg,(w;) > 2 and ¢+ > 1. By direct
calculation, we have

X (T3(Go)) — xa(Go)
=k[(k+1+s+2% —k+s+2%] +1[k+1+s+2)% = +3)°]
+ [y (w) +2)* = (1 + 2+ dg, (w))*]

+Z[(dco(wi) +hk+t+s+1D*—(dg,(wi) +k+s+ 1)"‘]
i=1
=k[(k+1+s+2% —k+s+2%] +1[k+1+s+2)% = +3)°]
+ [y (w) +2)* = (1 + 2+ dg, (w))*]

+ > [ ey (wi) + 1 + dgy ()™ — (day (wi) + diy (1))
i=1
> [(t + dgy(wi) + dGy(u)* — (dgo(wi) + dg, ()”]
— [t 4+ dg,(w) +2)% — (dg,(w) +2)%] = 0.

Subcase 1.3 If w ¢ U, then dg,(w) = 2. let Ng,(u) = {v, u1, ..., ug, wi, ..., ws}
(s = 1). If k = 0, by Transformation I, we can obtain a graph 77(G) with x4 (G) <
X« (T1(G)). So we can assume that k > 1. Then

Xa(T3(Go)) — X (Go)
=[4 =+ DT+ kl(k+1+5+2)* — (k+5+2)%]
+t{k+1+5+2)%—(t+3)%]

+ > [(doywi) +k+1 45+ D% = (dgy(wi) +k+5+ 1]
i=1

> [4% — (¢t + D] + [do,(w1) + k + 1+ 5+ D* — (dgy(w1) + k + 5 + D*].
Now let

Jaidgy(w)+k+s+1) = (dg,(w)+k+1 +5+ DY — (dgy(w1) + &k +5 + DY,
Jor(4) = (t +4)* — 4%,

Obviously, fu:(dG,(w1) +k + s+ 1) > fy(4) since dg,(w1) +k +s+1 > 4.
Further by Lemma 2.2, we have x4 (Go) < xo(73(Go)).
Case 2 If P(u, v) is an internal path from u to v in G, by Case 1, we can assume
that all the neighbors of ©# and v situated on the base of G( have degree 2 in Gy. Let
Ngo(w) ={u1, ..., ug, wy, ..., ws}(k > 0,5 > 3), where uy, ..., ux(k > 0) are the
all pendent vertices which are adjacent to u in Go. Then
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Xa(T3(Go)) — xa(Go)
=2M4% — (t + D) +klk+1+s+D* = (k+s5s+ D]
+t{tk+r+s+ D% =@ +3)N+s[tk+1+s+2)* — (k+s+2)%]
>2[4% =t + D" +slk +1+5+2)% — (k+5+2)°.

And let

Jartk+s+2)=(k+t+s+2)% — (k+s+2)%,
foi(4) = (@ +4)% — 47,

then f,,(k +s +2) > f,:(4) since k + s + 2 > 5. Hence x,(Go) < Xu
(T3(Go))- o

Remark 2 By repeated Transformation III, all the pendent edges which are adjacent
to a vertex in V(Go) — U can move to a vertex in U, denote the resulted graph by
TT3(Gp), then x4 (Go) < xo(TT3(Gp)). Furthermore, for any u,u’ € U, we have
uu' € E(TT3(Go)) or P(u,u’) = uxixy---xu’'(t > 1) is an internal path from u to
u' in TT3(Gy).

Transformation IV If P(u, u’) = uxixy - - x;u’ is an internal path from u to u’ in
TT3(Go), let To(TT3(Go)) = TT3(Go) — x1x2 + uxs.

Similar to the proof of Lemma 2.5, we have

Lemma 2.6 Let TT5(Gg), T4(TT5(Go)) be the graphs in Transformation IV, then
Xa(TT3(Go)) < xa(Ta(TT3(Go))).

3 Main results

The base of a tricyclic graph G, denoted by G, is the minimal tricyclic subgraph of
G. Obviously, G is the unique tricyclic subgraph of G containing no pendent vertex,
and G can be obtained from G by planting trees to some vertices of G. By [13], we
know that tricyclic graphs have the following four types of bases (as shown in Figs. 3,
4, 5): G;(j = 1,...,7),6‘}(]' = 1,...,4),G§(j =1,...,3)and G]. Let

G =(GIG=G je(l,.... TNy 9, »,={GIG=GY jell,.... 4}
G, =(GIG=GS je(l.....3)): ¥,.,=1{GIG=G]).

n

Then ¥, 12 = @3

4
n,n+2 Uy

6
n,n+2 Uy

7
n,n+2 Uy

n,n+2°

Lemma 3.1 Let Ta3, Tb3 be the graphs as shown in Fig. 6, s > t > 1, then xa(T;) <
Xa(T}).
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X OO0 OO0

G: G:

0% 43 ¥

G, G;

Fig.3 The graphs G3(i = 1,2,....7)

O <O O O (O

G

Fig. 4 The graphs G;‘(i =12,...,4)

; ohe GO
Fig. 5 The graphs G;
(i=1273)and G]

1

Fig. 6 The graphs Ta3 and Tb3

Proof By direct calculation, we have

X (T3) — Xa(T2)
=5[(s+6)* =+ —t[t+5)* - +D*1+[(t+5% - +D*]
+[s+6)* - +5D*T+3[+D*—(s+6)%] =3[t +6)* — (1 +5“]

By Lemma 2.2, Xa(Ta3) < on(Tb3)~ O

Lemma 3.2 Let T13, T23 be the graphs as shown in Fig. 7, then Xa(T13) < Xa(T23)-

Proof By direct calculation, we have

xa(TP) = =T)(n —2)% + (n+ D* +3(n — D* +3-6% +2-4%,
Xa(T3) = (n = Dn® 4+ 6(n + ¥ +3 - 4°
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Fig.7 The graphs T13 , T23

X X, Xy
3
; :
T T

Then

Xa(T3) = Xa (T7)
=[m—7n*+6(mn+1)*+3-41—[(n —T(n—2)"
+ DT 30— D +3-6% +2-4]
=m—-7n"—n—2)% +3[n+D*
—(n =D+ 2[(n+ 1)* —6"]+ 4% — 6*
> 2[(n — 54 6)% — 6%] 4 4% — 6~
> [246)% — 6% — [(2 4 4)% — 47].

Let

fa2(6) = (24 6)" — 6%,
Ja2(4) = 2+ 4% — 4%,

then by Lemma 2.2, we have f, 2(6) > fy.2(4). Hence x4 (T13) < Xa(T23)- O
By repeated translations I-IV and Lemmas 2.1, 2.3, 2.5, 2.6, 3.1 and 3.2, we have

Theorem 3.3 Let G € 9, and G # T}, T3, xa(G) < xa(T}) < Xa(T3).
Lemma 3.4 Let T14, T24 be the graphs as shown in Fig. 8, then )(0,(T14 ) < )((),(TZ4 ).

Proof By direct calculation, we have

Xa (T} = (n — 6)(n — D +2(n + 1) +2n% + 6% +4% +2.5%,
Xa(T24) =m—-60n“+m+2)*+4n+1)* +4*+2-.5%

Fig. 8 The graphs T14 , T24

X X X X

I T
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Xl x2 xn*S xl xZ xn*S xl xZ xn*é
6 6 6
L Tz .

Fig.9 The graphs 70, 79, 79

Then

Xa(TY) = xa(T1)
=m—-6)n*—mn-D*1+2[n+D*—=n*1+[(n+2)* —6%] > 0.
Hence we obtain our desired result. O

Remark 3 Let G is a graph with base T14 (or T24 ), if there are two vertices u, v in its
base with degrees no less 3 and at least one pendent edge attaching at each one, its
general sum-connectivity index is less than T14 (or T24 ).

By repeated translations I-IV and Lemmas 2.1, 2.3, 2.5, 2.6, 3.4 and Remark 3, we
have

Theorem 3.5 Let G € 9, ., and G # T}, Ty, then xo(G) < xo(T7) < xa(T3).

Lemma 3.6 Let T16, T26, T36 be the graphs as shown in Fig. 9, then XO,(T16) >
Xa(T) > Xa(TD).

Proof By direct calculation, we have

Xa(TP) = (n = 5)n +3(n + D + (n +3)* +3 - 67,
Xa(T9) = (n = 5)n® +2(n + D +2(n +2)* +2-5% +6°,
(T8 = —6)(n —2)% +2n% + (n — D* +3-5% +2.6%.

Then

Xa (TD) = Xa(TP) = [(n 4+ DY — (n +2)*T 4+ [(n 4+ 3)* — (n +2)*] + 2[6% — 5]
=[(n+ 1) = (n+2)"1+ [(n +3)* — (n +2)"] + 2[6% — 5%].

Let

fo1(n+2)=m+3)* —(n+2)%,
Jur(n+1) =m+2)*—(n+ 1%,

then by Lemma 2.2, we have fy 1(n +2) > foo(n + 1). So xa(T?) > xo(TH).
Further,

@ Springer



186 Z.Zhu, H. Lu

Fig. 10 The graphs Ta7 , Th7

Xa(T$) — Xa(T§)
=m—-6)[n*"—mn-2)*1+20+D*+2n+2)*—n*—(n—-1)% =5 — 6% > 0.
Hence we have our desirable result. O

Remark 4 Let G is a graph with base Tl6 (T26 or T36), if there are two vertices u, v in
its base with degrees no less 3 and at least one pendent edge attaching at each one, its
general sum-connectivity index is less than Tlé (T26 or T36).

By repeated translations I-IV and Lemmas 2.1, 2.3, 2.5, 2.6, 3.6 and Remark 4, we
have

Theorem 3.7 Let G € 40, ., and G # T, TP, TY, xa(G) < xa(T¥) < xa(TF) <
Xoc(T16)~
Lemma 3.8 Let TJ , Tb7 be the graphs as shown in Fig. 10, where s > t > 1 and
T) =T — vy + uxss1. Then xo(T)) < xa(T)).
Proof By direct calculation, we have

Xe(T)) = xa(T))

=@t —D[E+3) =@+ D1+ [(s +5% — t +4)*]
+s[(s+)* = (s +DT+2[(s +D* — (s + O +2[(r + 5 — (¢t + 6)“].

Let

Ja1(s +6) = (s + 1% — (s + 6),
fa1(t+35) =@ +6)* — (1 +5.

By Lemma 2.2, we have f, 1(s +6) > f,.1(t +5) since s > ¢. Hence Xa(TJ) <
Xa(T). O

By Lemma 3.8, we have the following lemma.
Lemma 3.9 Let Ti7, i =1, 2 be the graphs as shown in Fig. 11, xy (T27) < Xa(T17)~
By repeated translations [-IV and Lemmas 2.1, 2.3, 2.5, 2.6 and 3.9, we have

Theorem 3.10 Let G € 9], and G # T (i = 1,2), xa(G) < xa(T)) < xa(T)).
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Fig. 11 The graphs 7}/, *
i=1,2

L L

X X X4 X % X

7;7 77

Lemma3.11 For n > 6, xo(T)) < xo(TY) < min{xe(T), xa(T))} and
Xa(T5) < Xa(T}) < xa(T9) < min{xe(TP), xa(T])}.

Proof Let fo1(n +2) = (n+3)* = +2)%, fa1n+1) = n+2)* —(n+
DY, fa1(n) = (n + 1)* — n®. Then by Lemma 2.2, we have

Xa(T3) = %o (T5) = [n* — (n 4+ D1+ [(n +2)* — (n + D*] +2(5% — 4%) > 0,
Xa(TS) — xa(T3) = [0 — (n + D1+ [(n +2)* — (n + D]+ (6* — 4%) > 0,
Xa(T9) = xa(T) = (n = 5)[n* — (n — D]+ (n +2)%]+5% —=2.7*

> —n— DT+ n+2)*]+54—-2-7%

> (8% —7%) 4 (6* = 7%) > 0,
Xa(T)) = Xa(T9) = [(n+2)% — (n+ D1+ [n® — (n + D*1+2(6* — 5%) > 0.

Further by Lemmas 3.6 and 3.9, we have our desired results. O

Note that

X (T]) = Xa(TP)
=[(n—Dn*+3(n+2)*+3 - 6*1—[(n—3)n*+3(n+ D% + (n + 3)% + 3 - 6*]
=[n% — (n+3)*1 4+ 3[(n +2)* — (n + D]

It is not easy to confirm the sign of the difference Xa(T17 ) — Xa (Tf’), but there exists

a natural number ng(«) such that xa(T17) > Xo:(T16) for every n > no(a). Using

mathematical software it can be seen thatng(o) = ¢ —2 foreverya € N, 8 < o < 20.
Theorems 3.3, 3.5, 3.7, 3.10 imply

Theorem 3.12 Let G € %, ,42(n > 6) and G # T2, TS, T/, then xo(G) <
Xo (T9) < min{xo (TP), xo(T])} < max(xe(TY), xa(T{)) fora > 1.
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