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Abstract Recently, a novel step acceptance mechanism for equality constrained opti-
mization was proposed by Zhu and Pu (Comput. Appl. Math. 31(2):407–432, 2012).
This newmechanism uses an infeasibility control technique that is quite different from
traditional penalty functions and filters. However, in that paper, global convergence of
the algorithm with this new mechanism was proved in a double trust regions frame-
work where a strong assumption on step sizes must be required. In this paper, we
improve Zhu and Pu’s work and furnish a complete global convergence proof for this
infeasibility control mechanism in a standard trust region framework where somemild
assumptions are sufficient. In addition, numerical results on a number of CUTEr prob-
lems accompanied by comparison with SNOPT show the efficiency of the proposed
algorithm.

Keywords Constrained optimization · Global convergence · Infeasibility control ·
Trust region

1 Introduction

In this paper, we consider a numerical algorithm for the following nonlinear equality
constrained optimization problem

{
min f (x)
s.t. c(x) = 0,
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276 X. Zhu

where the objective f : Rn → R and the constraints c : Rn → R
m with m ≤ n are

sufficiently smooth.
The proposed algorithm is a member of the class of two-phase trust region algo-

rithms for which the reader is referred to, e.g., [1–6].More specifically, our approach is
based on the Byrd–Omojokun trust region SQP method [4,5], which is recognized as
the most practical trust region method for general nonlinear equality constrained opti-
mization problems. In the Byrd–Omojokun method, a complete step is decomposed
into a normal step and a tangent step, which are computed by solving a two-phase
relaxation QP subproblem.

As a common view, the technique used to accept or reject steps deeply impacts
the efficiency of methods for nonlinear constrained optimization. In many traditional
algorithms for nonlinear constrained optimization, penalty functions or filters are used
to judge the quality of a trial step. The most obvious disadvantage of penalty functions
is their over dependence upon penalty parameters. An inappropriate penalty parameter
can possibly reject a good step, and even a sophisticatedly designed strategy for updat-
ing the penalty parameter is not very efficient in practical use. That is why Fletcher
and Leyffer proposed the creative concept of filters [7]. Convergence theories on filter
methods can be seen, e.g., in [8,9]. Nevertheless, filter methods also have an Achilles’
heel, a restoration phase is used to reduce infeasibility until a feasible subproblem is
obtained. Gould, Loh, and Robinson [10] recently proposed a new robust filter method
which is free of restoration phases. This method uses a complicated unified step com-
putation process and a mixed step acceptance strategy based on filters and steering
penalty functions.

Over the last few years, methods without a penalty function or a filter has been
a hot topic in the nonlinear optimization community. Bielschowsky and Gomes [11]
introduced an infeasibility control technique based on trust cylinders. This method
needs to obtain a possibly computationally expensive restoration step per iteration.
Gould and Toint [12] introduced a trust funnel technique for step acceptance. This
method uses different trust regions for normal and tangent steps, but the strategy
for coordinating normal and tangent trust region radii is very sophisticated and still
in exploration. Zhu and Pu [13] proposed a step acceptance mechanism based on
a control set. Liu and Yuan [14] proposed a penalty-filter-free technique in the line
search framework.Those fourmethods are designed especially for equality constrained
optimization. More recently, Shen et al. [15] proposed a non-monotone SQP method
for general nonlinear constrained optimization without a penalty function or a filter.
Although the penalty-filter-free methods mentioned above share some similarities,
they are quite different from each other.

This paper is mostly based on the method of Zhu and Pu [13]. The most outstanding
novelty of Zhu and Pu’s work is a new technique controlling infeasibility via a set
of constraint violation of some previous iterations. This technique is very useful in
practice, but in theory it has a fly in the ointment. Specifically, a strong assumption
on the step size must be required to establish global convergence. The primary cause
of this assumption is that a double trust regions strategy similar to Gould and Toint’s
work [12] is used for step computations and the ratio of normal and tangent trust region
radii is out of control in theory though in practice it is not the case.
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Equality constrained optimization 277

The main contribution of this paper is to complete the global convergence theory
of the new infeasibility control technique in [13]. Compared with [13], the most sig-
nificant modification made in the proposed algorithm is that the double trust regions
strategy is replaced by a standard (single) trust region strategy. Global convergence to
first order critical points is then proved under mild assumptions. Of course, we also
present an extended numerical results on some CUTEr problems to demonstrate the
efficiency of the proposed algorithm.

The paper is organized as follows. In Sect. 2, a complete description of the pro-
posed algorithm is introduced. we Assumptions and global convergence analysis are
presented in Sect. 3. Section 4 is devoted to some numerical results.

2 The algorithm

2.1 Step computation

We compute steps on the basis of the Byrd–Omojokun trust region method [5]. Each
complete step sk is composed of a normal step nk and a tangent step tk , i.e.,

sk = nk + tk . (2)

The normal step nk aims at reducing the constraint violation function h(x), where

h(x) := 1

2
||c(x)||2 (3)

with || · || denoting the Euclidean norm. This function can be viewed as an infeasibility
measure at a point x . The tangent step tk aims at reducing the objective as much as
possible while preserving the constraint violation. Specifically, nk and tk are computed
as follows.

For the normal step nk , we solve the following trust region least squares problem

{
min 1

2 ||ck + Akv||2
s.t. ||v|| ≤ τ�k,

(4)

where τ ∈ (0, 1), ck = c(xk), and Ak = A(xk) which is the Jacobian of c(x) at xk .
We assume the solution to (4), the normal step nk , satisfies

||nk || ≤ κn||ck ||, (5)

where κn > 0. This assumption is actually a regularization condition on the Jaco-
bian of constraints. In fact, suppose Ak has the SVD: Ak = Uk�kV T

k . Then

vk = −Vk�
†
kU

T
k ck , where �

†
k is the pseudo-inverse of �k , solves the least squares

problem

min ||ck + Akv||2.
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Thus, a sufficient condition for (5) is that the smallest positive singular value of Ak is
bounded below away from zero. Notice that nk = 0 when xk is feasible.

After computing the normal step nk , we proceed to the next task that is to find a
tangent step tk to improve the optimality of the current iterate xk . Consider a quadratic
model of the Lagrangian at xk

mk(xk + d) := fk + gTk d + 1

2
dT Bkd,

where fk = f (xk), gk = ∇ f (xk), and Bk is an approximateHessian of theLagrangian

L(x, λ) = f (x) + λT c(x)

at xk . It follows that

mk(xk + nk) = fk + gTk nk + 1

2
nTk Bknk

and

mk(xk + nk + t) = mk(xk + nk) + (gnk )
T t + 1

2
t T Bkt,

where gnk = gk + Bknk . Then the tangent step tk should be an solution to the following
problem

⎧⎨
⎩
min (gnk )

T t + 1
2 t

T Bkt
s.t. Akt = 0,

||nk + t || ≤ �k .

But, in practice, we solves for tk this problem

⎧⎨
⎩
min (ZT

k g
n
k )

T v + 1
2v

T ZT
k Bk Zkv

s.t. ||v|| ≤
√

�2
k − ||nk ||2,

(6)

where Zk is an orthonormal basis matrix of the null space of Ak . Therefore, the dogleg
method [16], the CG-Steihaug [17] method, and the generalized Lanczos trust region
(GLTR)method [18] can apply. Let vk be the obtained solution to (6),we set tk = Zkvk .
Since the tangent step tk is in the null space of Ak , we have from (2) that

ck + Aksk = ck + Aknk, (7)

which means that the linearized constraint violation remains unchanged after the tan-
gent step tk is taken.

The lagrangian multiplier vector λk+1 is obtained by solving the following least
squares problem
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Equality constrained optimization 279

min
λ

1

2
||gk + AT

k λ||2 (8)

2.2 Step acceptance

Themechanism for step acceptance is introduced by Zhu and Pu [13]. This mechanism
uses a novel infeasibility control technique to promote global convergence to first order
critical points. Now we describe this technique in detail as follows.

The key is the innovative concept of “control set”which is a set of l positive numbers
and denoted by

Hk := {Hk,1, Hk,2, . . . , Hk,l},

where the l elements are sorted in a non-increasing order, i.e., Hk,1 ≥ Hk,2 ≥ · · · ≥
Hk,l . At the beginning, we define H0 as H0 = {u, · · · , u} where u is a sufficiently
large constant such that

u ≥ max{h(x0), 1}. (9)

For an arbitrary iteration k, when the complete step sk is computed, we consider the
following three cases.

• h(xk) = 0, h(xk + sk) ≤ Hk,1, (10)

• h(xk) > 0, h(xk + sk) ≤ βh(xk), (11)

• h(xk) > 0, f (xk + sk) ≤ f (xk) − γ h(xk + sk), h(xk + sk) ≤ βHk,2, (12)

where β and γ are two constants such that 0 < γ < β < 1. If one of (11) and (12) is
satisfied, then

f (xk + sk) ≤ f (xk) − γ h(xk + sk) or h(xk + sk) ≤ βh(xk). (13)

After xk + sk is accepted as the next iterate xk+1, we may update the control set Hk

by substituting a new element h+
k for the biggest element Hk,1, where

h+
k := (1 − θ)h(xk) + θh(xk+1) (14)

with θ ∈ (0, 1). Of course, all the elements in the new control set Hk+1 will be
rearranged in a non-increasing order as well. The purpose of the control set is evidently
to compel the infeasibility of the iterates to approach zero progressively. Although only
the first two elements Hk,1 and Hk,2 of Hk are involved in conditions (10)–(13), the
length l of Hk impacts the strength of infeasibility control. For example, consider two
cases that l = 2 and l = 3 with the same values for the initial number and the entering
number:
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280 X. Zhu

H0 = {100, 100}, H1 = H0 ⊕ 10 = {100, 10}, H2 = H1 ⊕ 1 = {10, 1},
H0={100, 100, 100}, H1=H0 ⊕ 10 = {100, 100, 10}, H2=H1 ⊕ 1={100, 10, 1}.

Here the notation “⊕” means the control set is updated with some new entry.
It is observed that the first two elements of bigger l change faster.
All iterations are classified into the following three types.
• f -type. At least one of (10)–(12) holds and

χk > σ1||ck ||σ2 , δ
f
k ≥ ζ δ

f,t
k , (15)

where σ1, σ2, ζ ∈ (0, 1) and χk, δ
f
k , δ

f,t
k are defined by

χk := ||ZT
k g

n
k ||, (16)

δ
f
k := f (xk) − mk(xk + sk), (17)

δ
f,t
k := mk(xk + nk) − mk(xk + sk). (18)

• h-type. At least one of (10)–(12) holds is but (15) fails.
• c-type. None of (10)–(12) holds.
Given some constants η1, η2, τ1, τ2, �̄, �̂ such that 0 < η1 < η2 < 1, 0 < τ1 <

1 ≤ τ2, 0 < �̄ < �̂, we accept or reject the trial step according to the following
strategy.

When k is an f -type iteration, we accept xk + sk if

ρ
f
k := f (xk) − f (xk + sk)

δ
f
k

≥ η1. (19)

The corresponding update rule for the trust region radius �k is

�k+1 =

⎧⎪⎨
⎪⎩
min{max{τ2�k, �̄}, �̂} if ρ

f
k ≥ η2,

max{�k, �̄}, if η1 ≤ ρ
f
k < η2,

τ1�k, if ρ
f
k < η1.

(20)

When k is an h-type iteration, we always accept xk + sk and update the trust region
radius �k according to the following rule

�
f
k+1 = max{�k, �̄}. (21)

When k is a c-type iteration, we accept xk + sk if

δck > 0, ρc
k := h(xk) − h(xk + sk)

δck
≥ η1 (22)
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Equality constrained optimization 281

where

δck := 1

2
||ck ||2 − 1

2
||ck + Aksk ||2. (23)

The trust region radius �k is then updated by

�k+1 =
⎧⎨
⎩
min{max{τ2�k, �̄}, �̂} if ρc

k ≥ η2,

max{�k, �̄}, if η1 ≤ ρc
k < η2,

τ1�k, if ρc
k < η1.

(24)

Before we present a formal description of our trust region infeasibility control
algorithm, the refer should notice that formulae (20), (21), and (24) imply that

�k+1 ≥ �̄ (25)

if k is a successful iteration, which is important for the global convergence analysis in
the next section.

2.3 The algorithm

Now a formal statement of the algorithm is presented as follows.

Algorithm 1 A trust-region algorithm with infeasibility control (TRIC)

Initialization: Choose x0, B0 and parameters β, γ, θ, ζ, η1, η2, σ1, σ2, τ, τ1 ∈
(0, 1), u, τ2 ∈ [1,+∞), l ∈ {2, 3, · · · } and �0, �̄, �̂ ∈ (0,+∞) such that �̄ <

�0 < �̂. Set k = 0.
Step 1: Stop if xk is a KT point.
Step 2: Solve (4) for nk if ck 	= 0 and set nk = 0 if ck = 0.
Step 3: Compute Zk , solve (6) for vk , set tk = Zkvk , and obtain sk = nk + tk .
Step 4: When k is f -type, accept xk + sk if (19) holds and update �k according
to (20).

When k is h-type, accept xk + sk , update �k according to (21), and update Hk .
When k is c-type, accept xk + sk if (22) holds, update �k according to (24),
and update Hk .

Step 5: If xk + sk has been accepted, set xk+1 = xk + sk , and set xk+1 = xk
otherwise.
Step 6: If xk + sk has been accepted, solve (8) for λk+1.
Step 7: If xk + sk has been accepted, choose a symmetric matrix Bk+1.
Step 8: Increment k by one and go to Step 1.

Remark 1 From step 4 we observe that the control set Hk is updated if k is a successful
h or c-type iterations, and left unchanged otherwise. Also, from step 4 we see that k
is always a successful iteration if it is h-type.
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282 X. Zhu

3 Global convergence

Firtst, we make the following assumptions that are essential for our convergence
analysis.
Assumptions

A1. Then objective f and the constraints c are twice continuously differentiable.
A2. The set {xk} ∪ {xk + sk} is contained in a compact and convex set �.
A3. There exists a positive constant κB such that ||Bk || ≤ κB for all k.
A4. Inequality (5) is satisfied for all k.
A5. There exist two constants κh, κσ > 0 such that

h(x) ≤ κh �⇒ σmin(A(x)) ≥ κσ , (26)

where σmin(A) represents the smallest singular value of A.

Remark By contrast, these assumptions are weaker than that in [13]. In [13], the
authors use a double trust regions strategy and impose

||sk || ≤ κs min{�c
k,�

f
k },

where κs is a positive constant and�c
k and�

f
k are the trust regions for the normal step

and the tangent step, respectively. This assumption is strong in theory because �c
k and

�
f
k there are updated independently.

In the rest of this section, we denote the index set of successful iterations by S and
the index sets of f -type, h-type, and c-type iterations by F ,H, and C, respectively.

Lemma 1 Suppose that k ∈ S and that xk is a feasible point which is not a KT point.
Then k must be an f -type iteration and therefore all elements of the control set are
positive.

Proof The feasibility of xk implies that nk = 0, δ f
k = δ

f,t
k , δck = 0, and by (22) that k

cannot be a successful c-type iteration. The hypothesis that xk is not a KT point implies
by (16) that χk = ||ZT

k g
n
k || > 0 and therefore (15) holds. Thus, k must be a successful

f -type iteration. It follows from the mechanism of the algorithm, the control set Hk is
updated only in successful h-type and c-type iterations. Recalling the update rule of
the control set is substituting h+

k defined by (14) for Hk,1, we can deduce by induction
that Hk,i > 0, i = 1, . . . , l for all k. 
�
Lemma 2 For all k, we have

h(x j ) ≤ Hk,1, ∀ j ≥ k, (27)

and Hk,1 is monotonically non-increasing in k.
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Proof Without loss of generality, we can assume that all k are successful iterations.
We first prove the inequality

h(xk) ≤ Hk,1 (28)

by induction. Obviously, (9) implies that (28) holds for k = 0. For k ≥ 1, we assume
that (28) holds for k − 1 and consider the following three cases.

The first case is that k − 1 ∈ F . Then at least one of (10)–(12) holds and therefore,
according to the hypothesis h(xk−1) ≤ Hk−1,1, we have from (10)–(12) that

h(xk) ≤ max{Hk−1,1, βh(xk−1), βHk−1,2} = Hk−1,1.

Since the Hk cannot be updated if k is an f -type iteration, we have Hk,1 = Hk−1,1.
Thus (28) follows.

The second case is that k − 1 ∈ H. Lemma 1 implies that xk−1 is infeasible. Then
either (11) or (12) is satisfied and Hk−1 is updated by substituting h

+
k−1 for Hk−1,1. It

follows from (11) and (12) that

h(xk) ≤ β max{h(xk−1), Hk−1,2}.

Therefore, by the update rule of the control set together with (14), we obtain

Hk,1 = max{h+
k−1, Hk−1,2} = max{(1 − θ)h(xk−1) + θh(xk), Hk−1,2} > h(xk).

Thus (28) follows.
The third case is that k−1 ∈ C. Then (22) holds and Hk−1 is updated by substituting

h+
k−1 for Hk−1,1. According to (14) and (22), we have

h(xk) < (1 − θ)h(xk−1) + θh(xk) = h+
k−1.

Therefore, by the update rule of the control set, we have h+
k−1 ≤ Hk,1. Hence we

obtain (28) from the last two inequalities.
Now we can finish the proof of this lemma based on (28). Note that

max{h(xk+1), h(xk)} ≤ Hk,1

according to (10)–(12), (22), (28) and the mechanism of the algorithm. Then we have
h+
k ≤ Hk,1 from (14). Thus the monotonicity of Hk,1 follows from the update rule of

the control set. Finally, (27) follows immediately from (28) and the monotonicity of
Hk,1. 
�
Lemma 3 For all k, we have that

δck ≥ κc||AT
k ck ||min

{
||AT

k ck ||
||AT

k Ak ||
,�k

}
, (29)
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where κc = 1
2τ , and

δ
f,t
k ≥ κ f χk min

{
χk

||Bk || ,�k

}
, (30)

where κ f = 1
2

√
1 − τ 2.

Proof It follows from Lemma 4.3 in [19] that a solution d∗ to the problem

{
min gT d + 1

2d
T Bd

s.t. ||d|| ≤ �

must satisfy the Cauchy condition

− gT d∗ − 1

2
(d∗)T Bd∗ ≥ 1

2
||g||min

{ ||g||
||B|| ,�

}
. (31)

Then, according to (4), (7), (23), and (31), we have

δck = 1

2
||ck ||2 − 1

2
||ck + Aknk ||2

≥ 1

2
||AT

k ck ||min

{
||AT

k ck ||
||AT

k Ak ||
, τ�k

}

≥ 1

2
τ ||AT

k ck ||min

{
||AT

k ck ||
||AT

k Ak ||
,�k

}
.

Similarly, according to (6), (16), (18), and (31), we have

δ
f,t
k ≥ 1

2
χk min

{
χk

||ZT
k Bk Zk ||

,

√
�2

k − ||nk ||2
}

≥ 1

2
χk min

{
χk

||Bk || ,
√
1 − τ 2�k

}

≥ 1

2

√
1 − τ 2χk min

{
χk

||Bk || ,�k

}
.

The proof is complete. 
�
Lemma 4 For all k, we have that

| f (xk + sk) − mk(xk + sk)| ≤ κD||sk ||2, (32)

and

| ||c(xk + sk)||2 − ||ck + Aksk ||2 | ≤ κD||sk ||2, (33)
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where κD > 0 is a constant.

Proof Inequalities (32) and (33) are just two consequences of the assumptions at the
beginning of this section and Taylor’s theorem. 
�
Lemma 5 If k ∈ F and

�k ≤ κ
f
�χk, (34)

where κ
f
� = min{ 1

κB
,

(1−η1)ζκ f
2κD

}, then ρ
f
k > η1. Similarly, if k ∈ C, ck 	= 0, and

�k ≤ κc
�||AT

k ck ||, (35)

where κc
� = min{ 1

κA
,

(1−η1)κc
2κD

} with κA being a positive constant, then ρc
k > η1.

Proof It follows from (15), (30), and A4 that

δ
f
k ≥ ζκ f χk min

{
χk

||Bk || ,�k

}
≥ ζκ f χk min

{
χk

κB
,�k

}
.

This, together with (32) and the fact that

||sk || ≤ ||nk || + ||tk || ≤
(
τ +

√
1 − τ 2�k

)
≤ √

2�k, (36)

implies if (34) holds then

|1 − ρ
f
k | =

∣∣∣∣∣
f (xk + sk) − mk(xk + sk)

δ
f
k

∣∣∣∣∣ ≤ κD||sk ||2
ζκ f χk min

{
χk
κB

,�k

}

≤ 2κD�2
k

ζκ f χk�k
≤ 1 − η1.

Hence, the first assertion follows. Similarly, using (29) and assumptions A1 and A2,
we have

δck ≥ κc||AT
k ck ||min

{
||AT

k ck ||
κA

,�k

}
,

where κA = max
k

{||AT
k Ak ||}. This, together with (33) and (36), implies that if (35)

holds then

|1 − ρc
k | =

∣∣∣∣ ||c(xk + sk)||2 − ||ck + Aksk ||2
2δck

∣∣∣∣ ≤ κD||sk ||2

κc||AT
k ck ||min

{
|||AT

k ck ||
κA

,�k

}

≤ 2κD�2
k

κc||AT
k ck ||�k

≤ 1 − η1.
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Then the second assertion follows as well. 
�
We show below that our algorithm can eventually make a step forward at any iterate

which is not an infeasible stationary point of h(x). We recall beforehand the definition
of an infeasibility stationary point of h(x).

Definition 1 A point x̂ is an infeasible stationary point of h(x) if x̂ satisfies

A(x̂)T c(x̂) = 0 and c(x̂) 	= 0.

Lemma 6 Suppose that KT points and infeasible stationary points never occur. Then
we have |S| = +∞.

Proof According to the mechanism of the algorithm, xk + sk must be accepted if k is
an h-type iteration, we only consider the cases k ∈ F and k ∈ C.

Suppose that xk is infeasible. Since by the hypothesis xk is not an infeasible station-
ary point, we have ||AT

k ck || > 0. It then follows from (29) that δck > 0. Therefore, when
k ∈ C, Lemma 5 ensures that ρc

k ≥ η1 for all �k such that �k ≤ κc
�||AT

k ck ||. Thus, k
is a successful c-type iteration. When k ∈ F , we know by (15) that χk > σ1||ck ||σ2
and by Lemma 5 that ρ f

k ≥ η1 for all �k such that �k ≤ κ
f
�χk . Note that (16) implies

χk depends on gnk = Bknk + gk and therefore depends on nk which may change as �k

decreases. Since ||AT
k ck || > 0, it follows from Theorem 4.1 in [19] that ||nk || = τ�k

for all sufficiently small �k . Using the arguments above and (5), we have

χk ≥ O(||nk ||σ2) = O(�
σ2
k ).

Thus, (34)must be satisfied for all sufficiently small�k . Therefore, a successful f -type
iteration will eventually be finished at xk .

Now we suppose that xk is feasible. Since xk is not a KT point, we have

χk = ||ZT
k g

n
k || = ||ZT

k gk || > 0.

So, (15) is satisfied. It follows from ck + Aksk = 0, (36), and Taylor’s theorem that

h(xk+sk)= 1

2

m∑
i=1

c2i (xk+sk)= 1

8

m∑
i=1

(sTk ∇2ci (ξi )sk)
2≤ 1

8
mκ2

C ||sk ||4≤ 1

2
mκ2

C�4
k,

(37)

where

κC = max
x∈�,1≤i≤m

{∇2ci (x)}.

So, (10) holds whenever �k ≤
(

2Hk,1

mκ2C

)1/4

. Applying Lemma 5 once again, we have

ρ
f
k ≥ η1 when �k is sufficiently small. Hence, a successful f -type iteration will be

finished at xk in the end. 
�
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Lemma 7 If xk is infeasible but not a stationary point, then

�k ≥ min
{
τ1κ

f
� max(χk, σ1||ck ||σ2), �̄

}
, (38)

or

�k ≥ min
{
τ1κ

c
�||AT

k ck ||, �̄
}

. (39)

Proof The results follows immediately from (15), (25), Lemma 4.5, the proof of
Lemma 6 and the mechanism of the algorithm. 
�
Lemma 8 Suppose x∗ ∈ � is a feasible point but not a KT point. Then there exists
a neighbourhood N (x∗) of x∗ and positive constants δ, μ, κ such that for any x ∈
N (x∗) ∩ �, if �k ≥ μ||ck ||, then ck + Aksk = 0 and (15) holds, and moreover, if

μ||ck || ≤ �k ≤ min{κ, (κH Hk,2)
1/4},

where κH = 2β
mκ2C

, then (12) and (19) hold and δ
f
k ≥ δ�k .

Proof Assumptions A1, A2, and A5 imply that when xk is sufficiently close to x∗,
(Ak AT

k )−1 exists and

||AT
k (Ak A

T
k )−1ck || ≤ κI ||ck || (40)

for some constant κI > 0. Therefore, if

�k ≥ κI

τ
||ck ||, (41)

we have

nk = −AT
k (Ak A

T
k )−1ck (42)

and ck + Aksk = 0.
Because x∗ is a feasible point but not a KT point, there exists a constant ε > 0 such

that, for all xk sufficiently close to x∗,

χk ≥ ε > σ1||ck ||σ2 , (43)

and therefore by (30) and assumption A3

δ
f,t
k ≥ κ f ε min

{
ε

κB
,�k

}
. (44)

Define

δ
f,n
k := f (xk) − mk(xk + nk) = −gTk nk − 1

2
nTk Bknk .
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It follows from (40)–(42) and assumptions A1–A3 that if xk is sufficiently close to x∗
and (41) is satisfied,

|δ f,n
k | ≤

(
||gk || + 1

2
κB ||nk ||

)
||nk || ≤

(
||gk || + 1

2
κBκI ||ck ||

)
κI ||ck || ≤ κG ||ck ||,

(45)

where κG = κI max
x∈�

{
||∇ f (x)|| + 1

2κBκI ||c(x)||
}
. Then, applying (41), (44), and

(45), we have that if xk is sufficiently close to x∗ and

max

{
κI

τ
,

κG

(1 − ζ )κ f ε

}
||ck || ≤ �k ≤ ε

κB
,

then

(1 − ζ )δ
f,t
k ≥ −δ

f,n
k ,

and therefore

δ
f
k = δ

f,t
k + δ

f,n
k ≥ ζ δ

f,t
k ,

which together with (43) implies (15).
We deduce from Lemma 5 and (43) that if

�k ≤ κ
f
�ε, (46)

then (19) holds. If, in addition, �k satisfies

�k ≤ min

⎧⎨
⎩

ε

κB
,

(
2η1ζκ f ε

mγ κ2
C

)1/3

,

(
2βHk,2

mκ2
C

)1/4
⎫⎬
⎭ ,

then by (19), (37), and (44), we have

f (xk) − f (xk + sk) ≥ η1δ
f
k ≥ η1ζκ f ε�k ≥ γ h(xk + sk),

and

h(xk + sk) ≤ βHk,2.

The last two inequalities mean (12) holds. Finally, defining δ = ζκ f ε, μ =
max

{
κI
τ

,
κG

(1−ζ )κ f ε

}
, κ = min

{
ε
κB

, κ
f
�ε

(
2η1ζκ f ε

mγ κ2C

)1/3
}
, and choosing a sufficiently

small neighbourhood N (x∗), we complete the proof. 
�
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Now we consider convergence of the case that successful c-type and h-type itera-
tions are finitely many.

Lemma 9 Suppose that |S| = +∞ and |(H ∪ C) ∩ S| < +∞. Then there exists a
subsequence K ⊂ S such that

lim
k→∞,k∈K

h(xk) = 0, (47)

and any limit point of {xk}k∈K is a KT point.

Proof Suppose that xk is infeasible for all sufficiently large k for otherwise (47) must
hold for some subsequence K. The hypothesis of this lemma implies k ∈ F for all
k ∈ S sufficiently large. Then { f (xk)} is monotonically non-increasing from (15) and
(19). It follows from (13) and Lemma 1 of [8] that limk→∞ h(xk) = 0. Thus, (47)
follows immediately.

Let x∗ be an arbitrary limit point of {xk}k∈K. From (47), we deduce that x∗ is
feasible. Without loss of generality, suppose that limk→∞,k∈K xk = x∗. To derive a
contradiction, we assume x∗ is not a KT point. Then, for sufficiently large k ∈ K, we
have xk ∈ N (x∗), whereN (x∗) is a neighbourhood of x∗ characterized in Lemma 8.
Applying Lemma 8, if

μ||ck || ≤ �k ≤ min{κ, (κH Hk,2)
1/4}, (48)

xk + sk must satisfies all the conditions for a successful f -type iteration. Note that the
control set is not updated in a successful f -type iteration. Therefore, we can find an
index k0 such that Hk0 = Hk for all k ≥ k0. Hence, for all sufficiently large k ∈ K,
the interval in (48) becomes

μ||ck || ≤ �k ≤ min{κ, (κH Hk0,2)
1/4},

where the lower bound approaches zero and the upper bound is a positive constant.
It then follows from the mechanism of the algorithm that, for all sufficiently large
k ∈ K,

�k ≥ �min := min
{
τ1κ, τ1(κH Hk0,2)

1/4, �̄
}

.

Therefore, by Lemma 8 and the non-decreasing monotonicity of δ
f
k in �k on the

interval [μ||ck ||,+∞), we have

f (xk) − f (xk + sk) ≥ η1δ
f
k ≥ η1δ�min,

this together with the non-increasing monotonicity of { f (xk)}, implies f (xk) → −∞
as k → ∞. This contradicts assumptions A1 and A2. So, the proof is complete. 
�

Next we consider convergence of the case that successful c-type or h-type iterations
are infinitely many.
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Lemma 10 Suppose |H| = +∞. Then limk→∞ h(xk) = 0.

Proof DenoteH = {ki }. Since at least one of (10)–(12) holds in h-type iterations and
by Lemma xki is infeasible, we deduce from (11), (12), (14), and (27) that

h+
ki

= (1 − θ)h(xki ) + θh(xki+1)

≤ (1 − θ)Hki ,1 + θβ max(Hki ,2, h(xki ))

≤ (1 − θ + θβ)Hki ,1.

It then follows from Lemma 2 and the update rule of the control set that

Hki+l ,1 ≤ (1 − θ + βθ)Hki ,1. (49)

Applying Lemma 2 once again together with (49), we have

lim
k→∞ Hk,1 = 0. (50)

Thus, the result follows from (27) and (50). 
�
In what follows, to obtain global convergence, we will rule out a bad scenario of

successful c-type iterations that is

lim
k→∞,k∈C∩S

||AT
k ck || = 0 with lim inf

k→∞,k∈C∩S
||ck || > 0. (51)

Lemma 11 Suppose |C ∩ S| = +∞ and (51) is avoided. Then limk→∞ h(xk) = 0.

Proof We first prove

lim
k→∞,k∈C∩S

||AT
k ck || = 0. (52)

Denote C ∩ S = {ki }. From (14), (22), (27), (29), we have

Hki ,1 − h+
ki

≥ h(xki ) − h+
ki

= θ(h(xki ) − h(xki+1)) ≥ θη1δ
c
ki

≥ θη1κc||AT
ki cki ||min

{ ||AT
ki
cki ||

||AT
ki
Aki ||

,�ki

}

≥ θη1κc||AT
ki cki ||min

{ ||AT
ki
cki ||

κA
,�ki

}
, (53)

where κA is still defined by κA = max
k

{||AT
k Ak ||} as in the proof of Lemma 5.

Since ki ∈ C ∩ S, xk is an infeasible point by Lemma 1. Lemma 7 implies

�ki ≥ min
{
τ1κ

f
�σ1||cki ||σ2 , τ1κc

�||AT
ki cki ||, �̄

}
. (54)
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From (53), (54), and κc
� ≤ 1

κA
, we then have

Hki ,1 − h+
ki

≥ θη1κc||AT
ki cki ||min

{
τ1κ

f
�σ1||cki ||σ2 , τ1κc

�||AT
ki cki ||, �̄

}
. (55)

It therefore follows from (55), Lemma 2, and the update rule of the control set that

Hki ,1 − Hki+l,1 ≥ θη1κc||AT
ki cki ||min

{
τ1κ

f
�σ1||cki ||σ2 , τ1κc

�||AT
ki cki ||, �̄

}
,

which implies (52) immediately.
Since (51) is avoided, it follows from (52) that lim inf

k→∞,k∈C∩S
||ck || = 0. So, there

exists a subsequence J ⊂ C ∩ S such that

lim
k→∞,k∈J

||ck || = 0. (56)

Remembering h(xk+1) < h(xk) for all k ∈ C ∩ S, we have from (14) and (56) that
limk→∞,k∈J h+

k = 0, which, together with Lemma 2 and the update rule of the control
set, implies (50). The result then follows from (27) and (50). 
�
Lemma 12 Suppose |(H ∪ C) ∩ S| = +∞ and (51) is avoided. Then

lim
k→∞ h(xk) = 0 (57)

and there exists a constant κβ ∈ (0, 1) such that at least one limit point of {xk} is a
KT point whenever β ∈ [κβ, 1).

Proof Equality (57) follows immediately from Lemma 10 and Lemma 11. It follows
from (14) and (57) that limk→∞ h+

k = 0. Denote K = (H ∪ C) ∩ S. Therefore, by
|K| = +∞, the positivity of any Hk,i , and the update rule of the control set, we can
find a subsequence {ki } ⊂ K such that

h+
ki

< Hk,2. (58)

Suppose x∗ is a limit point of {xki }, which by (57) is a feasible point. To derive a
contradiction, we assume x∗ is not a KT point. Without loss of generality, we further
assume limi→∞ xki = x∗. Thus, for sufficiently large ki , we have xki ∈ N (x∗) and

χki ≥ ε, (59)

where N (x∗) is a neighbourhood of x∗ characterized in Lemma 8, and ε > 0 is a
constant. According to (14) and (58), we have

h(xki ) ≤ 1

1 − θ
h+
ki

<
1

1 − θ
Hk,2,
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and therefore

||c(xki )|| ≤
(
2h(xki )

)1/2 ≤ O
(
(Hki ,2)

1/2
)
. (60)

We investigate the interval described in Lemma 8

μ||cki || ≤ �ki ≤ min
{
κ, (κH Hki ,2)

1/4
}
. (61)

It follows from (60) and c(xki ) → 0 that the lower bound in (61) is eventually smaller
than τ1 times of the upper bound in (61). Thus, we have from (25) and Lemma 8 that,
for all sufficiently large ki ,

�ki ≥ τ1

(
κH Hki ,2

)1/4
. (62)

In addition, Lemma 8 ensures that, in this situation, (15) must hold, and therefore k
cannot be an h-type iteration.

Now we consider any sufficiently large ki such that xki ∈ N (x∗), (59) holds, and

h(xki ) ≤ κh . (63)

Using the arguments above, we know ki ∈ C ∩ S, which implies by Lemma 1 that xki
is infeasible. It then follows from (29) and assumptions A1, A2, and A5 that

δcki ≥ κc||AT
ki cki ||min

{ ||AT
ki
cki ||

||AT
ki
Aki ||

,�ki

}
≥ κcκσ ||cki ||min

{
κσ ||cki ||

κA
,�ki

}
.(64)

According to (60) and (62), we have �ki ≥ O(||cki ||1/2), which together with (64),
implies for all sufficiently large ki ,

δcki ≥ κcκσ ||cki ||min

{
κσ ||cki ||

κA
, O(||cki ||1/2)

}
≥ κcκ

2
σ

κA
||cki ||2. (65)

Since ki ∈ C ∩ S, (22) holds, and therefore, by (65), we have

h(xki+1) ≤ h(xki ) − η1δ
c
ki ≤

(
1 − 2κcκ2

σ

κA

)
h(xki ).

This implies that if

κβ :=
(
1 − 2κcκ2

σ

κA

)
≤ β < 1,

then h(xki+1) ≤ βh(xki ) and therefore (11) holds for ki . Thus, ki cannot be a c-type
iteration, which produces a contradiction. Hence, x∗ is a KT point. 
�
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Table 1 Numerical results

Problem TRIC SNOPT

Name n m Nit–Nf–Ng Nit–Nf–Ng

aircrfta 8 5 3–4–4 5–5–4

alsotame 2 1 20–21–21 4–6–5

booth 2 2 3–4–4 2–2–2

bt2 3 1 16–19–17 20–17–16

bt3 5 3 8–9–9 5–5–5

bt4 3 2 7–8–8 10–11–10

bt5 3 2 8–9–9 10–11–10

bt6 5 2 13–15–14 17–17–16

bt7 5 3 30–35–31 21–37–36

bt8 5 2 13–14–14 13–14–13

bt9 4 2 21–25–22 20–31–30

bt10 2 2 6–7–7 1–24–23

bt11 5 3 12–16–13 15–15–14

bt12 5 3 7–9–8 9–10–9

byrdsphr 3 2 8–10–9 15–15–14

cb2 3 3 5–6–6 6–13–12

cb3 3 3 5–6–6 1–17–16

cbratu2d 882 882 1–2–2 441–3–2

cbratu3d 1,024 1, 024 1–2–2 1,024–3–2

cluster 2 2 8–9–9 2–10–9

coolhans 9 9 11–13–12 5–5–4

coshfun 61 20 259–319–260 173–137–136

deconvc 61 1 210–246–211 251–77–76

dixchlng 10 5 33–50–34 40–31–30

dtoc1nd 735 490 42–51–43 397–50–49

dual1 85 1 165–362–366 83–83–83

dual2 96 1 129–550–130 99–99–99

dual3 111 1 185–759–186 118–118–118

dual4 75 1 42–197–43 67–67–67

eigena2 110 55 2–5–3 11–6–5

eigenaco 110 55 2–3–3 11–5–4

eigenb2 110 55 2–5–3 12–6–5

eigenbco 110 55 2–4–3 12–5–4

eigencco 30 15 33–45–34 38–37–36

fccu 19 8 21–28–22 19–19–19

fletcher 4 4 35–98–36 0–2–1

genhs28 10 8 6–7–7 11–11–11

gigomez1 3 3 5–6–6 6–24–23

gilbert 1,000 1 97–115–98 1,245–57–56
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Table 1 continued

Problem TRIC SNOPT

Name n m Nit–Nf–Ng Nit–Nf–Ng

goffin 51 50 4–5–5 25–25–25

gottfr 2 2 5–9–6 2–9–8

haifas 13 9 14–15–15 29–26–25

hatfldg 25 25 8–11–9 44–26–25

heart8 8 8 9–12–10 31–31–30

himmelbc 2 2 5–6–6 2–7–6

himmelp2 2 1 17–22–18 21–26–25

hong 4 1 29–31–30 31–31–30

hs006 2 1 10–12–11 5–9–8

hs007 2 1 13–14–14 18–31–30

hs008 2 2 6–7–7 2–7–6

hs009 2 1 7–8–8 9–9–8

Table 2 Numerical results

Problem TRIC SNOPT

Name n m Nit–Nf–Ng Nit–Nf–Ng

hs026 3 1 18–19–19 25–25–24

hs027 3 1 20–26–21 22–24–23

hs028 3 1 8–9–9 4–4–4

hs039 4 2 21–25–22 20–31–30

hs040 4 3 6–7–7 7–8–7

hs042 4 2 10–11–11 8–9–8

hs046 5 2 29–30–30 28–27–26

hs047 5 3 24–26–25 24–32–31

hs048 5 2 9–13–10 6–6–6

hs049 5 2 20–22–21 37–33–32

hs050 5 3 14–16–15 31–22–21

hs051 5 3 6–8–7 6–6–6

hs052 5 3 7–11–8 5–5–5

hs056 7 4 23–28–24 13–15–14

hs061 3 2 7–8–8 69–169–168

hs077 5 2 11–15–12 15–15–14

hs078 5 3 7–8–8 9–8–7

hs079 5 3 8–10–9 14–15–14

hs100lnp 7 2 21–28–22 19–20–19

hs111lnp 10 3 187–235–188 126–295–294

hypcir 2 2 5–6–6 2–6–5

integreq 100 100 2–3–3 100–4–3

loadbal 31 31 4–5–5 84–55–54

123



Equality constrained optimization 295

Table 2 continued

Problem TRIC SNOPT

Name n m Nit–Nf–Ng Nit–Nf–Ng

lootsma 3 2 4–5–5 3–9–8

lotschd 12 7 41–42–42 8–8–8

lsnnodoc 5 4 14–16–15 12–10–9

maratos 2 1 4–5–5 8–14–13

mwright 5 3 11–14–12 12–11–10

odfits 10 6 35–36–36 35–33–32

orthrds2 203 100 31–36–32 185–157–156

orthrega 517 256 22–38–23 327–69–68

orthregb 27 6 7–8–8 27–9–8

polak3 12 10 49–54–50 103–302–301

portfl1 12 1 61–62–62 12–12–12

portfl2 12 1 61–62–62 12–12–12

portfl3 12 1 62–63–63 13–13–13

portfl4 12 1 61–62–62 11–11–11

portfl6 12 1 62–63–63 11–11–11

powellbs 2 2 25–29–26 2–16–15

powellsq 2 2 19–31–20 16–39–38

robot 14 2 6–7–7 83–136–135

simpllpa 2 2 1–2–2 3–3–3

supersim 2 2 1–2–2 1–1–1

tame 2 1 1–2–2 1–1–1

try-b 2 1 6–7–7 0–10–9

twobars 2 2 309–310–310 8–15–14

womflet 3 3 15–17–16 20–31–30

zangwil3 3 3 4–5–5 3–3–3

zy2 3 2 11–13–12 5–9–8

We now present our main result below.

Theorem 1 Suppose that KT points and infeasible stationary points never occur and
that (51) is avoided. Then at least one limit point of {xk} is a KT point whenever the
parameter β in (11) and (12) satisfies β ∈ [κβ, 1) where κβ ∈ (0, 1) is a constant.

Proof The result follows immediately from from Lemmas 6, 9, and 12. 
�

4 Numerical results

In this section, preliminary numerical results are shown to demonstrate the potential
of the new trust region infeasibility control algorithm. All the codes of the new algo-
rithm were written in MATLAB7.9. Details about our implementation are described
as follows.
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Fig. 1 Performance profile

A standard stopping criterion

||ck ||∞ ≤ 10−6(1 + ||xk ||2),

and

||gk + AT
k λk+1||∞ ≤ 10−6(1 + ||λk+1||2)

was used for our algorithm. The approximate Hessian Bk was initialized to the iden-
tity and updated by the damped BFGS formula. The dogleg method was applied to
compute both normal and tangent steps. The Lagrangian multipliers were computed
via MATLAB’s lsqlin function. All the parameters were chosen as:

τ = 0.8, τ1 = 0.5, τ2 = 1.2, β = 0.9999, γ = θ = ζ = η1 = 10−4, η2 = 0.7,

σ1 = 10−8, σ2 = 0.5, l = max{min{15, �n/5�}, 3}, u = max{1000, 1.5h(x0)},
�0 = max{0.4||x0||, 1.2√n}, �̂ = 10�0, �̄ = 10−4.

We compared our algorithm with the famous nonlinear optimization solver SNOPT
[20]. The corresponding results are shown in Tables 1 and 2, where “TRIC” denotes
our trust region infeasibility control algorithm, “Nit” denotes the number of iterations,
“Nf” denotes the number of function evaluations, and “Ng” denotes the number of gra-
dient evaluations. The test problems were a number of equality constrained problems
chosen from the CUTEr collection [21].

We also plot the logarithmic performance profile of Dolan and Moré [22] in Fig. 1.
In the plots, the performance profile is defined by
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πs(t) � no. of problems where log2 (rp,s) ≤ t

total no. of problems
,

where rp,s is the ratio of Nf or Ng required to solve problem p by solver s and the
lowest value of Ng required by any solver on this problem. The ratio rp,s is set to
infinity whenever solver s fails to solve problem p. It can be observed from Fig. 1 that
TRIC is comparable with SNOPT.
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