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Abstract A stage-structured predator–prey model with a transmissible disease
spreading in the predator population and a time delay due to the gestation of the
predator is formulated and analyzed. By analyzing corresponding characteristic equa-
tions, the local stability of each feasible equilibria and the existence of Hopf bifurca-
tions at the disease-free equilibrium and the coexistence equilibrium are addressed,
respectively. By using Lyapunov functions and the LaSalle invariant principle, suf-
ficient conditions are derived for the global stability of the trivial equilibrium, the
predator–extinction equilibrium and the disease-free equilibrium, respectively. Fur-
ther, sufficient conditions are derived for the global attractiveness of the coexistence
equilibrium of the proposed system. Numerical simulations are carried out to support
the theoretical analysis.
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1 Introduction

Since the pioneering work of Kermack–Mckendrick on SIRS [7], epidemiological
models have received much attention from scientists(see, for example, [2,3,5–7,10,
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11,13,15,19]). Mathematical models have become important tools in analyzing the
spread and control of infectious disease. Eco-epidemiology which is a relatively new
branch of study in theoretical biology, tackles such situations by dealing with both
ecological and epidemiological issues. Following Anderso and May [2] who were the
first to propose an eco-epidemiologicalmodel bymerging the ecological predator–prey
model introduced by Lotka andVolterra, the effect of disease in ecological system is an
important issue frommathematical and ecological point of view.Recently,manyworks
have been devoted to the study of the effects of a disease on a predator–prey system
[3,5,6,10–13,15,19]. In [12], Venturino formulated two eco-epidemiological models
with disease in the predators andmass action and standard incidence rates, respectively.
In the two models, it was assumed that the disease spreads among predators only
and that the infected individuals do not reproduce, only sound ones do. Analysis
of the long-term behavior of solutions of the two models was carried out to show
that whether and how the presence of the disease in the predator species affects the
behavior of the ecological system, but also whether the introduction of a sound prey
can affect the dynamics of the disease in the predator population. Following thework of
Venturino [12], in [19], Zhang and Sun considered a predator–prey model with disease
in the predator and general functional response. Sufficient conditions were derived for
the permanence of the eco-epidemiological system. In [3], Guo et al. considered the
following eco-epidemiological model

ẋ(t) = r x(t) − ax2(t) − a12x(t)S(t)

1 + mx(t)
,

Ṡ(t) = a21x(t)S(t)

1 + mx(t)
− d1S(t) − βS(t)I (t),

İ (t) = βS(t)I (t) − d2 I (t), (1.1)

where x(t), S(t) and I (t) represent the densities of the prey, susceptible (sound)
predator and infected predator population at time t, respectively. The parameters t,
a12, a21, d1, d2, r, m and β are positive constants (see [3]). In system (1.1), the
authors assumed that the infectious predator would die of diseases and only the healthy
predator had predation capacity, but once infected with the disease, the predator would
not be able to recover.

We note that it is assumed in system (1.1) that each individual prey admits the same
risk to be attacked by predators. This assumption seems not to be realistic for many
animals. In the natural world, there are many species whose individuals pass through
an immature stage during which they are raised by their parents, and the rate at which
they are attacked by predator can be ignored. Moreover, it can be assumed that their
reproductive rate during this stage is zero. Stage-structure is a natural phenomenon
and represents, for example, the division of a population into immature and mature
individuals. Stage-structured models have received great attention in recent years (see,
for example, [14,16–18]).

Time delays of one type or another have been incorporate into biological models
by many researchers (see, for example, [1,9,17,18]). In general, delay differential
equations exhibit much more complicated dynamics than ordinary differential equa-
tions since a time delay could cause the population to fluctuate. Time delay due to
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the gestation is a common example, because generally the consumption of prey by
the predator throughout its past history governs the present birth rate of the predator.
Therefore, more realistic models of population interactions should take into account
the effect of time delays.

Based on above discussions, in this paper, we incorporate a stage structure for the
prey and time delay due to the gestation of predator into the system (1.1). We make
the following assumptions:

(A1) The prey population the birth rate is proportion to the existing mature pop-
ulation with a proportionality r > 0; the death rate of the immature population and
transformation rate from immature individuals to mature individuals are proportional
to the existing immature population with proportionality constants d1 > 0 and r1 > 0,
respectively; the intra-specific competition rate of the mature population is a > 0; the
death rate of the mature population is proportional to the existing mature population
with a proportionality d2 > 0.

(A2) The predator population the disease spreads among the predator species only
by contact and the disease can not be transmitted vertically. The infected predator
population do not recover or become immune. The disease incidence is assumed to be
the simple mass action incidence βSI, where β > 0 is called the disease transmission
coefficient. Only the susceptible predators have ability to capture mature prey with
Holling type-II response function x2/(1 + mx2), m > 0 is the search rate multiplied
by the handling time and the infected predator are unable to catch mature prey due to
a high infection. The capturing rate of the susceptible predator and the conversion rate
of nutrients into the reproduction of the predator by consumingmature prey are a1 > 0
and a2/a1 > 0, respectively; the natural death rate of the susceptible predator is d3 >

0; the natural and disease-relatedmortality death rate of the infected predator is d4 > 0.
To this end, we study the following differential equations

ẋ1(t) = r x2(t) − (r1 + d1) x1(t),

ẋ2(t) = r1x1(t) − d2x2(t) − ax22 (t) − a1x2(t)S(t)

1 + mx2(t)
,

Ṡ(t) = a2x2(t − τ)S(t − τ)

1 + mx2(t − τ)
− d3S(t) − βS(t)I (t),

I (t) = βS(t)I (t) − d4 I (t), (1.2)

where x1(t) and x2(t) represent the densities of the immature and the mature prey
population at time t, respectively. τ ≥ 0 is a constant delay due to the gestation of the
predator.

The initial conditions for system (1.2) take the form

x1(θ) = ϕ1(θ) ≥ 0, x2(θ) = ϕ2(θ) ≥ 0, S(θ) = φ1(θ) ≥ 0,

I (θ) = φ2(θ) ≥ 0, θ ∈ [−τ, 0)

ϕ1(0) > 0, ϕ2(0) > 0, φ1(0) > 0,

φ2(0) > 0, (ϕ1(θ), ϕ2(θ), φ1(θ), φ2(θ)) ∈ C
(
[−τ, 0], R4+0

)
,

(1.3)
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where R4+0 = {(y1, y2, y3, y4): yi ≥ 0, i = 1, 2, 3, 4}.
The organization of this paper is as follows. In the next section, we discuss the

positivity and the boundedness of solutions of system (1.2) with initial conditions
(1.3). In Sect. 3, by analyzing the corresponding characteristic equations, we study the
local stability of each feasible boundary equilibria of system (1.2) and the existence
of Hopf bifurcations of system (1.2) at the disease-free equilibrium. By means of
Lyapunov functions and LaSalle invariant principle, we establish sufficient conditions
for the global stability of each feasible boundary equilibria of system (1.2). In Sect. 4,
by analyzing the corresponding characteristic equation, we discuss the local stability
of coexistence equilibrium and the existence of Hopf bifurcations of system (1.2) at
the coexistence equilibrium. By means of Lyapunov functions and LaSalle invariant
principle, we establish sufficient conditions for the global attractiveness of the coex-
istence equilibrium. Numerical simulations are carried out in Sect. 5 to support the
main theoretical results. A brief discussion is given in Sect. 6 to conclude this work.

2 Positivity and boundedness

It is well known by the fundamental theory of functional differential equations [4] that
system (1.2) has a unique solution (x1(t), x2(t), S(t), I (t)) satisfying initial condi-
tions (1.3). In this section, we show the positivity and the boundedness of solutions of
system (1.2) with initial conditions (1.3).

Lemma 2.1 Solutions of system (1.2) corresponding to initial conditions (1.3) are
defined on [0, +∞) and remain positive for all t ≥ 0.

Proof Let (x1(t), x2(t), S(t), I (t)) be a solution of system (1.2) with initial condi-
tions (1.3). First, we show that x2(t) > 0 for all t > 0. Notice x2(0) > 0, hence if
there exists a t0 such that x2(t0) = 0, then t0 > 0. Assume that t0 is the first such time
that x2(t) = 0, that is t0 = inf{t > 0: x2(t0) = 0}. By the second equation of system
(1.2), we obtain ẋ2(t0) = r1x1(t0) ≤ 0. Hence x1(t0) ≤ 0. By the first equation of
system (1.2), we have

x1(t) =
[
x1(0) + r

∫ t

0
x2(s)e

(r1+d1)sds

]
e−(r1+d1)t . (2.1)

By the definition of t0, x2(t) ≥ 0 for t ∈ [0, t0]. Thus, we have x1(t0) > 0. This
contradiction shows that x2(t) > 0 for all t > 0. By (2.1), we have x1(t) > 0 for all
t > 0.

Now, we show that S(t) > 0 for all t > 0. Let us consider S(t) for t ∈ [0, τ ].
Since φ1(θ) ≥ 0 for θ ∈ [−τ, 0], we derive from the third equation of system (1.2)
that
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Ṡ(t) ≥ − (d3 + β I (t)) S(t).

A standard comparison argument shows that

S(t) ≥ S(0) exp

{
−

∫ t

0
(d3 + β I (s)) ds

}
> 0,

i.e., S(t) > 0 for t ∈ [0, τ ]. In a similar way, we treat the intervals [τ, 2τ ], . . . ,
[nτ, (n + 1)τ ], n ∈ N . Thus, we have S(t) > 0 for all t > 0.

It follows from the fourth equation of (1.2) that

I (t) = I (0) exp

{∫ t

0
(βS(u) − d4) du

}
> 0.

Thus, we have I (t) > 0 for all t > 0. ��
Lemma 2.2 Positive solutions of system (1.2) with initial conditions (1.3) are ulti-
mately bounded.

Proof Let (x1(t), x2(t), S(t), I (t)) be any positive solution of system (1.2) with
initial conditions (1.3). Denote d = min{d1, d2, d3, d4}. Define

V (t) = x1(t − τ) + x2(t − τ) + a1
a2

(S(t) + I (t)).

Calculating the derivative of V (t) along positive solutions of system (1.2), it follows
that

V̇ (t) = − d1x1(t−τ)−d2x2(t − τ)−ax22 (t−τ) + r x2(t − τ)− a1
a2

[d3S(t)+d4 I (t)]

≤ −dV (t) − a
[
x2(t − τ) − r

2a

]2 + r2

4a

≤ −dV (t) + r2

4a

which yields

lim sup
t→∞

V (t) ≤ r2

4ad
.

If we choose M1 = r2/(4ad), M2 = a2r2/(4aa1d), then

lim sup
t→∞

xi (t) ≤ M1 (i = 1, 2), lim sup
t→∞

S(t) ≤ M2, lim sup
t→∞

I (t) ≤ M2.

��

123



180 L. Wang et al.

Lemma 2.3 For any positive solution (x1(t), x2(t), S(t), I (t)) of system (1.2) with
initial conditions (1.3), we have that

lim inf
t→+∞ x2(t) ≥ x2 := rr1 − (r1 + d1)(d2 + a1M2)

a(r1 + d1)
,

where M2 is defined in Lemma 2.2.

Proof Let (x1(t), x2(t), S(t), I (t)) be any positive solution of system (1.2) with
initial conditions (1.3). By Lemma 2.2, it follows that lim supt→+∞ S(t) ≤ M2.

Hence, for ε > 0 being sufficiently small, there is a T0 > 0 such that if t > T0, S(t) <

M2 + ε. Accordingly, for ε > 0 being sufficiently small, we derive from the first and
the second equations of system (1.2) that, for t > T0,

ẋ1(t) = r x2(t) − (r1 + d1) x1(t),

ẋ2(t) ≥ r1x1(t) − d2x2(t) − ax22 (t) − a1 (M2 + ε) x2(t), (2.2)

which yields

lim inf
t→+∞ x2(t) ≥ x2 := rr1 − (r1 + d1)(d2 + a1M2)

a(r1 + d1)
. (2.3)

The proof is complete. ��

3 Boundary equilibria and their stability

In this section, we discuss the stability of the boundary equilibria and the existence of
a Hopf bifurcation at the disease-free equilibrium.

System (1.2) always has a trivial equilibrium E0(0, 0, 0, 0). If rr1 > d2(r1 + d1),
then system (1.2) has a predator–extinction equilibrium E1(x01 , x

0
2 , 0, 0), where

x01 = r [rr1 − d2(r1 + d1)]
a(r1 + d1)2

, x02 = rr1 − d2(r1 + d1)

a(r1 + d1)
.

Further, if the following holds

(H1)
rr1 − d2(r1 + d1)

a(r1 + d1)
>

d3
a2 − md3

> 0,

then system (1.2) has a disease-free equilibrium E2(x
+
1 , x+

2 , S+, 0), where

x+
1 = rd3

(r1 + d1)(a2 − md3)
, x+

2 = d3
a2 − md3

,

S+ = aa2
a1(a2 − md3)

[
rr1 − d2(r1 + d1)

a(r1 + d1)
− d3

a2 − md3

]
.

123



Modelling and analysis of an eco-epidemiological model 181

The characteristic equation of system (1.2) at the equilibrium E0(0, 0, 0, 0) takes
the form

(λ + d3) (λ + d4)
[
λ2 + (r1 + d1 + d2) λ + d2 (r1 + d1) − rr1

]
= 0. (3.1)

It is readily seen from Eq. (3.1) that if rr1 < d2(r1 + d1), then E0 is locally asymp-
totically stable; if rr1 > d2(r1 + d1), then E0 is unstable.

Theorem 3.1 If rr1 < d2(r1 + d1), then the trivial equilibrium E0(0, 0, 0, 0) of
system (1.2) is globally asymptotically stable; if rr1 > d2(r1+d1), then the equilibrium
E0 is unstable.

Proof Based on above discussions, we only prove that all positive solutions of system
(1.2) with initial conditions (1.3) converge to E0. Let (x1(t), x2(t), S(t), I (t)) be
any positive solution of system (1.2) with initial conditions (1.3). Define

V0(t) = r1
r1 + d1

x1(t) + x2(t) + a1
a2

[S(t) + I (t)].

Calculating the derivative of V0(t) along positive solutions of system (1.2), it follows
that

V̇0(t) = −d2(r1 + d1) − rr1
r1 + d1

x2(t) − ax22 (t) − a1
a2

[d3S(t) + d4 I (t)] . (3.2)

Let 	 be the largest invariant subset of {V̇0(t) = 0}. Clearly, if rr1 < d2(r1 + d1), it
then follows from (3.2) that V̇0(t) ≤ 0 with equality if and only if x2(t) = 0, S(t) = 0
and I (t) = 0. Noting that 	 is invariant, for each element in 	, we have x2(t) = 0.
It therefore follows from the second equation of system (1.2) that

0 = ẋ2(t) = r1x1(t),

which yields x1(t) = 0.Hence, V̇0(t) = 0 if and only if (x1(t), x2(t), y1(t), y2(t)) =
(0, 0, 0, 0). Accordingly, the global asymptotic stability of E0 follows from LaSalle
invariant principle for delay differential systems. ��

The characteristic equation of system (1.2) at the equilibrium E1(x01 , x
0
2 , 0, 0) is

of the form

(λ + d4)
[
λ2 + (

r1 + d1 + d2 + 2ax02
)
λ + rr1 − d2 (r1 + d1)

]
(

λ + d3 − a2x02
1 + mx02

e−λτ

)
= 0.

(3.3)

Equation (3.3) always has a negative real root: λ1 = −d4. If rr1 > d2(r1 + d1), then
the equation

λ2 +
(
r1 + d1 + d2 + 2ax02

)
λ + rr1 − d2 (r1 + d1) = 0,
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has two roots with negative real parts. All other roots of Eq. (3.3) are determined by
the equation

λ + d3 − a2x02
1 + mx02

e−λτ = 0. (3.4)

Denote f (λ) = λ+ d3 − a2x02
1+mx02

e−λτ . If (H1) holds, it is easy to show that, for λ real,

f (0) = d3 − a2x02
1 + mx02

= − (a2 − md3)[rr1 − d2(r1 + d1)] − d3a(r1 + d1)

a(r1 + d1) + m[rr1 − d2(r1 + d1)] < 0,

lim
λ→+∞ f (λ) = +∞.

Hence, f (λ) = 0 has a positive real root. Therefore, if (H1) holds, the equilibrium
E1(x01 , x

0
2 , 0, 0) is unstable.

If the following holds:

(H2) 0 <
rr1 − d2(r1 + d1)

a(r1 + d1)
<

d3
a2 − md3

,

we claim that E1 is locally asymptotically stable. Otherwise, there is a root λ satisfying
Reλ ≥ 0. It follows from (3.4) that

Reλ = a2x02
1 + mx02

e−τ Reλ cos(τ Imλ) − d3 ≤ a2x02
1 + mx02

− d3 < 0,

which is a contradiction. Hence, if (H2) holds, then the equilibrium E1 is locally
asymptotically stable.

Theorem 3.2 If (H2) holds, then the predator–extinction equilibrium E1(x01 , x
0
2 , 0,

0) of system (1.2) is globally asymptotically stable; if (H1) holds, then the equilibrium
E1 is unstable.

Proof Based on above discussions, we only prove that all positive solutions of system
(1.2) with initial conditions (1.3) converge to E1. Let (x1(t), x2(t), S(t), I (t)) be
any positive solution of system (1.2) with initial conditions (1.3). System (1.2) can be
rewritten as

ẋ1(t) = r

x01

[
−x2(t)

(
x1(t) − x01

)
+ x1(t)

(
x2(t) − x02

)]
,

ẋ2(t) = r1
x02

[
−x1(t)

(
x2(t) − x02

)
+ x2(t)

(
x1(t) − x01

)]

+ x2(t)
[
−a

(
x2(t) − x02

)]
− a1x2(t)S(t)

1 + mx2(t)
,

Ṡ(t) = a2x2(t − τ)S(t − τ)

1 + mx2(t − τ)
− d3S(t) − βS(t)I (t),

İ (t) = βS(t)I (t) − d4 I (t). (3.5)
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Define

V11(t) = c1

(
x1 − x01 − x01 ln

x1
x01

)
+ x2 − x02 − x02 ln

x2
x02

+ k1(S + I ),

where c1 = r1x01/(r x
0
2 ), k1 = a1(1 + mx02 )/a2. Calculating the derivative of V11(t)

along positive solutions of system (1.2), it follows that

V̇11(t) = c1(x1(t) − x01 )

x1(t)
ẋ1(t) + x2(t) − x02

x2(t)
ẋ2(t) + k1(Ṡ(t) + İ (t))

= − r1
x02

(√
x2(t)

x1(t)

(
x1(t) − x01

)
−

√
x1(t)

x2(t)

(
x2(t) − x02

))2

− a
(
x2(t) − x02

)2 − k1d4 I (t) − a1(1 + mx02 )x2(t)S(t)

1 + mx2(t)

+ a1(1 + mx02 )x2(t − τ)S(t − τ)

1 + mx2(t − τ)
−

(
k1d3 − a1x

0
2

)
S(t). (3.6)

Define

V1(t) = V11(t) + a1
(
1 + mx02

) ∫ t

t−τ

x2(u)S(u)

1 + mx2(u)
du.

By calculation, we have that

V̇1(t) = − r1
x02

(√
x2(t)

x1(t)

(
x1(t) − x01

)
−

√
x1(t)

x2(t)

(
x2(t) − x02

))2

− a
(
x2(t) − x02

)2

−
(
k1d3 − a1x

0
2

)
S(t) − k1d4 I (t). (3.7)

It follows from (3.7) that if k1d3 > a1x02 , i.e., (H2) holds, then V̇1(t) ≤ 0 with
equality if and only if x1(t) = x01 , x2(t) = x02 , S(t) = 0 and I (t) = 0. Hence, the
only invariant set M = {(x01 , x02 , 0, 0)}. Using LaSalle invariant principle for delay
differential systems, the global asymptotic stability of E1 follows. ��

The characteristic equation of system (1.2) at the equilibrium E2(x
+
1 , x+

2 , S+, 0)
takes the form

(
λ + d4 − βS+) [

λ3 + g2λ
2 + g1λ + g0 +

(
f2λ

2 + f1λ + f0
)
e−λτ

]
= 0,

(3.8)
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where

g0 = d3 [α (r1 + d1) − rr1] , g1 = d3 (r1 + d1 + α) + α (r1 + d1) − rr1,

g2 = r1 + d1 + d3 + α, α = d2 + 2ax+
2 + a1S+

(1 + mx+
2 )2

,

f0 = −d3

[
α (r1 + d1) − rr1 − a1(r1 + d1)S+

(1 + mx+
2 )2

]
,

f1 = −d3

[
r1 + d1 + α − a1S+

(1 + mx+
2 )2

]
, f2 = −d3.

Clearly, Eq. (3.8) always has a root λ1 = βS+ − d4. All other roots of Eq. (3.8) are
determined by the following equation

λ3 + g2λ
2 + g1λ + g0 +

(
f2λ

2 + f1λ + f0
)
e−λτ = 0. (3.9)

When τ = 0, Eq. (3.9) reduces to

λ3 + (g2 + f2) λ2 + (g1 + f1) λ + g0 + f0 = 0. (3.10)

It is easy to show that

�1 = g2 + f2 = r1 + d1 + α > 0,

�2 = (g1 + f1) (g2 + f2) − (g0 + f0) = (r1 + d1 + α) [α (r1 + d1) − rr1]

+ a1d3αS+

(1 + mx+
2 )2

,

�3 = a1d3(r1 + d1)S+

(1 + mx+
2 )2

�2.

Hence, if βS+ < d4 and the following hold:

(H3) (r1 + d1 + α) [α (r1 + d1) − rr1] + a1d3αS+

(1 + mx+
2 )2

> 0,

the equilibrium E2 is locally asymptotically stable when τ = 0.
If iω(ω > 0) is a solution of (3.9), separating real and imaginary parts, we have

f1ω sinωτ +
(
f0 − f2ω

2
)
cosωτ = g2ω

2 − g0,

f1ω cosωτ −
(
f0 − f2ω

2
)
sinωτ = ω3 − g1ω. (3.11)

Squaring and adding the two equations of (3.11), it follows that

ω6 + h2ω
4 + h1ω

2 + h0 = 0. (3.12)
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By calculation, we derive that

h2 = g22 − 2g1 − f 22 = (r1 + d1)
2 + α2 + 2rr1 > 0,

h1 = g21 − 2g0g2 + 2 f0 f2 − f 21 = [α (r1 + d1) − rr1]
2

+ a1(d3)2S+

(1 + mx+
2 )2

(
α + d2 + 2ax+

2

)
> 0,

h0 = g20 − f 20 = a1(d3)2(r1 + d1)S+

(1 + mx+
2 )2

[
2 (α (r1 + d1) − rr1) − a1(r1 + d1)S+

(1 + mx+
2 )2

]
.

Note that if g0 > f0, then (H3) holds. Hence, if g0 > f0, Eq. (3.12) has no positive
real roots. Accordingly, by Theorem 3.4.1 in Kuang [8], we see that if g0 > f0 and
βS+ < d4, then E2 is locally asymptotically stable for all τ ≥ 0. If g0 < f0, then Eq.
(3.12) has a unique positive root ω0. That is, Eq. (3.9) has a pair of purely imaginary
roots of the form ±iω0. Denote

τk = 1

ω0
arccos

f1ω0(ω
3
0 − g1ω0) + ( f0 − f2ω2

0)(g2ω
2
0 − g0)

( f1ω0)2 + ( f0 − f2ω2
0)

2
+ 2kπ

ω0
, k = 0, 1, 2, . . .

(3.13)

By Theorem 3.4.1 in Kuang [8], we see that if βS+ < d4, g0 < f0 and (H3) hold,
then E2 remains stable for τ < τ0.

We now claim that

d(Re(λ))

dτ

∣∣∣∣
τ=τ0

> 0.

This will show that there exists at least one eigenvalue with positive real part for
τ > τ0. Moreover, the conditions for the existence of a Hopf bifurcation [4] are then
satisfied yielding a periodic solution. To this end, differentiating Eq. (3.9) with respect
to τ, it follows that

(
dλ

dτ

)−1

= 3λ2 + 2g2λ + g1
−λ(λ3 + g2λ2 + g1λ + g0)

+ 2 f2λ + f1
λ( f2λ2 + f1λ + f0)

− τ

λ
.

Hence, a direct calculation shows that

sgn

{
d(Reλ)

dτ

}

λ=iω0

= sgn

{
Re

(
dλ

dτ

)−1
}

λ=iω0

= sgn

{
3ω4

0 + 2(g22 − 2g1)ω2
0 + g21 − 2g0g2

(ω3
0 − g1ω0)2 + (g0 − g2ω2

0)
2

+ −2 f 22 ω2
0 + 2 f2 f0 − f 21

( f1ω0)2 + ( f2ω2
0 − f0)2

}
.

We derive from (3.11) that

(
ω3
0 − g1ω0

)2 +
(
g0 − g2ω

2
0

)2 = ( f1ω0)
2 +

(
f2ω

2
0 − f0

)2
.
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Hence, it follows that

sgn

{
d(Reλ)

dτ

}

λ=iω0

= sgn

{
3ω4

0 + 2h2ω2
0 + h1

( f1ω0)2 + ( f2ω2
0 − f0)2

}
> 0.

Therefore, the transversal condition holds and a Hopf bifurcation occurs at ω =
ω0, τ = τ0.

In conclusion, we have the following results.

Theorem 3.3 For system (1.2), assume (H1) and βS+ < d4 hold, we have the fol-
lowing:

(i) If g0 > f0, then the disease-free equilibrium E2(x
+
1 , x+

2 , S+, 0) is locally
asymptotically stable for all τ ≥ 0;

(ii) If g0 < f0 and (H3) hold, then there exists a positive number τ0, such that E2 is
locally asymptotically stable if 0 < τ < τ0 and is unstable if τ > τ0. Further,
system (1.2) undergoes a Hopf bifurcation at E2 when τ = τ0.

Theorem 3.4 Let (H1) hold, if βS+ < d4, then the disease-free equilibrium E2 is
globally asymptotically stable provided

(H4) x2 >
rr1 − d2(r1 + d1)

a(r1 + d1)
− d3

a2 − md3
.

Here, x2 > 0 is defined in Lemma 2.3.

Proof It is easy to see that if (H4) holds, then x
+
2 >

rr1−d2(r1+d1)
a(r1+d1)

− d3
a2−md3

. It follows
from (3.12) that g0 > f0 holds. By Theorem 3.3, we see that if βS+ < d4, (H1)

and (H4) hold, then the equilibrium E2(x
+
1 · x+

2 , S+, 0) is locally asymptotically
stable. Hence, it suffices to show that all positive solutions of system (1.2) with initial
conditions (1.3) converge to E2.We achieve this by constructing a Lyapunov function.
Let (x1(t), x2(t), S(t), I (t)) be any positive solution of system (1.2) with initial
conditions (1.3).

System (1.2) can be rewritten as

ẋ1(t) = r

x+
1

[−x2(t)
(
x1(t) − x+

1

) + x1(t)
(
x2(t) − x+

2

)]
,

ẋ2(t) = r1
x+
2

[−x1(t)
(
x2(t) − x+

2

) + x2(t)
(
x1(t) − x+

1

)] + x2(t)
[−a

(
x2(t) − x+

2

)]

+ a1S+

1 + mx+
2

x2(t) − a1x2(t)S(t)

1 + mx2(t)
,

Ṡ(t) = a2x2(t − τ)S(t − τ)

1 + mx2(t − τ)
− d3S(t) − βS(t)I (t),

İ (t) = βS(t)I (t) − d4 I (t). (3.14)
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Define

V21(t) = c2

(
x1 − x+

1 − x+
1 ln

x1
x+
1

)
+ x2 − x+

2 − x+
2 ln

x2
x+
2

+ k2

(
S − S+ − S+ ln

S

S+

)
+ k2 I,

where c2 = r1x
+
1 /(r x+

2 ), k2 = a1(1 + mx+
2 )/a2.

Calculating the derivative of V21(t) along positive solutions of system (1.2), it
follows that

V̇21(t) = c2
x1(t) − x+

1

x1(t)
ẋ1(t) + x2(t) − x+

2

x2(t)
ẋ2(t) + k2

S(t) − S+

S(t)
Ṡ(t) + k2 İ (t)

= − r1
x+
2

(√
x2(t)

x1(t)

(
x1(t)−x+

1

) −
√
x1(t)

x2(t)

(
x2(t) − x+

2

))2

− a
(
x2(t) − x+

2

)2

− a1(1 + mx+
2 )x2(t)S(t)

1 + mx2(t)
+ a1(1 + mx+

2 )x2(t − τ)S(t − τ)

1 + mx2(t − τ)

− k2
(
d4 − βS+)

I (t) − a1
(
1 + mx+

2

) S+

S(t)

x2(t − τ)S(t − τ)

1 + mx2(t − τ)

+ a1S+

1 + mx+
2

(
x2(t) − x+

2

) + k2d3S
+. (3.15)

Define

V2(t) = V21(t) + a1
(
1 + mx+

2

) ∫ t

t−τ

[
x2(u)S(u)

1 + mx2(u)
− x+

2 S+

1 + mx+
2

− x+
2 S+

1 + mx+
2

ln
(1 + mx+

2 )x2(u)S(u)

x+
2 S+(1 + mx2(u))

]
du.

By calculation, we have that

V̇2(t) = − r1
x+
2

(√
x2(t)

x1(t)

(
x1(t) − x+

1

)
−

√
x1(t)

x2(t)

(
x2(t) − x+

2

))2

− a
(
x2(t) − x+

2

)2

− a1x
+
2 S+

[
(1 + mx+

2 )x2(t − τ)S(t − τ)

x+
2 S(t)(1 + mx2(t − τ))

−1−ln
(1 + mx+

2 )x2(t − τ)S(t − τ)

x+
2 S(t)(1 + mx2(t − τ))

]

− a1x
+
2 S+

[
x+
2 (1 + mx2(t))

(1 + mx+
2 )x2(t)

− 1 − ln
x+
2 (1 + mx2(t))

(1 + mx+
2 )x2(t)

]

− k2
(
d4 − βS+)

I (t) −
(
x2(t) − x+

2

)2 [
a − a1S

+
1 + mx+

2

1

x2(t)

]
. (3.16)
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It follows from (3.16) that ifβS+ < d4 and (H4)hold true, then V̇2(t) ≤ 0with equality

if and only if x1(t) = x+
1 , x2(t) = x+

2 , I (t) = 0 and
(1+mx+

2 )S+x2(t−τ)S(t−τ)

x+
2 S+S(t)(1+mx2(t−τ))

= 1.

We now look for the invariant subset M within the set

∧
=

{
(x1, x2, S, I ) : x2(t)= x+

2 , x1(t)= x+
1 , I (t) = 0,

(1 + mx+
2 )S+x2(t − τ)S(t − τ)

x+
2 S+S(t)(1 + mx2(t − τ))

=1

}
.

Since x1(t) = x+
1 and x2(t) = x+

2 on M and consequently, 0 = ẋ2(t) = r1x
+
1 −

d2x
+
2 − a(x+

2 )2 − a1x
+
2 S(t)

1+mx+
2

, which yields S(t) = S+. Hence, the only invariant set in
∧

is M = {(x+
1 , x+

2 , S+, 0)}.Using LaSalle invariant principle for delay differential
systems, the global asymptotic stability of the equilibrium E2 of system (1.2) follows.

��

4 Coexistence equilibrium and its stability

In this section, we discuss the stability of the coexistence equilibrium and the existence
of a Hopf bifurcation.

It is easy to show that if βS+ > d4, system (1.2) has a unique coexistence equilib-
rium E∗(x∗

1 , x
∗
2 , S∗, I ∗), where

x∗
1 = r

r1 + d1
x∗
2 , x∗

2 = 1

2
� +

√
1

4
�2 + 1

m

[
rr1 − d2(r1 + d1)

a(r1 + d1)
− a1d4

aβ

]
,

� = rr1 − d2(r1 + d1)

a(r1 + d1)
− 1

m
, S∗ = d4

β
, I ∗ = 1

β

[
a2x∗

2

1 + mx∗
2

− d3

]
.

The characteristic equation of system (1.2) at the equilibrium E∗ is of the form

λ4 + p3λ
3 + p2λ

2 + p1λ + p0 +
(
q3λ

3 + q2λ
2 + q1λ

)
e−λτ = 0, (4.1)

where

p3 = α̂ + r1 + d1 + d3 + β I ∗,
p2 = (

d3 + β I ∗) (
α̂ + r1 + d1

) + α̂ (r1 + d1) − rr1 + β2S∗ I ∗,
p1 = β2S∗ I ∗ (

α̂ + r1 + d1
) + (

d3 + β I ∗) [
α̂ (r1 + d1) − rr1

]
,

p0 = β2S∗ I ∗ [
α̂ (r1 + d1) − rr1

]
,

q3 = − a2x∗
2

1 + mx∗
2
, q2 = − a2x∗

2

1 + mx∗
2

(
d2 + 2ax∗

2 + r1 + d1
)
,

q1 = − a2x∗
2

1 + mx∗
2

[
(r1 + d1)

(
d2 + 2ax∗

2

) − rr1
]
,

α̂ = d2 + 2ax∗
2 + a1S∗

(1 + mx∗
2 )

2 .
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When τ = 0, Eq. (4.1) becomes

λ4 + (p3 + q3) λ3 + (p2 + q2) λ2 + (p1 + q1) λ + p0 = 0. (4.2)

If the following holds

(H5) α̂ (r1 + d1) > rr1,

then it is easy to show that

�1 = p3 + q3 = α̂ + r1 + d1 > 0,

�2 = (p3 + q3) (p2 + q2) − (p1 + q1) = (
α̂ + r1 + d1

) [
α̂ (r1 + d1) − rr1

]

+α̂
a2x∗

2a1S
∗

(1 + mx∗
2 )

3 > 0,

�3 = (p3 + q3) (p2 + q2) (p1 + p2) − (p1 + p2)
2 − p0 (p3 + q3)

2

= β2S∗ I ∗ a2x∗
2a1S

∗

(1 + mx∗
2 )

3

(
α̂ + r1 + d1

) + (
α̂ + r1 + d1

) [
α̂ (r1 + d1) − rr1

]

[
β2S∗ I ∗ (

α̂ + r1 + d1
) + (r1 + d1)

a2x∗
2a1S

∗

(1 + mx∗
2 )

3

]
> 0,

�4 = p0�3 > 0.

Hence, by the Routh–Hurwitz criterion we know that if (H5) holds, the coexistence
equilibrium E∗ of system (1.2) is locally asymptotically stable when τ = 0.

Substituting λ = iω(ω > 0) into (4.1) and separating the real and imaginary parts,
one obtains that

(
q3ω

3 − q1ω
)
sinωτ + q2ω

2 cosωτ = ω4 − p2ω
2 + p0,

(
q3ω

3 − q1ω
)
cosωτ − q2ω

2 sinωτ = p1ω − p3ω
3. (4.3)

Squaring and adding the two equations of (4.3), it follows that

ω8 + ĥ3ω
6 + ĥ2ω

4 + ĥ1ω
2 + p20 = 0, (4.4)

where

ĥ3 = p23 − 2p2 − q23 , ĥ2 = p22 + 2p0 − 2p1 p3 − q22 + 2q1q3, ĥ1 = p21 − 2p0 p2 − q21 .

Letting z = ω2, Eq. (4.4) can be written as

ĥ(z) := z4 + ĥ3z
3 + ĥ2z

2 + ĥ1z + p20 = 0. (4.5)

If ĥ3 > 0 and ĥ22 − 4ĥ1ĥ3 < 0, then ĥ(z) has always no positive roots. Hence,
under these conditions, Eq. (4.4) has no purely imaginary roots for any τ > 0 and
accordingly, the equilibrium E∗ is locally asymptotically stable for all τ ≥ 0.
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If Eq. (4.5) has at least one positive root, without loss of generality, we assume that
(4.5) has four positive roots, namely, z1, z2, z3 and z4, respectively. Accordingly,
Eq. (4.4) has four positive roots ωk = √

zk (k = 1, 2, 3, 4).

For k = 1, 2, 3, 4, from (4.3) one can get the corresponding τ
j
k > 0 such that

(4.1) has a pair of purely imaginary roots ±iωk given by

τ
j
k = 2π j

ωk
+ 1

ωk
arccos

q2ω2
k (ω

4
k − p2ω2

k + p0)+(q3ω3
k−q1ωk)(p1ωk − p3ω3

k )

(q2ω2
k )

2 + (q3ω3
k − q1ωk)2

, j = 0, 1, 2, . . .

Differentiating the two sides of (4.1) with respect to τ, it follows that

(
dλ

dτ

)−1

= 4λ3 + 3p3λ2 + 2p2λ + p1
−λ(λ4 + p3λ3 + p2λ2 + p1λ + p0)

+ 3q3λ2 + 2q2λ + q1
λ(q3λ3 + q2λ2 + q1λ)

− τ

λ
.

After some algebra, one obtains that

sign

{
dReλ

dτ

}

τ=τ
j
k

= sign

{
Re

(
dλ

dτ

)−1
}

τ=τ
j
k

= sign

{
− (p1 − 3p3ω2

k )(p3ω
2
k − p1) + 2(p2 − 2ω2

k )(ω
4
k − p2ω2

k + p0)

ω2
k (p1 − p3ω2

k )
2 + (ω4

k − p2ω2
k + p0)2

+ (q1 − 3q3ω2
k )(q3ω

2
k − q1) − 2q22ω

2
k

(q2ωk)2 + (q1ωk − q3ω3
k )

2

}
.

We derive from (4.3) that

ω2
k

(
p1 − p3ω

2
k

)2 + (
ω4
k − p2ω

2
k + p0

)2 = (q2ωk)
2 + (

q1ωk − q3ω
3
k

)2
.

Hence, it follows that

sgn

{
dReλ

dτ

}

τ=τ
j
k

= sgn

{
4ω6

k + 3ĥ3ω4
k + 2ĥ2ω2

k + ĥ1

(q2ωk)2 + (q1ωk − q3ω3
k )

2

}

= sgn

{
ĥ′(zk)

(q2ωk)2 + (q1ωk − q3ω3
k )

2

}
.

From what has been discussed above, we have the following results.

Theorem 4.1 Assume that βS+ > d4 and α̂(r1 + d1) > rr1 hold, we have

(i) If ĥ3 > 0, and ĥ22−4ĥ1ĥ3 < 0, then the coexistence equilibrium E∗ is locally asymptotically
stable for all τ ≥ 0.

(ii) If ĥ(z) has at least one positive root zk , then all roots of (4.1) have negative real parts for
τ ∈ [0, τ 0k ], and the equilibrium E∗ of system (1.2) is locally asymptotically stable for
τ ∈ [0, τ 0k ].

(iii) If all conditions as stated in (ii) hold true and ĥ′(zk) �= 0, then system (1.2) undergoes a
Hopf bifurcation at E∗ when τ = τ

j
k ( j = 0, 1, . . .)

Now, we are concerned with the global attractiveness of the coexistence equilibrium E∗.
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Fig. 1 The numerical solution of system (1.2) with τ = 0.01, (φ1, φ2, ϕ1, ϕ2) = (0.5, 0.5, 0.5, 0.5)

Theorem 4.2 Assume that βS+ > d4. If (H4) holds, then the coexistence equilibrium
E∗(x∗

1 , x∗
2 , S∗, I ∗) of system (1.2) is globally attractive.

Proof Let (x1(t), x2(t), S(t), I (t)) be any positive solution of system (1.2) with initial conditions
(1.3). System (1.2) can be rewritten as

ẋ1(t) = r

x∗
1

[−x2(t)
(
x1(t) − x∗

1

) + x1(t)
(
x2(t) − x∗

2

)]
,

ẋ2(t) = r1
x∗
2

[−x1(t)
(
x2(t) − x∗

2

) + x2(t)
(
x1(t) − x∗

1

)] + x2(t)
[−a

(
x2(t) − x∗

2

)]

+ a1S∗

1 + mx∗
2
x2(t) − a1x2(t)S(t)

1 + mx2(t)
,

Ṡ(t) = a2x2(t − τ)S(t − τ)

1 + mx2(t − τ)
− d3S(t) − βS(t)I (t),

İ (t) = βS(t)I (t) − d4 I (t). (4.6)

Define

V31(t) = c3

(
x1 − x∗

1 − x∗
1 ln

x1
x∗
1

)
+ x2 − x∗

2 − x∗
2 ln

x2
x∗
2

+ k3

(
S − S∗ − S∗ ln S

S∗

)

+ k3

(
I − I ∗ − I ∗ ln I

I ∗

)
.
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Fig. 2 The numerical solution of system (1.2) with τ = 3, (φ1, φ2, ϕ1, ϕ2) = (0.5, 0.5, 0.5, 0.5)

where c3 = r1x∗
1/(r x∗

2 ), k3 = a1(1+mx∗
2 )/a2. Calculating the derivative of V31(t) along positive

solutions of system (1.2), it follows that

V̇31(t) = c3
x1(t) − x∗

1

x1(t)
ẋ1(t) + x2(t) − x∗

2

x2(t)
ẋ2(t) + k3

S(t) − S∗

S(t)
Ṡ(t) + k3

I (t) − I ∗

I (t)
İ (t)

= − r1
x∗
2

(√
x2(t)

x1(t)

(
x1(t) − x∗

1

) −
√
x1(t)

x2(t)

(
x2(t) − x∗

2

)
)2

− a
(
x2(t) − x∗

2

)2

+ a1S∗

1 + mx∗
2

(
x2(t) − x∗

2

) − a1(1 + mx∗
2 )x2(t)S(t)

1 + mx2(t)

+ a1(1 + mx∗
2 )x2(t − τ)S(t − τ)

1 + mx2(t − τ)
− a1

(
1 + mx∗

2

) S∗

S(t)

x2(t − τ)S(t − τ)

1 + mx2(t − τ)

+ k3d3S
∗ + k3d4 I

∗. (4.7)

Define

V3(t)=V31(t)+a1
(
1 + mx∗

2
) ∫ t

t−τ

[
x2(u)S(u)

1 + mx2(u)
− x∗

2 S
∗

1 + mx∗
2

− x∗
2 S

∗
1 + mx∗

2
ln

(1 + mx∗
2 )x2(u)S(u)

x∗
2 S

∗(1 + mx2(u))

]
du.
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Fig. 3 The numerical solution of system (1.2) with τ = 0.01, (φ1, φ2, ϕ1, ϕ2) = (0.5, 0.5, 0.5, 0.5)

By calculation, we have that

V̇3(t) = − r1
x∗
2

(√
x2(t)

x1(t)

(
x1(t) − x∗

1

) −
√
x1(t)

x2(t)

(
x2(t) − x∗

2

))2

− a
(
x2(t) − x∗

2

)2

+ a1S∗

1 + mx∗
2

(
x2(t) − x∗

2

) − a1
(
1 + mx∗

2

) S∗

S(t)

x2(t − τ)S(t − τ)

1 + mx2(t − τ)

+ a1x
∗
2 S

∗ + a1x
∗
2 S

∗ ln (1 + mx2(t))x2(t − τ)S(t − τ)

x2(t)S(t)(1 + mx2(t − τ))

= − r1
x∗
2

(√
x2(t)

x1(t)

(
x1(t) − x∗

1

) −
√
x1(t)

x2(t)

(
x2(t) − x∗

2

)
)2

− a1x
∗
2 S

∗
[

(1 + mx∗
2 )x2(t − τ)S(t − τ)

x∗
2 S(t)(1 + mx2(t − τ))

− 1

− ln
(1 + mx∗

2 )x2(t − τ)S(t − τ)

x∗
2 S(t)(1 + mx2(t − τ))

]

− a1x
∗
2 S

∗
[
x∗
2 (1 + mx2(t))

x2(t)(1 + mx∗
2 )

− 1 − ln
x∗
2 (1 + mx2(t))

x2(t)(1 + mx∗
2 )

]

− (
x2(t) − x∗

2

)2 [
a − a1S∗

1 + mx∗
2

· 1

x2(t)

]
. (4.8)

Note that the function g(x) = x − 1 − ln x is always non-negative for any x > 0, and g(x) = 0
if and only if x = 1. Hence, if x2(t) >

rr1−d2(r1+d1)
a(r1+d1)

− d3
a2−md3

for t ≥ T, we have −(x2(t) −
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Fig. 4 The numerical solution of system (1.2) with τ = 3, (φ1, φ2, ϕ1, ϕ2) = (0.5, 0.5, 0.5, 0.5)

x∗
2 )2

[
a − a1S∗

1+mx∗
2

1
x2(t)

]
≤ 0 with equality if and only if x2(t) = x∗

2 . This, together with (4.8),

implies that if x2(t) >
rr1−d2(r1+d1)

a(r1+d1)
− d3

a2−md3
for t ≥ T, V̇3(t) ≤ 0 with equality if and only if

x1(t) = x∗
1 , x2(t) = x∗

2 ,
(1+mx∗

2 )x2(t−τ)S(t−τ)

x∗
2 S(t)(1+mx2(t−τ))

= 1. We now look for the invariant subsetM within

the set

	 =
{
(x1, x2, S, I ) : x1 = x∗

1 , x2 = x∗
2 ,

(1 + mx∗
2 )x2(t − τ)S(t − τ)

x∗
2 S(t)(1 + mx2(t − τ))

= 1

}
.

Since x1 = x∗
1 , x2 = x∗

2 onM and consequently, 0 = ẋ2(t) = r1x∗
1 −d2x∗

2 −a(x∗
2 )2 − a1x∗

2
1+mx∗

2
S(t),

which yields S(t) = S∗. It follows from the second equation of system (1.2) that 0 = Ṡ(t) =
a2x∗

2 S
∗

1+mx∗
2

− d3S∗ − βS∗ I (t), which leads to I = I ∗. Hence, the only invariant set M in 	 is

M = {(x∗
1 , x∗

2 , S∗, I ∗)}. Therefore, the global attractiveness of E∗ follows from LaSalle invariant
principle for delay differential systems. This completes the proof. ��

5 Numerical simulations

In this section, we give some examples to illustrate the main results in Sects. 3 and 4.

Example 1 In system (1.2), let r = 0.5, r1 = 0.15, a = 0.1, a1 = 1.5, a2 = 0.5, d1 =
0.2, d2 = 0.2, d3 = 0.25, d4 = 0.3, β = 0.95 and m = 0.01. It is easy to show that rr1 −
d2(r1 + d1) ≈ 0.005, rr1−d2(r1+d1)

a(r1+d1)
− d3

a2−md3
≈ −0.3597, that is rr1 > d2(r1 + d1) and (H2)
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Fig. 5 The numerical solution of system (1.2) with τ = 0.01, (φ1, φ2, ϕ1, ϕ2) = (0.5, 0.5, 0.5, 0.5)

hold true. Hence, system (1.2) has a predator–extinction equilibrium E1(0.2041, 0.1429, 0, 0).
ByTheorem 3.2, we see that E1 is locally asymptotically stable for all τ ≥ 0.Numerical simulation
illustrate the result above (see Figs. 1, 2).

Example 2 In system (1.2), let r = 1.5, r1 = 1, a = 0.8, a1 = 1.5, a2 = 1, d1 = 0.1, d2 =
0.5, d3 = 0.1, d4 = 0.5, β = 0.5 and m = 0.2. It is easy to show that βS+ − d4 ≈
−0.2540, rr1−d2(r1+d1)

a(r1+d1)
− d3

a2−md3
≈ 0.9775, (α + r1 + d1)[α(r1 + d1) − rr1] + a1d3S+

(1+mx+
2 )2

≈
0.2603, g0 − f0 ≈ −0.0698, that is βS+ < d4, g0 < f0, (H1), and (H3) hold true. Hence,
system (1.2) has a disease-free equilibrium E2(0.1391, 0.1020, 0.5320, 0). By Theorem 3.3, we
see that there exists a positive constant τ0 ≈ 0.0556 such that E2 is locally asymptotically stable
if 0 < τ < τ0 and is unstable if τ > τ0. Further, system (1.2) undergoes a Hopf bifurcation at E2

when τ = τ0. An investigation of system (1.2) with the coefficients above can be conducted via a
numerical integration using the standard Matlab algorithm (see Figs. 3, 4).

Example 3 In system (1.2), let r = 3, r1 = 0.3, a = 0.1, a1 = 1, a2 = 2.95, d1 =
0.3, d2 = 0.28, d3 = 0.2, d4 = 0.25, β = 0.95 and m = 0.1. By calculation
we have βS+ − d4 ≈ 0.9104. Hence, system (1.2) has a unique coexistence equilibrium
E∗(54.7174, 10.9435, 0.2632, 16.0152). A direct calculation shows that ĥ3 ≈ 0.9470, ĥ22 −
4ĥ1ĥ4 ≈ −55.1220. By Theorem 4.1, we see that E∗ is locally asymptotically stable for all τ ≥ 0.
Numerical simulation illustrate the result above (see Figs. 5, 6).
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Fig. 6 The numerical solution of system (1.2) with τ = 3, (φ1, φ2, ϕ1, ϕ2) = (0.5, 0.5, 0.5, 0.5)

6 Conclusion

In this paper, we have incorporated a stage structure for the prey and time delay due to the gestation
of the predator into an eco-epidemiologicalmodel. The prey individualswere classified as belonging
either the immature or the mature and it was assumed that the immature prey is not at risk of being
attacked by the predator. This seems reasonable for a number of mammals, where the immature
prey concealed in the mountain cave, are raised by their parents; they do not necessarily go out for
seeking food, the rate they are attacked by the predators can be ignored. By comparison argument,
a priori lower bound of the density of the mature prey population was derived. By analyzing the
corresponding characteristic equations, the local stability of each of feasible equilibria of system
(1.2) has been established, respectively. It has been shown that, under some conditions, the time
delay may destabilize both the disease-free equilibrium and the coexistence equilibrium of the eco-
epidemiological system and cause the population to fluctuate. Bymeans of Lyapunov functions and
LaSalle invariant principle, sufficient conditions were obtained for the global asymptotic stability
of each of feasible equilibria of system (1.2), respectively. By Theorem 4.2, we see that if the prey
population is always abundant enough and the disease transmission coefficient β is sufficiently
large, the coexistence equilibrium is a global attractor of the system (1.2). In this case, the disease
spreading in the predator becomes endemic and the prey, sound predator and the infected predator
coexist. By Theorem 3.4, we see that if the disease transmission coefficient β is sufficiently small
and the prey population is always abundant enough, the disease among the predator population
dies out and in this case, the prey and the sound predator coexist. By Theorem 3.2, we see that
if (H2) holds, that is the carrying capacity of the prey and the conversion rate of the predator are
sufficiently small, and the death rate of the sound predator and the half saturation rate of the predator
are sufficiently large, the prey population persists and the predator population goes to extinction.
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By Theorem 3.1, we see that if rr1 < d2(r1 + d1), then both the prey population and the predator
population go to extinction.
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