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Abstract In this paper, we consider two M/M/1 queues with working vacations and
two policies, m-policy and (m, N )-policy, respectively. The server begins to take the
vacation when the number of customers is below m after a service. The server also
works in a slow speed in the vacation rather that stopingwork completely.We establish
a system with two operation periods, higher speed and lower speed periods. First,
we study pure m-policy where the server continues another vacation if a vacation is
completed and there are less than m customers, otherwise he comes back to regular
work. Another (m, N )-policy is the generalization of m-policy where if a vacation is
completed and there are less than N customers, the server continues another vacation.
Using the quasi birth–death process and matrix-geometric solution method, we give
the distributions for the number of customers and some indices of the system, including
expected sojourn time and state probabilities of the server. Finally, some numerical
examples are presented to verify the validity of the model.

Keywords Working vacation · m-policy · (m, N )-policy · Matrix-geometric
solution · Cost function

1 Introduction

In a service system which is composed of the service agents and many potential
customers, the queue is very common and it controls and allocates the service ability
for customers. When the service ability of the agent is uncomfortable with the number
of customers, such as too idle or too tense, adjustment may occur and the service agent
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118 J. Li, B. Cheng

should change its service rate or suggest other service scheme to increase its efficiency
of the service, for example, establishing the high–low rate transferring policy, or some
gates/thresholds to control the entrance of customers.

Working vacation policy is a high–low rate transferring policy and also a class of
semi-vacation policy that was introduced by Servi and Finn [7] in 2002, where a cus-
tomer is served at a lower rate during a vacation period. Such a vacation is different
from the classical vacation queueing models. In the classical vacation queueing mod-
els, the server doesn’t take the original work and possibly deals with the other tasks.
Such policy may make the loss or dissatisfaction of the customers. For the working
vacation policy, the server also can work in the lower rate. So, the working vacation
is more reasonable and general than the classical vacation.

For working vacation models, Servi and Finn [7] studied an M/M/1 queue with
working vacations, and obtained the probability generating function of the queue
length and the LST of the waiting time, and applied results to performance analysis
of gateway router in fiber communication networks. Subsequently, Kim et al.[3], Wu
and Takagi [11] generalized results in [7] to an M/G/1 queue with working vaca-
tions. Baba [1] extended this study to a GI/M/1 queue with working vacation by the
matrix-analysis method. Liu et al. [8] obtain the concise expressions for the queue
length and waiting time for the M/M/1 queue with multiple working vacation and
verify the stochastic decomposition structures of the queue length and waiting time.
Li and Tian [4,5] obtained the expressions for the queue length and waiting time
for two types of GI/Geo/1 queue with working vacations and verified the stochastic
decomposition structures of the queue length and waiting time. Tian and Zhang [10],
Zhang et al.[12] gave the threshold policy analysis for multi-server queue and M/G/1
queue with general vacations. For general queueing analysis, including the vacation
policy, the readers are recommended to Gross and Harris [2] and Tian and Zhang
[9].

In recent papers on the working vacations, the authors only concentrate on the
vacation queues with exhaustive service and the server only takes the vacation when
the system is empty. In this paper, we will consider the M/M/1 queue with the thresh-
old policy and working vacations. Such model is different from the other models
with working vacations. The server begins or ends to take the vacation at the cer-
tain point, i.e.the threshold. Such policy is also called by the non-exhaustive service.
Meanwhile, the server also works in the vacation period at the lower rate rather
than stoping working completely. The motivation for studying this kind of mod-
els can be presented both in practical aspect and theoretical aspect. Firstly, such
model can be seen as the service system with high and low speed periods con-
trolled by thresholds. When the number of customers or signals under one certain
threshold in the system, the server can work slowly. Such policy will enable the cost
of system to reduce. Such a model also is more practical than the classical thresh-
old queue with vacation where the server can not work during the vacation period.
Many practical problems present this character. In banks, when the number of cus-
tomers or work is under some value, some counters will be closed to do other work.
Under this case, the bank needs to consider what will happen based on the perfor-
mance indices of the bank, such as the queue length or waiting time. So this kind
of models has important practical background. In theoretical view, this kind of mod-
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els will be more general than those M/M/1 queues considered before and the clas-
sical threshold queues with vacations are also the special examples of this kind of
models.

The rest of this paper is organized as follows. In Sect. 2, we study the M/M/1 queue
with m-policy, where the quasi birth and death process, the distribution of the queue
length is presented. Section. 2.3 turns to the M/M/1 queue with (m, N )-policy. In
Sect. 4, some numerical examples are presented to verify the validity of the model
and the cost function is also established in M/M/1 queue with m-policy. Section. 5
concludes the results.

2 M/M/1 queue with m-policy

2.1 Model formulation and quasi birth and death process (QBD)

Consider a classical M/M/1 queue with an arrival rate λ and service rate μb. At the
instant of a service completion, the server begins a vacation of random length at
the instant when the queue length is below m and vacation duration V follows an
exponential distribution with parameter θ . During a vacation, the original customers
or arriving customers in a vacation period can be served at a mean rate of μv . When a
vacation ends, if the number of customers in the queue is less thanm, another vacation
is taken; Otherwise, the server switches service rate from μv to μb. This service
discipline is a m-threshold policy with working vacation. Evidently, this model is
a non-exhaustive service queue and the server can begin to take the vacation when
there are customers in the system. Many service systems are the special cases of
this model and when m = 1, this model becomes the general M/M/1 queue with
multiple working vacations which was considered by Servi and Finn [7] and Liu et al.
[8].

We assume that inter-arrival times, service times, and working vacation times are
mutually independent. In addition, the service discipline is first in first out(FIFO).

Let Q1(t) be the number of customers in the system at time t and let

J1(t) =
{
0, the system is in a working vacation period at time t,
1, the system is in a regular busy period at time t.

then {Q1(t), J1(t)} is a QBD with the state space

� =
{
(k, 0) : 0 ≤ k ≤ m − 1

} ⋃ {
(k, j) : k ≥ m, j = 0, 1

}
.

Evidently, when the number of customers is less than m, the server only stays in
vacation period.

Using the lexicographical sequence for the states, the infinitesimal generator can
be written as
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Q1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−λ C0
B1 A1 C1

. . .
. . .

. . .

Bm−1 Am−1 Cm−1
Bm A C

B A C
. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where

Bk = μv, 1 ≤ k ≤ m − 1, Bm = (μv, μb)
T ;

Ck = λ, 0 ≤ k ≤ m − 2, Cm−1 = (λ, 0); Ak = −(λ + μv), 1 ≤ k ≤ m − 1;
C =

[
λ 0
0 λ

]
, B =

[
μv 0
0 μb

]
, A =

[−(λ + θ + μv) θ

0 −(λ + μb)

]
.

To analyze this QBD process, it is necessary to solve for the minimal non-negative
solution of the matrix quadratic equation

R 2B + RA + C = 0. (1)

and this solution is called the rate matrix and denoted by R. Obviously, we have

Lemma 1 If ρ = λ(μb)
−1 < 1, the matrix equation (1) has the minimal non-negative

solution

R =
⎡
⎣ r

θ r

μb(1 − r)
0 ρ

⎤
⎦ , (2)

where

r = 1

2μv

(
λ + θ + μv −

√
(λ + θ + μv)

2 − 4λμv

)

and 0 < r < 1.

Proof Because the matrices A, B, C of (1) are all upper triangular, we can assume
that R has the same structure as

R =
[
r11 r12
0 r22

]
.

Substituting R2 and R into (1) gives the following set of equations:

⎧⎪⎨
⎪⎩

μvr211 − (λ + θ + μv) r11 + λ = 0,

μbr222 − (λ + μb) r22 + λ = 0,

μb r12(r11 + r22) + θ r11 − (λ + μb)r12 = 0.

(3)
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To obtain the minimal non-negative solution of (1), taking r22 = ρ (the other root is
r22 = 1) in the second equation and r11 = r (the other root is greater than 1) in the first
equation of (3). Using the elementary method (discriminant of quadratic equation),
we can prove that 0 < r < 1. Substituting r and ρ into the last equation of (3), we get
the expression for r12. Thus, we can have the results in Lemma 1.

Lemma 2 r satisfies the following relationship

λ + θ + μv(1 − r) = μv + θ

1 − r
= λ

r
. (4)

Proof From the Lemma 1, r satisfies the first equation of (3). Dividing two ends of
this equation by r , we give

rμv − (λ + θ + μv) + λ

r
= 0.

Hence, we have

λ + θ + μv(1 − r) = λ

r
.

Transferringλ from left to right of the above relation, dividing two ends of this equation
by 1 − r , we get the other equation of (4)

μv + θ

1 − r
= λ

r
.

Theorem 1 TheQBD process {Q1(t), J1(t)} is positive recurrent if and only if ρ < 1.

Proof BasedonTheorem3.1.1 ofNeuts [6], theQBDprocess {Q1(t), J1(t)} is positive
recurrent if and only if the spectral radius SP (R) of the rate matrix R is less than 1,
and set of equations

(x00, x10, · · · , xm−1,0, xm0, xm1)B[R] = 0 (5)

has positive solution, where

B[R] =

⎡
⎢⎢⎢⎢⎢⎣

−λ C0
B1 A1 C1

. . .
. . .

. . .

Bm−1 Am−1 Cm−1
Bm RB + A

⎤
⎥⎥⎥⎥⎥⎦

,

where

RB + A =
[

−λ

r

λ

r
− μv

0 −μb

]
.
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With (4), we can easily verify B[R] is an infinitesimal generator. Substituting B[R]
into the above relation, we obtain the set of equations

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−λx00 + μvx10 = 0;
λxk−1,0 − (λ + μv)xk0 + μvxk+1,0 = 0, 1 ≤ k ≤ m − 2;
λxm−2,0 − (λ + μv)xm−1,0 + μvxm,0 + μbxm1 = 0, k = m − 1;
λxm−1,0 − λ

r
xm0 = 0;(

λ

r
− μv

)
xm0 − μbxm1 = 0.

(6)

From the first and second equations in (6), we easily get

xk0 = x00

(
λ

μv

)k

, 0 ≤ k ≤ m − 1.

Then, from the other equations and (4),

⎧⎪⎪⎨
⎪⎪⎩
xm0 = r xm−1,0 = x00r

(
λ

μv

)m−1

;

xm1 = 1

μb

(
λ

r
− μv

)
xm0 = x00

(
λ

μv

)m−1
θr

μb(1 − r)
,

(7)

where x00 is a random real number, so Eq. (5) has positive solution. Thus, the QBD
process {Q1(t), J1(t)} is positive recurrent if and only if SP (R) = max(r, ρ) < 1.

2.2 Queue length distribution

If ρ < 1, let (Q1, J1) be the stationary limit of the QBD process {Q1(t), J1(t)}.
Introduce

π k = π k0, 0 ≤ k ≤ m − 1; πk = (πk0, πk1), k ≥ m
π k j = P{Q = k, J = j} = lim

t→∞ P{Q(t) = k, J (t) = j}, (k, j) ∈ �.

Theorem 2 If ρ < 1, the stationary probability distribution of (Q1, J1) is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

πk0 = K

(
λ

μv

)k

, 0 ≤ k ≤ m − 1,

πk0 = K

(
λ

μv

)m−1

rk−m+1, k ≥ m;

πk1 = K

(
λ

μv

)m−1
θr

μb(1 − r)

k−m∑
j=0

r jρk−m− j , k ≥ m,

(8)
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where

K =
[
m−1∑
k=0

(
λ

μv

)k

+
(

λ

μv

)m−1 r

1 − r
+

(
λ

μv

)m−1
θr

μb(1 − r)

1

1 − r

1

1 − ρ

]−1

.

Proof With the matrix-geometric solution method(see in [8]), we have

πk = (πk0, πk1) = (πm0, πm1)R
k−m, k ≥ m. (9)

and (π00, π10, . . . , πm−1,0, πm0, πm1) satisfies the set of equations

(π00, π10, . . . , πm−1,0, πm0, πm1)B[R] = 0. (10)

We have obtained the expressions for πk0, 0 ≤ k ≤ m and πm1 in Theorem 1. Thus,
for k ≥ m, note that

Rk =
⎡
⎢⎣ rk

θ r

μb(1 − r)

k−1∑
j=0

r jρk−1− j

0 ρk

⎤
⎥⎦ , k ≥ 1.

With (7), substituting (πm0, πm1) and Rk−m into (9), we obtain (8). Finally, the
constant factor K can be determined by the normalization condition.

Further, we can obtain the distribution for the number of customers Q1

P{Q1 = k} = πk0 = K

(
λ

μv

)k

, 0 ≤ k ≤ m − 1;

P{Q1 = k} = πk0 + πk1 = K

(
λ

μv

)m−1[
rk−m+1 + θr

μb(1 − r)

k−m∑
j=0

r jρk−m− j
]
,

k ≥ m.

After some computation, the generating function of Q1 is as follows

Q1(z) = K
1−(ρ0z)m

1−ρ0z
+Kρ0

m−1zm
[

r

1−r z
+ θr

μb(1−r)

1

1−r z

1

1 − ρz

]
, ρ0= λ

μv

Thus,

E(Q1) = K
1 − ρm

0

1 − ρ0

[
ρ0

1 − ρ0
− m

ρm
0

1 − ρm
0

]
+ Kρm−1

0
r

1 − r

[
m + r

1 − r

]

+ Kρ0
θr

μb(1 − r)

1

1 − r

1

1 − ρ

[
m + r

1 − r
+ ρ

1 − ρ

]
.
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Meanwhile, we can easily obtain the state probabilities of a server in steady-state.

Pv = P{J1 = 0} =
∞∑
k=0

πk0 = K

[
1 − ρm

0

1 − ρ0
+ ρm−1

0
r

1 − r

]
,

Pb = P{J1 = 1} =
∞∑

k=m

πk1 = Kρm−1
0

θr

μb(1 − r)

1

1 − r

1

1 − ρ
.

(11)

Remark 1 Many models studied before are the special examples of the model we
consider above.

When m = 1, i.e., the server only begins the vacation when the system becomes
empty, we can obtain the results of M/M/1 queue with working vacations (see Liu
et al. [8]).

When μv = 0, i.e., the server does’t take service during the vacation period, our
model becomes the classical M/M/1 queue with vacations and m-policy. Meanwhile,
if θ = 0, μv = μb, the model becomes the classical M/M/1 queue without vacation.

2.3 Conditional queue length and sojourn time

Note the expressions for Q(m)
1 and S(m) below:

Q(m)
1 = {Q1 − m|Q1 ≥ m, J = 1};
Sbm = {S|Q1 ≥ m, J = 1}.

Q(m)
1 represents the number of customers in the system except for m customers, and

Sbm represents the sojourn time when the server is in the normal working level.
Firstly, we discuss the conditional number of waiting customers.

Theorem 3 If ρ < 1 and μb > μv , the conditional stationary queue length Q(m)
1

can be decomposed into the sum of three independent random variables: Q(m)
1 =

Q0+Q1d , where Q0 is the stationary queue length of a classicalM/M/1 queue without
vacation, and follows a geometric distribution with parameter 1−ρ; Additional queue
length Q1d follows geometric distribution with parameter 1 − r .

Proof Conditional probability that the server is busy and there are more than or equal
to m customers in the system

P{Q1 ≥ m, J = 1} = P{J = 1} =
∞∑

k=m

πk1 = Kρm−1
0

θr

μb(1 − r)

1

1 − r

1

1 − ρ
.

So, for k ≥ 0
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P{Q(m)
1 = k} = P{Q1 = k + m|Q1 ≥ m, J = 1} = πk+m,1

P{Q ≥ m, J = 1}
= (1 − ρ)(1 − r)

∑k
j=0 r

jρk− j , k ≥ 0.

Thus, we easily obtain the probability generating function of Q(m)
1 as follows

Q(m)
1 (z) =

∞∑
k=0

zk P{Q(m)
1 = k} = 1 − ρ

1 − ρz

1 − r

1 − r z
= Q0(z)Q1d(z).

With the conditional stochastic decomposition structure inTheorem3,we can easily
get the expected number of customers when the server is in the normal busy period.

E(Q(m)
1 ) = ρ

1 − ρ
+ E(Q1d) = ρ

1 − ρ
+ r

1 − r
.

Now, we analyze the conditional sojourn time of each customer when the server
is busy and there are more than or equal to m customers in the system as we denote
above.

Lemma 3 (i) The LST of the conditional sojourn timewhen the server is busy is given
in

S∗b
m (s) =

(
1 − s

λ

)m
μ − λ

μ − λ + s

λ(1 − r)

λ(1 − r) + rs
(12)

(ii) The conditional expected sojourn time when the server is busy can be expressed
by

E(Sbm) = E(Q(m)
1 ) + m

λ
. (13)

Proof From the memoryless of exponential distribution and the Little-formula, if a
customer departs when the server is busy and there are more than or equal to m
customers in the system, the remaining customers should be those who arrive during
his sojourn time, that means

S∗b
m (λ(1 − z)) = zmQ(m)

1 (z)

then, we have

S∗b
m (s) =

(
1 − s

λ

)m

Q(m)
1

(
1 − s

λ

)
=

(
1 − s

λ

)m
μ − λ

μ − λ + s

λ(1 − r)

λ(1 − r) + rs

Further, from the expression for Q(m)
1 , the relation that Q(m)

1 +m = {Q1|Q1 ≥ m, J =
1} exists, then from the Little law, the conditional expected sojourn time satisfies

E(Q(m)
1 ) + m = λS∗b

m .

So the conditional expected sojourn time is given as Eq. (13).
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126 J. Li, B. Cheng

Similarly, denote Qv
1 and S

v
m as the conditional queue length and sojourn time when

the server is in the vacation period, i.e.,

Qv
1 = {Q1|J = 0}; Sv

m = {S|J = 0}.

Firstly, we can compute the probability generating function of Qv
1 as follows

Qv
1(z) =

∞∑
k=0

zk P{Qv
1 = k} =

∞∑
k=0

zk
πk0

P{J = 0} =
1 − (ρ0z)m

1 − ρ0z
+ (ρ0z)m−1 r z

1 − r z
1 − ρm

0

1 − ρ0
+ ρm−1

0
r

1 − r

Then, the expected number of customers when the server is in the vacation period is
given by

E(Qv
1) =

1 − ρm
0

1 − ρ0

ρ0

1 − ρ0
+ ρm−1

0
r

1 − r

[
m + r

1 − r

]

1 − ρm
0

1 − ρ0
+ ρm−1

0
r

1 − r

.

Lemma 4 (i) The LST of the conditional sojourn time under the vacation period is
given in

S∗v
m (s) =

1 −
(

ρ0 − s

μv

)m

1 −
(

ρ0 − s

μv

) +
(

ρ0 − s

μv

)m−1 r(λ − s)

λ − r(λ − s)

1 − ρm
0

1 − ρ0
+ ρm−1

0
r

1 − r

(14)

(ii) The conditional expected sojourn time under the vacation period can be expressed
by

E(Sv
m) = E(Qv

1)

λ
. (15)

Proof From the memoryless of exponential distribution and the Little-formula, if a
customer departswhen the server is in vacation period, the remaining customers should
be those who arrive during his sojourn time, which means

S∗v
m (λ(1 − z)) = Qv

1(z)

then, we have

S∗v
m (s) = Qv

1

(
1 − s

λ

)
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from which, the Eq. (14) is obtained. Further, the conditional expected sojourn time
satisfies

E(Qv
1) = λE(Sv

m).

Then the conditional expected sojourn time is given as Eq. (15).

Theorem 4 For an arbitrary customer who arrives to the system, the Laplace trans-
form and mean of his sojourn time should be

S∗
m(s) = PvSm∗v(s) + PbS

∗b
m (s) = Q1

(
1 − s

λ

)
,

E(Sm) = PvE(Sv
m) + PbE(Sbm) = E(Q1)/λ,

(16)

where S∗v
m (s), S∗b

m (s), E(Sv
m), E(Sbm) are given in Eqs. (12)–(15), respectively.

3 M/M/1 queue with (m, N)-policy

3.1 QBD model

Consider a classicalM/M/1 queuewith arrival rate λ and service rateμb (seeGross and
Harris [3]). After a service, the server begins a vacation of random length at the instant
when the queue length is below m and vacation duration V follows an exponential
distribution with parameter θ . During a vacation, the original customers or arriving
customers in a vacation period can be served at a mean rate of μv . When a vacation
ends, if the number of customers in the queue is less than N , another vacation is
taken; Otherwise, the server switches service rate from μv to μb, and a regular busy
period starts. This service discipline is a two-threshold policy with working vacation.
Evidently, this model is an non-exhaustive service queue and the server can begin to
take the vacation when there are customers in system. Many service systems are the
special cases of this model and when m = N , this model becomes the M/M/1 queue
with m-policy in Sect. 2.

Let Q2(t) be the number of customers in system at time t and let

J2(t) =
{
0, the system is in a working vacation period at time t,
1, the system is in a regular busy period at time t.

then {Q2(t), J2(t)} is a QBD with the state space

� =
{
(k, 0) : 0 ≤ k ≤ m − 1

} ⋃ {
(k, j) : k ≥ m, j = 0, 1

}
.
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128 J. Li, B. Cheng

Using the lexicographical sequence for the states, the infinitesimal generator can
be written as

Q2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−λ C0
B1 A1 C1

. . .
. . .

. . .

Bm−1 Am−1 Cm−1
Bm Am C
. . .

. . .
. . .

BN−1 AN−1 C
BN A C

B A C
. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where

Bk = μv, 1 ≤ k ≤ m − 1, Bm = (μv, μb)
T ;

Ck = λ, 0 ≤ k ≤ m − 2,Cm−1 = (λ, 0); Ak = −(λ + μv), 1 ≤ k ≤ m − 1;
Bk =

[
μv 0
0 μb

]
,m + 1 ≤ k ≤ N − 1;

Ak =
[−(λ + μv) 0

0 −(λ + μb)

]
,m ≤ k ≤ N − 1.

C =
[

λ 0
0 λ

]
, B =

[
μv 0
0 μb

]
A =

[−(λ + θ + μv) θ

0 −(λ + μb)

]
.

To analyze this QBD process, it is necessary to solve for the minimal non-negative
solution of the matrix quadratic equation

R 2B + RA + C = 0. (17)

Because that B, A and C , R has the same expression (2) with that in M/M/1 queue
with m-policy, we have

Theorem 5 TheQBD process {Q2(t), J2(t)} is positive recurrent if and only if ρ < 1.

Proof Based on the theorem 3.1.1 of Neuts [6], the QBD process {Q2(t), J2(t)} is
positive recurrent if and only if the spectral radius SP (R) of the rate matrix R is less
than 1, and set of equations

(x0, x10, . . . , xm−1,0, xm0, xm1, . . . , xN0, xN1)B[R] = 0 (18)

has positive solution, where
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B[R] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−λ C0
B1 A1 C1

. . .
. . .

. . .

Bm−1 Am−1 Cm−1
Bm Am C
. . .

. . .
. . .

BN−1 AN−1 C
BN RB + A

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

RB + A =
[

−λ

r

λ

r
− μv

0 −μb

]
.

With (4), we can easily verify B[R] is an infinitesimal generator, that (18) has positive
solution. Thus, the QBD process {Q2(t), J2(t)} is positive recurrent if and only if
SP(R) = max(r, ρ) < 1.

3.2 Queue length distribution

If ρ < 1, let (Q2, J2) be the stationary limit of the QBD process {Q2(t), J2(t)}. Let

πk = π k0, 0 ≤ k ≤ m − 1;πk = (πk0, πk1), k ≥ m

πk j = P{Qv = k, J = j} = lim
t→∞ P{Qv(t) = k, J (t) = j}, (k, j) ∈ �.

For convenience, let

ψ(k) = 1 + (1 − r)
N−1−k∑
j=1

(μv

λ

) j
, 1 ≤ k ≤ N − 1;

ψ(N ) = r.

(19)

Theorem 6 If ρ < 1, the stationary probability distribution of (Q2, J2) is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

πk0 = K (
λ

μv

)k, 0 ≤ k ≤ m − 1,

πk0 = K
ψ(k)

ψ(m − 1)

(
λ

μv

)m−1

, m ≤ k ≤ N ;
πk0 = KβN0rk−N , k ≥ N ;
πk1 = K

1

ψ(m − 1)

θr

μb(1 − r)

(
λ

μv

)m−1 1 − ρk−m+1

1 − ρ
, m ≤ k ≤ N ;

πk1 = KβN0
θr

μb(1 − r)

k−N−1∑
j=0

r jρk−N−1− j + KβN1ρ
k−N , k ≥ N + 1.

(20)
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where

βN0 = r

ψ(m − 1)

(
λ

μv

)m−1

;

βN1 = 1

ψ(m − 1)

θr

μb(1 − r)

(
λ

μv

)m−1 1 − ρN−m+1

1 − ρ
.

And, K can be achieved by the normalization condition.

Proof With the matrix-geometric solution method, we have

πk = (πk0, πk1) = (πN0, πN1)R
k−N , k ≥ N . (21)

and (π00, π10, . . . , πm−1,0, πm0, πm1, . . . , πN0, πN1) satisfies the set of equations

(π00, π10, . . . , πm−1,0, πm0, πm1, . . . , πN0, πN1)B[R] = 0 (22)

Substituting B[R] into the above relation, we obtain the set of equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−λπ00 + μvπ10 = 0,
λπk−1,0 − (λ + μv)πk0 + μvπk+1,0 = 0, 1 ≤ k ≤ m − 2;
λπm−2,0 − (λ + μv)πm−1,0 + μvπm,0 + μbπm1 = 0, k = m − 1;
−(λ + μb)πm1 + μvπm+1,1 = 0, k = m;
λπk−1,1 − (λ + μb)πk1 + μbπk+1,1 = 0, m + 1 ≤ k ≤ N − 1;
λπk−1,0 − (λ + μv)πk0 + μvπk+1,0 = 0, m ≤ k ≤ N − 1;
λπN−1,0 − λ

r
πN0 = 0;

λπN−1,1 + (
λ

r
− μv)πN0 − μbπN1 = 0.

(23)

Assume that every equation in (23) can be expressed by (23–1) to (23–8), respectively.
Taking π00 = K , from (23–1) to (23–2), we get

πk0 = K

(
λ

μv

)k

, 1 ≤ k ≤ m − 1

from (23–6),

πk0 =
k−m∑
j=0

(
λ

μv

)k

πm0 −
k−m∑
j=1

(
λ

μv

)k

πm−1,0; m ≤ k ≤ N ;

and from (23–7) and the above equation, we get
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πm0 =
1 + (1 − r)

∑N−m−1
j=1

(
μv

λ

) j

1 + (1 − r)
∑N−m

j=1

(
μv

λ

) j
πm−1,0 = ψ(m)

ψ(m − 1)
πm−1,0,

πk0 =
1 + (1 − r)

∑N−k−1
j=1

(
μv

λ

) j

1 + (1 − r)
∑N−m

j=1

(
μv

λ

) j
πm−1,0 = ψ(k)

ψ(m − 1)
πm−1,0; m ≤ k ≤ N

(24)
From (23–4), (23–5) and (23–8), we can verify step by step

πm1 = θr

μb(1 − r)

1

ψ(m − 1)
πm−1,0,

πk1 =
k−m∑
k=0

(
λ

μb

)k
θr

μb(1 − r)

1

ψ(m − 1)
πm−1,0, m ≤ k ≤ N ;

(25)

Substituting πm−1,0 and we can get the results for 1 ≤ k ≤ N .
For k ≥ N , note that

Rk =
⎡
⎢⎣ rk

θ r

μb(1 − r)

k−1∑
j=0

r jρk−1− j

0 ρk

⎤
⎥⎦ , k ≥ 1.

Substituting (πN0, πN1) and Rk−N into (21) , then with (23) and (24), we obtain
(20). Finally, the constant factor K can be determined by the normalization condition.

Further, we can obtain the distribution of the number of customers Q2:

P{Q2 = k} = πk0 = K

(
λ

μv

)k

, 0 ≤ k ≤ m − 1;

P{Q2 = k} = πk0 + πk1 = K
1

ψ(m − 1)

(
λ

μv

)m−1

×
[
ψ(k) + θr

μb(1 − r)

1 − ρk−m+1

1 − ρ

]
,

m ≤ k ≤ N − 1;
P{Q2 = k} = πk0 + πk1

= K

[
βN0r

k−N + βN0
θr

μb(1 − r)

k−N−1∑
j=0

r jρk−N−1− j + βN1ρ
k−N

]
,

k ≥ N .
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Meanwhile, we can easily obtain the state probabilities of a server in steady-state.

P{J2 = 0} =
∞∑
k=0

πk0

= K

[
m−1∑
k=0

(
λ

μv

)k

+
N−1∑
k=m

ψ(k)

ψ(m − 1)

(
λ

μv

)m−1

+
+∞∑
k=N

βN0r
k−N

]

= K

⎡
⎢⎢⎣
1 −

(
λ

μv

)m

1 − λ

μv

+ 1

ψ(m − 1)

(
λ

μv

)m−1 N−1∑
k=m

ψ(k) + βN0

1 − r

⎤
⎥⎥⎦

P{J2 = 1} =
∞∑

k=m

πk1 = K
1

ψ(m − 1)

(
λ

μv

)m−1
θr

μb(1 − r)

N∑
k=m

1 − ρk−m+1

1 − ρ

+ K
+∞∑

k=N+1

(
βN0

θr

μb(1 − r)

k−N−1∑
j=0

r jρk−N−1− j + βN1ρ
k−N

)

= K
1

ψ(m − 1)

(
λ

μv

)m−1
θr

μb(1 − r)

(N − m)(1 − ρ) − ρ(1 − ρN−m)

1 − ρ2

+ K

[
βN0

θr

μb(1 − r)

1

1 − r

1

1 − ρ
+ βN1

ρ

1 − ρ

]
.

(26)

3.3 Conditional queue length and sojourn time

Now, we give conditional stochastic decomposition structures of the stationary length
of waiting customers when the server is busy and there are more than or equal to N
customers in the system, denoted by QN

2 .
We can have the expression for QN

2 below

QN
2 = {Q2 − N |Q2 ≥ N , J = 1};

Firstly, we discuss the conditional number of waiting customers.

Theorem 7 If ρ < 1 and μb > μv , the conditional stationary queue length QN
2 can

be decomposed into the sum of two independent random variables: QN
2 = Q0 + Q2d ,

where Q0 is the stationary queue length of a classical M/M/1 queue without vacation,
follows a geometric distribution with parameter 1 − ρ; Additional queue length Q2d
has a modified geometric distribution

P{Q2d = 0} = βN1

δ
,

P{Q2d = k} =
(
1 − βN1

δ

)
(1 − r)rk, k ≥ 1.

(27)
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where

δ = βN1 + βN0
θr

μb(1 − r)2
.

Proof Conditional probability that the server is busy and there are more than or equal
to N customers in the system

P{Q2 ≥ N , J = 1} =
∞∑

k=N

πk1

= K

⎡
⎣βN0

θr

μb(1 − r)

+∞∑
k=N+1

k−N−1∑
j=0

r jρk−N−1− jβN1

+∞∑
k=N

ρk−N

⎤
⎦

= K

[
βN1

1

1 − ρ
+ βN0

θr

μb(1 − r)2
1

1 − ρ

]
= K

1

1 − ρ
δ.

So, for k ≥ 0

P{QN
2 = k} = P{Q = k + N |Q ≥ N , J = 1} = πk+N ,1

P{Q2 ≥ N , J = 1}

= 1 − ρ

δ

[
βN1ρ

k + βN0
θr

μb(1 − r)

k−1∑
j=0

r jρk−1− j
]

And, the probability generating function of QN is as follows

QN
2 (z) =

∞∑
k=0

zk P{QN
2 = k}

= 1 − ρ

δ

∞∑
k=0

zk

⎡
⎣βN1ρ

k + βN0
θr

μb(1 − r)

k−1∑
j=0

r jρk−1− j

⎤
⎦

= 1 − ρ

δ

[
βN1

1

1 − ρz
+ βN0

θ r

μb(1 − r)

z

1 − r z

1

1 − ρz

]

= 1 − ρ

1 − ρz

1

δ

[
βN1 + βN0

θ r

μb(1 − r)2
(1 − r)z

1 − r z

]

= 1 − ρ

1 − ρz
Qd(z) = Q0(z)Q2d(z).

From the equation Q2d(z), we can get the result.
Equation (27) indicates that the additional delay Q2d can bewritten as themixture of

two randomvariables:Q2d = q0X0+q1X1,whereq0 = βN1

δ
, q1 = βN0

δ

θ r

μb(1 − r)2
,

and X0 ≡ 0, X1 follows a geometric distribution with parameter (1 − r) on the set
{1, 2, . . .}.
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With the conditional stochastic decomposition structure inTheorem7,we can easily
get means

E(Q2d) = βN0

δ

θ r

μb(1 − r)3
,

E(QN
2 ) = ρ

1 − ρ
+ E(Q2d) = ρ

1 − ρ
+ βN0

δ

θ r

μb(1 − r)3
.

Denote the conditional sojourn time by E(SN2 ), we have

E(SN2 ) = E(QN
1 ) + N

λ
.

Similar to analysis in Sect. 3, the LSTs of the conditional sojourn times when the
server is busy and vacation can be computed by

S∗b
mN (s) =

∞∑
k=m

πk1

P{J = 1}
(
1 − s

λ

)k

; S∗v
mN (s) =

∞∑
k=0

πk0

P{J = 0}
(
1 − s

λ

)k

.

The LST of the sojourn time of an arbitrary customer can be concluded that

S∗
mN (s) = P{J = 1}S∗b

mN (s) + P{J = 0}S∗v
mN (s) =

∞∑
k=0

P{Q2 = k}
(
1 − s

λ

)k

,

4 Performance analysis

In the above analysis, we obtain some performance measures, such as the mean queue
length, server’s state probability and conditional waiting time in the steady state. The
working vacation policy enables the system to operate flexibly and the queue length
and waiting time may decrease. Thus, our model should be reasonable to analyze
the practical problems. For example, consider an ATM networks, where cell arrivals
in a switched virtual channel(SVC) form a poisson process with parameter λ, cell
transmission time is an exponential distributed random variable with rate μb. When
there are less than certain value m cells, we set a period of working vacation, during
which arriving cells can be transmitted at a lower rate μv(μv < μb) immediately
in order to save the operating cost. The policy of working vacation takes over cell
transmission and save switching cost together, therefore, ourmodel is fitter for practical
situation than others.

In Table 1, in a SVC, some special performance measures are presented when
ρ = 0.67 and θ = 0.25 in two cases, where E(Q11)(E(Q12)), P1{J1 = 1}(P2{J1 =
1}), E(S1)(E(S2)) represent the mean number of cells, the state probability of the
SVC in the normal period and the processing time with the lower transmission rate
μv = 0.25(μv = 0.5), respectively. Evidently, with the increase of m, the state
probability of the SVC in the normal period decreases, but the expected mean number
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Table 1 Numerical results when ρ = 0.67 and θ = 0.25

m E(Q11) P1{J1 = 1} E(S1) E(Q12) P2{J1 = 1} E(S2)

1 2.8054 0.5746 8.0334 2.1930 0.4824 6.9649

2 2.9115 0.4397 8.8435 2.2101 0.3339 7.5774

3 2.8930 0.3252 8.9685 2.1961 0.2284 7.5961

4 2.7996 0.2339 8.6634 2.1685 0.1550 7.3265

5 2.6733 0.1646 8.1471 2.1377 0.1046 6.9508

6 2.5427 0.1139 7.5727 2.1086 0.0703 6.5672

7 2.4237 0.0779 7.0299 2.0836 0.0471 6.2222

8 2.3231 0.0529 6.5603 2.0632 0.0315 5.9326
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Fig. 1 The Curve of expected queue length with the change of μv

and processing time of cells may not have the decreasing/increasing property. With
the increase of the value ofm, the expected mean number and processing time of cells
may increase first, when m increases to one value, the the expected mean number or
processing time of cells begins to decrease. This may be caused by the fact that the
SVC also can provide low transmission below m level. When the threshold value m
is small(m > 1), the transfers of two periods should be more frequent to induce more
crowd of the cells than that in no threshold case(m = 1). But when the threshold is
increased to one proper value(m > 1), more cells will be transmitted by the slow rate
during the vacation period and certainly the expected mean number and processing
time of cells will also decrease. This also demonstrates that the connection of the
threshold policy and working vacation will increase the efficiency of the system.

For the model, the different systems may have the different parameters in the prac-
tical problems. Certainly, the change of parameters, such as the lower service rate
and vacation rate in the system, also may influence the performance measures in the
model. So, we present numerical examples in some situations to explain that ourmodel
represents some practical problems reasonably well.

According to the expression for E(Q1), we show the effect of μv on the queue
length when two parameters of the system are fixed in two situations (see Fig. 1).
Evidently, along with the increase of the μv , i.e., the service rate in the vacation
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Fig. 2 The Curve of expected queue length with the change of θ

period, the number of the customers in steady state decreases. And, we also find that
the vacation rate and arrival rate have small and large effect on the queue length,
respectively. Meanwhile, we only show the trend of the certain range of μv , and if the
value ofμv is too small or approachesμb, it is not worth to take service in the vacation
period. Meanwhile, with the increase of θ , the expected queue length also decreases
(see Fig. 2). Such change trends are consistent with the practical situations which can
be simulated by the model we consider.

In this model, we set a threshold m and N , and under the thresholds, the server
will work at the lower rate μv . Thus, the system is a model with two service periods:
the higher speed and lower speed periods. Such policy will decrease the service cost,
but with the lower service rate, the waiting time and the queue length will increase
to make the cost of system rise correspondingly. Thus, we must consider the vacation
service rate to minimize the system cost.

The cost of the system is considered. Assume cw represent the unit time cost of
every waiting customer, and c1 and c2 are the service costs every unit time during the
normal working level and vacation period, respectively. Thus, we can establish the
cost function Z(m, μv) per time:

Min : Z(m, μv) = cwE(Q1) + c1μb P{J1 = 1} + c2μvP{J1 = 0}

where E(Q1), P{J1 = 1} and P{J1 = 0} have been obtained in sections above.
The optimal m∗ and μ∗

v to minimize Z(m, μv) should be found. First, we consider
the optimal m. When μv is constant, m∗ satisfies

Z(m∗) ≤ Z(m∗ + 1), Z(m∗) ≤ Z(m∗ − 1).

By the Boundary analysis method(BAM), the minimal m∗ can be given step by
step. The basic steps can be showed as follows: Take m = k(k ≥ 1), if Z(k) ≤
Z(k+1), Z(k) ≤ Z(k−1), the optimal thresholdm∗ = k, and we obtain the minimal
threshold; otherwise, take m = k + 1, continue the same process.

In theory, we should obtain the optimal threshold in this process, but in Fig. 3, we
obverse that with the increase of the value m, the system cost may always decrease so
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Fig. 4 The Curve of system costs with the change of μv

that no optimal threshold can be found, but the decreasing trend becomes not evident
when m increases to one certain value. This can be explained in practice and if there
are not leavings/balkings of the customers and once they arrive at the system, they
will be waiting until their service completion, and the service agent controls the whole
service process. Under this condition, the larger the threshold is, the smaller the cost
is, but when the threshold achieves one certain value, most customers will be served
by the slow rate and the effect of the normal service cost c1 on the system cost will
decrease. This also will cause the unwillingness and leaving/balking of the customers.
And we will consider this phenomenon in our further research.

If m is given, the optimal vacation service rate μ∗
v can also be found in special

situations. In Fig. 4, the system costs when cw = 8, c1 = 20, c2 = 10, are presented
and from the trend of the curve, the optimal vacation service rate μ∗

v exists (0 < μ∗
v <

0.6).
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5 Conclusion

In this paper, we consider the M/M/1 queue with two threshold-policies and working
vacations. In fact, we establish the system with lower and higher speed operation
periods. Many performance measures, including the state probability of the server and
corresponding expected conditional queue length and sojourn time are obtained. With
those results, we can further optimize for the (m, N ) and the engineers can set up the
reasonable thresholds to make the cost of the system lowest or profit highest. But there
are some works which the paper cannot give more analysis, for example, the practical
sojourn time or its distribution. The service process in two threshold-policy system is
so complex that we can not conduct the specific waiting time analysis. This may be
the weakness of the model, but we give the sojourn time analysis under two threshold
policies which also can give some guides for the practice and further research.

This paper only consider the system indices for the M/M/1 queue with two
threshold-policies and working vacations. As we stated in Sect. 4, the larger threshold
may induce the customers to leave/balk for other service agents. In further research,
we may consider whether the customers’behavior can be analyzed because the behav-
ior may be complex under some information levels if one or two-threshold policy is
established under working vacations.
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