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Abstract This paper contains an infeasible interior-pointmethod for P∗(κ) horizontal
linear complementarity problembased on a kernel function. The kernel function is used
to determine the search directions. These search directions differ from the usually used
ones in some interior-point methods, and their analysis is more complicated. Main
feature of our algorithm is that there is no calculation of the step size, i.e, we use
full-Newton steps at each iteration. The algorithm constructs strictly feasible iterates
for a sequence of perturbations of the given problem, close to its central path. Two
types of full-Newton steps are used, feasibility steps and centering steps. The iteration
bound matches the best-known iteration bound for these types of algorithms.

Keywords Horizontal linear complementarity problem · Central path · Infeasible
full-Newton step method · Kernel function
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1 Introduction

In 1984, Karmarkar [9] introduced an interior-point method (IPM) for linear program-
ming (LP). Karmarkar used the efficiency of the simplex method with the theoretical
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16 S. Asadi et al.

advantages of the ellipsoid method to create his efficient polynomial algorithm. This
algorithm is based on projective transformations and the use of Karmarkar’s primal
potential function. This new algorithm sparkedmuch research, creating a newdirection
in optimization—the field of IPMs. Unlike the simplex method, which travels from
vertex to vertex along the edges of the feasible region, IPMs follow approximately a
central path in the interior of the feasible region and reaches the optimal solution only
asymptotically. As a result of finding the optimal solution in this fashion, the analysis
of the IPMs become substantially more complex than that of the simplex method.
Since the first IPM was developed, many researchers have proposed and analyzed
various IPMs for LP and a large amount of results have been reported [5,7,19]. IPMs
have been very successful in solving wide classes of optimization problems such as
linear complementarity problem (LCP) [10,11,15,26], horizontal linear complemen-
tarity problem (HLCP) [2,3,8,14,22], semi-definite optimization (SDO) [16,21] and
convex quadratic programming (CQP) [20,30].

Two interior-point approaches are proposed: feasible and infeasible interior-point
methods (IIPMs). The above mentioned papers mostly focus on feasible methods.
The most important class is the feasible path following method: the algorithm starts
with a strictly feasible point neighbor the central path and generates a sequence of
iterates which satisfy the same conditions. These conditions are an expensive process
in general. Most existing codes make use of a starting point that satisfy strict positivity
but not the equality condition. For this reason, the authors tried to develop algorithms
which start with any strict positive point not necessarily feasible. More recently, algo-
rithms that do not require feasible starting point have been the focus of active research
[8,15,16,23]. These algorithms are called IIPMs. Roos [23] introduced the first full-
Newton step IIPM for LP. Mansouri et al. extended Roos’s algorithm to SDO, LCP
and P∗(κ)-HLCP problems [3,15,16].

The majority of primal-dual IPMs, say the above mentioned ones, are based on
the classical logarithmic barrier function, which leads to the usual Newton search
directions. However, some authors, e.g Wang et al. [25] and Lee et al. [13], presented
some different kernel function based IPMs for the P∗(κ)−HLCP, which reduce the
gap between the practical behavior of the algorithms and their theoretical performance
results. Darvay [6] presented a new technique for finding a class of search directions.
The search direction of his algorithmwhich is calledDarvay’ direction,was introduced
by using an algebraic equivalent transformation (form) of the nonlinear equations
which defined the central path and then applying Newton’s method for the new system
of equations. Based on this direction, Darvay proposed a full-Newton step primal-
dual path following IPM for LP. Later on, Achache [1], Wang and Bai [27–29] and
Mansouri et al. [2,18] extended Darvay’s algorithm for LP to CQP, SDO, second orde
cone optimization (SOCO), symmetric cone optimization (SCO), monotone LCP and
P∗(κ)-HLCPs, respectively.

In this paper, we use some different search directions from usual Newton directions
and Darvay’s directions, to analyze the full-Newton step IIPM of Roos [23] for the
P∗(κ)-HLCPs. These directions are based on a kernel function that used by Liu and
Chen [12] for LP. The analysis of these directions is more complicated compared to the
classical Newton directions and Darvay’s directions. This analysis shows the way of
treatment with some directions which differ from the usually used directions in IPMs.
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An infeasible interior-point algorithm for HLCP problems 17

We present a full-Newton step IIPM for HLCP based on the mentioned directions and
prove that the number of iterations of our algorithm coincides with the best obtained
bound for P∗(κ)-HLCPs.

The objective of the HLCP problem is to find a vector pair in a finite dimensional
real vector space that satisfies a certain system of equations. More precisely, for a
given vector b ∈ R

n and a pair of matrixes Q, R ∈ R
n×n , we want to find a vector pair

(x, s) ∈ R
n × R

n (or show that no such vector pair exists), such that the following
inequalities and equations are satisfied:

Qx + Rs = b, (x, s) ≥ 0, xT s = 0, (P)

Note that the linear complementarity problem (LCP) is obtained by taking R = −I .
The HLCP is not an optimization problem. However, it is closely related to optimiza-
tion problems, because Kurush–Kuhn–Tucker (KKT) optimality conditions for many
optimization problems can be formulated as LCP. For example, KKT conditions of
linear and quadratic optimization problems can be formulated as LCP and the HLCP
provides a convenient general framework for the equivalent formulations of LCP [4].

In this paper, we are focusing on P∗(κ)-HLCP, in the sense that

Qu + Rv = 0 ⇒ (1 + 4κ)
∑

i∈I+
uivi +

∑

i∈I−
uivi ≥ 0 ∀u, v ∈ R

n, (1)

where κ is a nonnegative constant and I+= {i : uivi > 0} and I−= {i : uivi < 0}.
A P∗(κ)-HLCP is a general optimization problem, containing many aforemen-
tioned problems such as LP, P∗(κ)-LCP and CQP problems. Therefore dealing with
this problem, remove the necessity of handling many of its subproblems, sepa-
rately.

The paper is organized as follows. In Sect. 2, we introduce the central path of the
P∗(κ)-HLCP as well as its perturbed problem. Moreover, we present two types of
search directions. In Sect. 3, we give the new search directions for full-Newton step
IIPMs, these directions can be interpreted as a kind of steepest descent direction of a
separate function, which is constructed by using the kernel function on coordinates.
The full-Newton step IIPMbased on the newdirections is also presented in this section.
In Sect. 4, we investigate some useful tools that will be used in the analysis of the
IIPM proposed in this paper. Section 5 is about the centering steps.

In Sect. 6, we analyze the feasibility step used in the algorithm.
Wederive the complexity for the algorithm in Sect. 7; the complexity analysis shows

that the complexity bound of the algorithm coincides with the best-known iteration
complexity for IIPMs. Finally, some conclusions and remarks are given in Sect. 8.

Throughout the paper, we use the following notations.Rn+(Rn++) is the nonnegative
(positive) orthant of Rn . The 2-norm and the infinity norm are denoted by ‖ · ‖2 and
‖ · ‖∞, respectively. If x, s ∈ R

n , then xs denotes the componentwise (or Hadamard)
product of the vectors x and s. vmin and vmax denote the minimal and maximal com-
ponents of the vector v, respectively.
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18 S. Asadi et al.

2 Preliminaries

2.1 The central path for P∗(κ)−HLCP

Solving P∗(κ)−HLCP is equivalent with finding a solution of the following system
of equations

Qx + Rs = b, x ≥ 0,

xs = 0, s ≥ 0.
(2)

The general idea is to solve (2) using Newton’s method. However, Newton’s method
can “get stuck” at the complementarity equation xs = 0. Therefore, the main idea of
IPMs is to replace the last equation in (2), the so called complementarity equation,
with the parameterized equation xs = μe, with parameter μ > 0. So we consider the
following system

Qx + Rs = b, x ≥ 0,

xs = μe, s ≥ 0.
(3)

Here e is the all-one vector. In [24] is established that if HLCP satisfies the interior-
point condition (IPC), i.e., there exists (x, s) > 0 with Qx + Rs = b, then the above
system has a unique solution for each μ > 0, that is denoted by (x(μ), (s(μ)) and
is called the μ−center of HLCP. We call the solution set {(x(μ), s(μ))|μ > 0} the
central path of the HLCP. If μ → 0, then the limit of the central path exists [24] and
since the limit point satisfies xs = 0, the limit yields the optimal solution for HLCP.

2.2 The perturbed problem

Let
(
x0, s0

)
> 0 such that x0s0 = μ0e for some (positive) number μ0. We denote the

initial value of the residual as r0, as

r0 = b − Qx0 − Rs0. (4)

For any ν with 0 < ν ≤ 1, we consider the perturbed problem (Pν), defined by

b − Qx − Rs = νr0, (x, s) ≥ 0. (Pν)

Note that if ν = 1 then (x, s) = (
x0, s0

)
yields a strictly feasible solution of (Pν).

We conclude that if ν = 1 then (Pν) satisfies the IPC.

Lemma 1 Let the original problem (P) be feasible, then the perturbed problem (Pν)

satisfies the IPC.

Proof The proof is similar to the proof of Lemma 4.1 in [15]. ��
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An infeasible interior-point algorithm for HLCP problems 19

2.3 The central path of the perturbed problem

We assume that (P) is feasible. Assuming 0 < ν ≤ 1, Lemma 1 implies that the
problem Pν satisfies the IPC, and hence its central path exists. This means that the
system

b − Qx − Rs = νr0, x ≥ 0, s ≥ 0,

xs = μe,
(5)

has a unique solution, for every μ > 0. In the sequel, this unique solution is denoted
by (x(μ, ν), s(μ, ν)). It is theμ-center of the perturbed problem (Pν). Note that since
x0s0 = μ0e, (x0, s0) is the μ0-center of the perturbed problem (P1). In other words,(
x

(
μ0, 1

)
, s

(
μ0, 1

)) = (
x0, s0

)
. In the sequel the parametersμ and ν always satisfy

the relation μ = νμ0.

2.4 Search directions

2.4.1 Centering search directions

We are given a positive feasible pair (x, s) for (Pν) and some μ > 0. Our aim is to
define centering search directions Δx,Δs that move in the direction of the μ-center
(x(μ, ν), s(μ, ν)). In fact, we want the new iterates x +Δx, s+Δs to satisfy system
(5) and be positive with respect to μ. After substitution, this yields the following
conditions on Δx,Δs:

b − Q(x + Δx) − R(s + Δs) = νr0, (x + Δx, s + Δs) > 0,

(x + Δx)(s + Δs) = μe.

If we neglect for the moment the inequality constraints and ignore the quadratic term
ΔxΔs, since b − Qx − Rs = νr0, this system can be rewritten as follows

QΔx + RΔs = 0,

sΔx + xΔs = μe − xs. (6)

In [11] is showed that If (Q, R) is a P∗(κ)-pair, then the coefficient matrix in the
above linear system is nonsingular. Hence this system uniquely defines the search
directions Δx, Δs for any x > 0 and s > 0. These directions follow the μ-center
(x(μ, ν), s(μ, ν)). We call them centering search directions. Let

v =
√
xs

μ
, dx = vΔx

x
, ds = vΔs

s
. (7)
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20 S. Asadi et al.

Then system (6) can be expressed as

Q̄dx + R̄ds = 0,

dx + ds = v−1 − v,
(8)

where

Q̄ = QXV−1, R̄ = RSV−1, X = diag (x) and S = diag (s). (9)

2.4.2 Feasibility search directions

According to the definition of Pν , the feasibility equation for (Pν+) is given by

b − Qx − Rs = ν+r0, (x, s) ≥ 0. (10)

To get iterates that are feasible for (Pν+), we need search directions Δ f x and Δ f s
such that

b − Q(x + Δ f x) − R(s + Δ f s) = ν+r0,
(
x + Δ f x, s + Δ f s

)
> 0.

Let ν+ = (1 − θ)ν, where θ is the barrier update parameter in the algorithm. Since
(x, s) is feasible for (Pν), it follows that Δ f x and Δ f s should satisfy

QΔ f x + RΔ f s = θνr0.

Thus, if we neglect for the moment the inequality constraints and ignore the quadratic
term Δ f xΔ f s, then (Δ f x, Δ f s) can be defined by the following system

QΔ f x + RΔ f s = θνr0,

sΔ f x + xΔ f s = μe − xs.
(11)

This system uniquely defines the search directions Δ f x, Δ f s for any x > 0 and
s > 0. Since these displacements are designed to find feasible iterates for (Pν+), we
call them feasibility search directions. Let

d f
x = vΔ f x

x
, d f

s = vΔ f s

s
, (12)

where v is defined in (7), then the system (11) can be expressed as

Q̄d f
x + R̄d f

s = θνr0,

d f
x + d f

s = v−1 − v,
(13)

where Q̄ and R̄ are as defined in (9).
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An infeasible interior-point algorithm for HLCP problems 21

3 The new search directions

Consider the kernel function ψ(t) : R++ → R+ and its barrier function Ψ (v) :
R
n++ → R+ as follows

ψ(t) := 1

2

(
t − 1

t

)2

, Ψ (v) :=
n∑

i=1

ψ(vi ).

Note that, this kernel function is a special case of the kernel function φ(t) as follows

φ(t) = t2 − 1

2
+ t1−q − 1

q − 1
,

which is applied for linear and semidefinit programming by Peng et al. [21]. Noticing
that ψ ′(t) = t − 1

t3
and doing the transformation dx + ds = − � Ψ (v) in (8), we

obtain the following equivalent system of equations:

Q̄dx + R̄ds = 0, x ≥ 0,

dx + ds = v−3 − v, s ≥ 0.
(14)

By this transformation, we obtain the following equivalent system of equations for the
centering search directions Δx,Δs:

QΔx + RΔs = 0, x ≥ 0,

sΔx + xΔs = μ
(
v−2 − v2

)
, s ≥ 0.

(15)

Similarly, doing transformation d f
x +d f

s = −�Ψ (v) in (13), we obtain the following
equivalent system of equations for finding the scaled search directions d f

x and d f
s :

Q̄d f
x + R̄d f

s = θνr0, x ≥ 0,

d f
x + d f

s = v−3 − v, x ≥ 0.
(16)

We get the following system for the feasibility search directions Δ f x and Δ f s:

QΔ f x + RΔ f s = θνr0, x ≥ 0,

sΔ f x + xΔ f s = μ
(
v−2 − v2

)
, s ≥ 0.

(17)

3.1 Proximity function

We need a proximity measure to check how close we are to the μ-center. So, to
measure the quality of any approximation (x, s) of (x(μ, ν), s(μ, ν)), we introduce a
norm-based proximity function as follows:
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22 S. Asadi et al.

δ(v) := δ(x, s;μ) = ‖v−2 − v2‖. (18)

Note that

v2 − v−2 = 0 ⇔ v = e.

Therefore, this proximity function vanishes if and only if the pair (x, s) coincides
with the μ-center (x(μ, ν), s(μ, ν)).

3.2 Description of the full-Newton step IIPMs

Note that if ν = 1 andμ = μ0, then (x, s) = (
x0, s0

)
is theμ-center of the perturbed

problem Pν . These are our initial iterates.
We measure proximity to the μ-center of the perturbed problem Pν by the quantity

δ(v) as defined in (18). Initially we thus have δ(v) = 0. In the sequel we assume that
at the start of each iteration, just before the μ-update, δ(v) ≤ τ for a (small) threshold
value τ > 0. So this is certainly true at the start of the first iteration.

One (main) iteration of our algorithm works as follows. Suppose that for some
μ ∈ (

0, μ0
)
we have (x, s) satisfying the feasibility condition (5) for ν = μ

μ0 , and

δ(v) ≤ τ . We reduce μ to μ+ = (1 − θ) μ, with θ ∈ (0, 1), and find new iterates(
x+, s+)

that satisfy (5), with μ replaced by μ+ and ν by ν+ = μ+
μ0 , and such that

xT s ≤ nμ+ and δ
(
x+, s+; μ+) ≤ τ . Note that ν+ = (1 − θ) ν. For this mean we

accomplish first one feasibility step and then a few centering steps. The feasibility step
serves to get iterates

(
x f , s f

)
that are strictly feasible for (Pν+), and close to its μ-

center
(
x

(
μ+, ν+)

, s
(
μ+, ν+))

. Then the centering steps improve the closeness of(
x f , s f

)
to the centeral path of (Pν+) andobtain a pair (x, s) that satisfies the condition

δ (x, s; μ) ≤ τ .A more formal description of the algorithm is given in Fig. 1.

4 Some useful tools

Through the paper, we assume that δ := δ(v) := δ (x, s;μ). Our first lemma in this
section provides a lower and an upper bound for the coordinates of v in terms of δ.

Lemma 2 Let δ := δ(v), as defined by (18). Then

1√
1 + δ

≤ vmin ≤ vmax ≤ √
1 + δ.

Proof The lemma is trivial if vmin ≥ 1 and vmax ≤ 1. Consider the case that vmin < 1.
From (18) we derive

δ = ‖v−2 − v2‖ ≥ |v−2
i − v2i |, 1 ≤ i ≤ n,
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An infeasible interior-point algorithm for HLCP problems 23

Fig. 1 Infeasible full-Newton-step algorithm

which implies

δ ≥ 1

v2min

− v2min ≥ 1

v2min

− 1.

On the other hand, if vmax > 1 then we find

δ ≥ v2max − 1

v2max
≥ v2max − 1.

The lemma follows directly from the above inequalities. ��
By the lemma just made, it is clear that for i = 1, . . . , n:

1√
1 + δ

≤ vi ≤ √
1 + δ, (19)

1√
1 + δ

≤ v−1
i ≤ √

1 + δ. (20)

Using the next lemma we obtain some bounds for the unique solution of system (14).
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24 S. Asadi et al.

Lemma 3 (Lemma 2 in [8]) Let (Q, R) in the HLCP be a P∗(κ)-pair, then for any
(x, s) ∈ R

n++ ×R
n++ and any a ∈ R

n the unique solution (u, v) of the linear system

su + xv = a,

Qu + Rv = 0,
(21)

satisfies

‖Du‖2 + ‖D−1v‖2 ≤ (1 + 2κ) ‖ã‖2, uT v ≤ 1

4
‖ã‖2,

where D = X− 1
2 S

1
2 and ã = (xs)− 1

2 a.

Corollary 1 The unique solution (dx , ds) of the linear system (14) satisfies

‖dx‖2 + ‖ds‖2 ≤ (1 + 2κ) (1 + δ) δ2, (dx )
T ds ≤ 1

4
(1 + δ) δ2.

Proof Comparing system (15) with (21) and let a = μv
(
v−3 − v

)
. Then we have

ã = a√
μ v

= √
μ

(
v−3 − v

)
. So we may write

‖ã‖2 = μ‖v−3 − v‖2 = μ‖v−1
(
v−2 − v2

)
‖2 ≤ μ‖v−1‖2∞‖v−2 − v2‖2

≤ μ (1 + δ) δ2,

where the last inequality follows from (20). Using Lemma 3 we derive that

‖DΔx‖2 + ‖D−1Δs‖2 ≤ μ (1 + 2κ) (1 + δ) δ2, (Δx)T Δs ≤ μ

4
(1 + δ) δ2.

Since DΔx = √
μ dx , D−1Δs = √

μ ds and (Δx)T Δs = μ (dx )T ds , the corollary
follows. ��

Let

ωi := ωi (v) := 1

2

√
|dxi |2 + |dsi |2 , ω := ω(v) := ‖ (ω1, · · · , ωn) ‖. (22)

Then we have

(dx )
T ds ≤ ‖dx‖‖ds‖ ≤ 1

2

(
‖dx‖2 + ‖ds‖2

)
= 2ω2, (23)

|dxi dsi | = |dxi ||dsi | ≤ 1

2

(
|dxi |2 + |dsi |2

)
= 2ω2

i ≤ 2ω2, i = 1, · · · , n. (24)

Lemma 4 Let ω be as defined in (22). Then the following holds:

ω2 ≤ 1 + 2κ

4
(1 + δ) δ2.
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An infeasible interior-point algorithm for HLCP problems 25

Proof Using the definition of ω and corollary 1 , the lemma follows. ��
Lemma 5 (Lemma A.1 in [17]) Let fi = R+ → R, i = 1, · · · , n, be a convex
function. Then for any nonzero vector z ∈ R

n+, the following inequality holds

n∑

i=1

fi (zi ) ≤ 1

eT z

n∑

j=1

z j

⎛

⎝ f j
(
eT z

)
+

∑

i �= j

fi (0)

⎞

⎠ .

5 Analysis of the centering steps

Wedenote the result of the full-Newton step given by system (15) at (x, s) by (x+, s+),
i.e.,

x+ = x + Δx, s+ = s + Δs.

5.1 The feasibility of the centering steps

Using (7) and system (15), we may write

x+s+=(x + Δx) (s + Δs)= xs + (sΔx + xΔs) + ΔxΔs=μ
(
v−2 + dxds

)
.

(25)

In the following lemma we state a feasibility condition for the centering steps.

Lemma 6 The iterates
(
x+, s+)

are strictly feasible if and only if v−2 + dxds > 0.

Proof If x+ and s+ are positive, then the equality (25)makes it clear that v−2+dxds >

0. For the prove of the converse implication, we introduce a step length α ∈ [0, 1] and
we define

xα = x + αΔx, sα = s + αΔs.

Then we have x0 = x , x1 = x+ and similar relations for s. Hence we obtain x0s0 =
xs > 0. Using (25), we can write

xαsα = xs + α (sΔx + xΔs) + α2ΔxΔs

= μ
(
v2 + α

(
v−2 − v2

)
+ α2dxds

)

> μ
(
v2 + α

(
v−2 − v2

)
− α2v−2

)

= μ(1 − α)v2 + α (1 − α) v−2

= μ(1 − α)
(
v2 + αv−2

)
≥ 0
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26 S. Asadi et al.

So xαsα > 0 for α ∈ [0, 1]. Thus, none of the entries of xα and sα vanishes for
α ∈ [0, 1]. Since x0 and s0 are positive, and xα and sα are depend linearly on α, this
implies that xα > 0 and sα > 0 for α ∈ [0, 1]. Hence, x1 and s1 must be positive,
which proves that x+ and s+ are positive. ��

Corollary 2 The iterates (x+, s+) are strictly feasible if ‖dxds‖∞ < 1
1+δ

.

Proof From (19) and Lemma 6, the corollary follows. ��

5.2 The effect of a full-Newton step on the proximity function

The following lemma investigates the effect of a full-Newton step on the proximity
measure.

Lemma 7 Let δ ≤ 1
2
√
1+2κ

. Then after a full-Newton step, we have

δ+ := δ
(
x+, s+;μ

) ≤ 5.4247
√
1 + 2κ δ.

Proof Let v+ :=
√

x+s+
μ

. Then from (25), we have
(
v+)2 = v−2 + dxds . We may

write

(
δ+)2 = ‖ (

v+)2 − (
v+)−2 ‖2

=
n∑

i=1

((
v+
i

)4 + (
v+
i

)−4 − 2
)

=
n∑

i=1

⎛

⎜⎝
(
v−2
i + dxi dsi

)2 + 1
(
v−2
i + dxi dsi

)2 − 2

⎞

⎟⎠

≤
n∑

i=1

⎛

⎜⎝
(
v−2
i + 2ω2

i

)2 + 1
(
v−2
i − 2ω2

i

)2 − 2

⎞

⎟⎠ ,

where the inequality is due to (24). For each i = 1, · · · , n, we define the function

fi (zi ) =
(
v−2
i + zi

)2 + 1
(
v−2
i − zi

)2 − 2.
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An infeasible interior-point algorithm for HLCP problems 27

Note that this function is convex in zi . Taking zi = 2ω2
i , using Lemma 5, we have

(
δ+)2 ≤

n∑

i=1

fi (2ω
2
i ) ≤ 1

2ω2

n∑

j=1

2ω2
j

⎛

⎝ f j (2ω
2) +

∑

i �= j

fi (0)

⎞

⎠

= 1

2ω2

n∑

j=1

2ω2
j

⎛

⎜⎝
(
v−2
j + 2ω2

j

)2 + 1
(
v−2
j −2ω2

j

)2 −2+
∑

i �= j

(
v−4
i + 1

v−4
i

−2

)⎞

⎟⎠

= 1

2ω2

n∑

j=1

2ω2
j

⎛

⎜⎝
(
v−2
j + 2ω2

j

)2+ 1
(
v−2
j −2ω2

j

)2 − 2+δ2−
(

v−4
j + 1

v−4
j

−2

)⎞

⎟⎠

= 1

2ω2

n∑

j=1

2ω2
j

(
4ω4

j + 4ω2
jv

−2
j + 4ω2

jv
−2
j − 4ω4

j

v−8
j + 4ω4

jv
−4
j − 4ω2

jv
−6
j

+ δ2

)
.

Notice that if δ ≤ 1
2
√
1+2κ

, then from (20) and Lemma 4, wemay write for 1 ≤ j ≤ n:

v−2
j − 4ω2

j ≥ v−2
j − 4ω2 ≥ 1

1 + δ
− 4ω2 ≥ 1

1 + δ
− (1 + 2κ) (1 + δ) δ2 ≥ 0.

Therefore the above inequalities may continue as follows:

(
δ+)2 ≤ 1

2ω2

n∑

j=1

2ω2
j

⎛

⎝4ω4
j + 4ω2

jv
−2
j + 4ω2

jv
−2
j

v−6
j

(
v−2
j − 4ω2

j

) + δ2

⎞

⎠

≤ 1

2ω2

n∑

j=1

2ω2
j

⎛

⎝4ω4 + 4ω2v−2
j + 4ω2v−2

j

v−6
j

(
v−2
j − 4ω2

) + δ2

⎞

⎠

≤ 4ω4 + 4ω2 (1 + δ) + 4ω2 (1 + δ)

1
(1+δ)3

(
1

1+δ
− 4ω2

) + δ2

≤
(

(1 + 2κ)2 (1 + δ)2 δ2

4
+ (1 + 2κ) (1 + δ)2

+ (1 + 2κ) (1 + δ)5

1
1+δ

− (1 + 2κ) (1 + δ) δ2
+ 1

)
δ2

≤ 29.4263 (1 + 2κ) δ2,

where in the third and forth inequality, we used (20) and Lemma 4 respectively. The
last inequality, is due to the assumption δ ≤ 1

2
√
1+2κ

. ��
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5.3 The value of xT s after doing the step

The next lemma gives an upper bound for the quantity xT s after each full-Newton
step.

Lemma 8 One has

(
x+)T

s+ ≤ μ (1 + δ)

(
n + δ2

4

)
.

Proof From (25), (20) and Corollary 1 we derive:

(
x+)T

s+ = μeT
(
v+)2 = μ

(
eT v−2 + (dx )

T ds
)

≤ μ

(
(1 + δ) n + (1 + δ) δ2

4

)
,

which proves the lemma. ��

6 Analysis of the feasibility step

We denote the resulting vectors of the feasibility step given by system (17) at (x, s)
by (x f , s f ), i.e.,

x f = x + Δ f x, s f = s + Δ f s.

6.1 The feasibility of the feasibility step

From (16) we may write

x f s f = μ
(
v−2 + d f

x d
f
s

)
. (26)

Lemma 9 The iterates
(
x f , s f

)
are strictly feasible if and only if

v−2 + d f
x d

f
s > 0.

Proof The proof of this lemma is the same as that of Lemma 6. ��
Corollary 3 The iterates (x f , s f ) are strictly feasible if ‖d f

x d
f
s ‖∞ < 1

1+δ
.

Proof From (20) and Lemma 9 the corollary follows. ��
Let

ω
f
i := ω

f
i (v) := 1

2

√
|d f

xi |2 + |d f
si |2 , ω f := ω f (v) :=

∥∥∥
(
ω

f
1 , · · · , ω

f
n

)∥∥∥ .

(27)
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Then similar to (23) and (24), we have:

(
d f
x

)T
d f
s ≤ ‖d f

x ‖‖d f
s ‖ ≤ 1

2

(
‖d f

x ‖2 + ‖d f
s ‖2

)
=2(ω f )2, (28)

|d f
xi d

f
si | = |d f

xi ||d f
si |≤

1

2

(
|d f

xi |2 + |d f
si |2

)
=2(ω f

i )2 ≤ 2(ω f )2, i = 1, . . . , n. (29)

Using this, in the next subsection we investigate the effect of the feasibility step on
the proximity function.

6.2 An upper bound for proximity function after a feasibility step

Lemma 10 Let μ+ = (1 − θ)μ, v f =
√

x f s f

μ+ and δ ≤ 1
2
√
1+2κ

, then we have

δ
(
v f

)2 ≤ (1 − θ)2

(
4

(
ω f

)4 + 4
(
ω f

)2
(1 + δ) + 4

(
ω f

)2
(1 + δ)4

1
1+δ

− 4
(
ω f

)2 + δ2

)

+
((

2θ − θ2

1 − θ

)2

+ 2
(
2θ − θ2

)) (
(1 + δ)2 n + 4

(
ω f

)4 + 4 (1 + δ)
(
ω f

)2)

−2
(
2θ − θ2

)
n.

Proof Let u = v−2 + d f
x d

f
s . Using (26) we derive

(
v f

)2 =
μ

(
v−2 + d f

x d
f
s

)

μ+ =
(
v−2 + d f

x d
f
s

)

1 − θ
= u

1 − θ
,

then, we may write

δ
(
v f

)2 = ‖ u

1 − θ
− (1 − θ) u−1‖2

= ‖ (1 − θ)
(
u − u−1

)
+ 2θ − θ2

1 − θ
u‖2

= (1 − θ)2 ‖u − u−1‖2 +
(
2θ − θ2

1 − θ

)2

‖u‖2 + 2
(
2θ−θ2

)
uT

(
u − u−1

)

= (1−θ)2 ‖u−u−1‖2+
((

2θ−θ2

1 − θ

)2

+ 2
(
2θ−θ2

))
‖u‖2−2

(
2θ − θ2

)
n.
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Note that, using (28) and (29), we have

‖u‖2 = eT u2 = eT v−4 + ‖d f
x d

f
s ‖2 + 2

(
v−2

)T
d f
x d

f
s

≤ (1 + δ)2 n + 4
(
ω f

)4 + 4 (1 + δ)
(
ω f

)2
.

By the same way as in the proof of Lemma 7, we may derive

‖u − u−1‖2 = 4
(
ω f

)4 + 4
(
ω f

)2
(1 + δ) + 4

(
ω f

)2
(1 + δ)4

1
1+δ

− 4
(
ω f

)2 + δ2.

So the proof is completed. ��

Note that in the algorithm, for using the result of Lemma 7 after performing the
feasibility step, we need the following condition be satisfied

δ
(
x f , s f ;μ+)

≤ 1

2
√
1 + 2κ

. (30)

Using Lemma 10, this is certainly true, if

(1 − θ)2

(
4

(
ω f

)4 + 4
(
ω f

)2
(1 + δ) + 4

(
ω f

)2
(1 + δ)4

1
1+δ

− 4
(
ω f

)2 + δ2

)

+
((

2θ − θ2

1 − θ

)2

+2
(
2θ−θ2

)) (
(1 + δ)2 n+4

(
ω f

)4+4 (1 + δ)
(
ω f

)2)

−2
(
2θ − θ2

)
n

≤ 1

4 (1 + 2κ)
. (31)

By some elementary calculations, we obtain that if

ω f ≤ 1

8 (1 + 2κ)
, (32)

δ ≤ τ ≤ 1

10 (1 + 2κ)
, (33)

0 ≤ θ ≤ 1

20n(1 + 2κ)
, (34)

then the inequality (31) is satisfied.
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6.3 An upper bound for ω f

We start by finding some bounds for the unique solution of the linear system (17).

Lemma 11 (Lemma 3.3 in [8]) Let (Q, R) in the HLCP be a P∗(κ)-pair, then the
linear system

su + xv = a,

Qu + Rv = b̃,
(35)

has a unique solutionw = (u, v), for any z = (x, s) ∈ Rn++×R
n++ and any a, b̃ ∈ Rn,

such that the following inequality is satisfied:

‖w‖z ≤ √
1 + 2κ‖ã‖ +

(
1 + √

2 + 4κ
)

ξ(z, b̃).

Here

‖w‖2z = ‖(u, v)‖2z = ‖Du‖2 + ‖D−1v‖2,
ξ(z, b̃)2 = min{‖(ũ, ṽ)‖2z : Qũ + Rṽ = b̃},

and ã and D are defined in Lemma 3.

Comparing system (35) with (17) and considering w = (u, v) = (Δ f x,Δ f s), a =
μ

(
v−2 − v2

)
, b̃ = θνr0, z = (x, s) in system (35), we have

‖DΔ f x‖2 + ‖D−1Δ f s‖2

≤
(√

1 + 2κ‖(xs)−1/2
(
μ

(
v−2 − v2

))
‖ + (1 + √

2 + 4κ)ξ(z, θνr0)
)2

. (36)

From (20) and the definition of δ in (18), we also have

∥∥∥(xs)−
1
2

(
μ

(
v−2 − v2

))∥∥∥ =
∥∥∥
√

μv−1
(
v−2 − v2

)∥∥∥ ≤ √
μ

∥∥∥v−1
∥∥∥∞

∥∥∥v−2 − v2
∥∥∥

≤ √
μ (1 + δ) δ.

Also by the definition of ξ(z, b̃), it is obvious that

ξ(z, θνr0) = θνξ(z, r0).

Furthermore, noticing the definitions ofΔ f x andΔ f s, we may write DΔ
f
x = √

μ d f
x

and D−1Δ
f
s = √

μ d f
s . Substituting the above equations in (36), we have

(
ω f

)2 ≤ 1

μ

(
1

2

√
μ (1 + δ) (1 + 2κ) δ + 1

2

(
1 + √

2 + 4κ
)

θνξ(z, r0)

)2

. (37)
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Now we specify our initial iterates
(
x0, s0

)
. Assuming that ρp and ρd are such that

‖x∗‖ ≤ ρp, ‖s∗‖ ≤ ρd , (38)

for some optimal solutions (x∗, s∗) of (P), as usual we start the algorithm with

x0 = ρp e, s0 = ρd e, μ0 = ρp ρd . (39)

The lemma below achieves a bound for the quantity ξ(z, r0) in (37).

Lemma 12 (Lemma 4.6 in [3]) Let ξ(·, ·) be as defined in Lemma 11. Then the fol-
lowing holds:

ξ(z, r0) ≤
√

ρ2
p

μv2min

‖s‖21 + ρ2
d

μv2min

‖x‖21 .

Thanks to the next Lemmas, we will obtain some upper bounds for ‖x‖1 and ‖s‖1.

Lemma 13 (Lemma 4.7 in [3]) Let (x, s) be feasible for the perturbed problem Pν

and
(
x0, s0

)
as defined in (39). Then for any optimal solution (x∗, s∗), we have

ν
(
xT s0 + sT x0

)
≤ (1 + 4κ)

(
ν2nμ0 + ν(1 − ν)

(
(x∗)T s0 + (x0)T s∗) + xT s

)
.

Lemma 14 Let (x, s) be feasible for the perturbed problem (Pν) and
(
x0, s0

)
as

defined in (39). Then we have

‖x‖1 ≤ (1 + 4κ) (3n + nδ) ρp, (40)

‖s‖1 ≤ (1 + 4κ) (3n + nδ) ρd . (41)

Proof Since x0 = ρp e, s0 = ρd e, ‖x∗‖∞ ≤ ρp and ‖s∗‖∞ ≤ ρd , we derive

(
s0

)T
x∗ +

(
x0

)T
s∗ ≤ ρp

(
eT s0

)
+ ρd

(
eT x0

)
= 2 n ρp ρd .

Also
(
x0

)T
s0 = n ρp ρd . Substituting these values in Lemma 13 and noting that

μ0 = ρpρd , using (19), we have
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xT s0 + sT x0 ≤ (1 + 4κ)

(
νnρpρd + 2(1 − ν)nρpρd + xT s

ν

)

= (1 + 4κ)

(
2nρpρd − νnρpρd + xT s

ν

)

≤ (1 + 4κ)

(
2nρpρd + xT s

ν

)
= (1 + 4κ)

(
2nρpρd + μ(eT v2)

ν

)

= (1 + 4κ)
(
2nρpρd + ρpρd‖v‖2

)

≤ (1 + 4κ)
(
2nρpρd + ρpρd (1 + δ) n

)

= (1 + 4κ) (3n + nδ) ρpρd .

Since x0, s0, x and s are positive, we obtain

xT s0 ≤ (1 + 4κ) (3n + nδ) ρpρd ,

sT x0 ≤ (1 + 4κ) (3n + nδ) ρpρd .

Due to x0 = ρp e and s0 = ρd e, these statements follow the lemma. ��

Applying (40) and (41) in Lemma (12), using (19), we derive

ξ(z, r0) ≤
√√√√2ρ2

pρ
2
d

μ
1+δ

(1 + 4κ)2 (3n + nδ)2

=
√
2(1 + δ)

μ
ρpρd(1 + 4κ) (3n + nδ) . (42)

Now substituting (42) in (37), we obtain

(
ω f

)2 ≤
(
1

2

√
(1 + 2κ) (1 + δ) δ + θ

(
1√
2

+ √
1 + 2κ

) √
1 + δ (1 + 4κ)

(3n + nδ)

)2

. (43)

6.4 The values for θ and τ

In this subsection, we specify some values for the algorithm’s parameters τ and θ such
that our main targets are achieved.We have found that δ(x f , s f ;μ+) < 1

2
√
1+2κ

holds
if the inequalities (32), (33) and (34) are satisfied. Then by (43), inequality (32) holds
if
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1

2

√
(1 + 2κ) (1 + δ) δ + θ

(
1√
2

+ √
1 + 2κ

) √
1 + δ (1 + 4κ) (3n + nδ)

≤ 1

8 (1 + 2κ)
.

Obviously, the left side of the above inequality is increasing in δ. Using this, one may
easily verify that the above inequality is satisfied if

τ = 1

10(1 + 2κ)2
, θ = 1

20n
(
1 + √

1 + 2κ
)2

(1 + 2κ)2
, (44)

which are in agreement with (32) and (33). Note that by Corollary 3, the feasibility step
is strictly feasible if ‖d f

x d
f
s ‖∞ < 1

1+δ
. From 29 we find that ‖d f

x d
f
s ‖∞ ≤ 2(ω f )2.

Therefore (x f , s f ) are strictly feasible if (ω f )2 < 1
2(1+δ)

. Using (43), this inequality
is certainly satisfied whenever

1

2

√
(1 + 2κ) (1 + δ) δ + θ

(
1√
2

+ √
1 + 2κ

) √
1 + δ (1 + 4κ) (3n + nδ)

<
1√

2(1 + δ)
.

As is mentioned above, the left side of this inequality is monotonically increasing with
respect to δ while the right side is monotonically decreasing. So substituiting δ by τ

gives an upper bound for its left side and a lower bound for its right side. Consequently
(x f , s f ) are strictly feasible if

1

2

√
(1 + 2κ) (1 + τ) τ + θ

(
1√
2

+ √
1 + 2κ

) √
1 + τ (1 + 4κ) (3n + nτ)

<
1√

2(1 + τ)
. (45)

But with the values of τ and θ in (44), an upper bound for the left side of (45) is 0.1220
while a lower bound for its right side is 0.6742. Therefore (42) also guarantees the
strict feasibility of the feasibility step.

7 Complexity analysis

Let δ
(
x f , s f ; μ+) ≤ 1

2
√
1+2κ

. Starting at (x f , s f ) we repeatedly apply full-Newton

steps until the k−iterate, denoted as
(
x+, s+) := (xk, sk), satisfies δ

(
xk, sk; μ+) ≤

τ . We can estimate the required number of centering steps by using Lemma 7. Let
δ(vk) = δ

(
xk, sk;μ+)

, δ(v0) = δ
(
x f , s f ;μ+)

and γ = 5.4247
√
1 + 2κ . It then

follows that

δ
(
vk

)
≤

(
γ δ

(
vk−1

))
≤

(
γ

(
γ δ

(
vk−2

)))
≤ · · · ≤ γ kδ

(
v0

)
.
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Using the definition of γ and δ
(
v0

) ≤ 1
2
√
1+2κ

, this gives

δ
(
vk

)
≤

(
5.4247

√
1 + 2κ

)k 1

2
√
1 + 2κ

≤ 2.7124
(
5.4247

√
1 + 2κ

)k−1
.

Hence we certainly have δ
(
x+, s+;μ+) ≤ τ , if

2.7124
(
5.4247

√
1 + 2κ

)k−1 ≤ τ. (46)

Taking logarithms at both sides, this reduces to

(k − 1) log 5.4247
√
1 + 2κ ≤ log

τ

2.7124
.

Thus we find that after no more than

1 +
⌈

log τ
2.7124

log 5.4247
√
1 + 2κ

⌉
, (47)

centering steps, we have iterates
(
x+, s+)

that satisfy δ
(
x+, s+; μ+) ≤ τ .

Substituting the value of τ from (44) in (47) implies that at most

1 +
⌈

log 1
27.124(1+2κ)2

log 5.4247
√
1 + 2κ

⌉
,

centering steps are needed in our algorithm.
Note that in each main iteration of the algorithm, both the value of xT s and the

norm of the residual are reduced by the factor 1− θ . Hence, the total number of main
iterations is bounded above by

1

θ
log

max
{(
x0

)T
s0, ‖r0‖

}

ε
.

Due to (44), we may state without further proof, the main result of the paper:

Theorem 1 If (P) has an optimal solution (x∗, s∗) such that ‖x∗‖ ≤ ρp and ‖s∗‖ ≤
ρd , then after at most

20n
(
1 + √

1 + 2κ
)2

(1 + 2κ)2

(
1 +

⌈
log 1

27.124(1+2κ)2

log 5.4247
√
1 + 2κ

⌉)

log
max

{(
x0

)T
s0, ‖r0‖

}

ε
,

iterations, the algorithm finds an ε-solution of P∗(κ) − HLCP.
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8 Concluding remarks and further research

We generated the new search directions for full-Newton step IIPM based on a kernel
function for P∗(κ)-HLCP. The complexity bound for the algorithm admits the best-
known result for IIPMs. In general, the algorithm belongs to a kind of small-update
IIPMs. According to the default value for θ in (44), for a P∗(κ)-HLCP with large data,
one can not expect a good performance for the algorithm. Further research may focus
on to design the kernel function based large-update IIPMs.
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