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Abstract This paper proposes an identification method for estimating the parameters
of a stable second-order system based on the impulse response experiment. From
the impulse response experiment, the measured data are collected for implementing
parameter estimation. By defining and minimizing a cost function, a Newton iterative
algorithm is derived for estimating the parameters of the system. The multi-point
identificationmethod is used to show the effectiveness of the proposedNewton iterative
algorithm. The results show that the estimatedmodel by the proposed Newton iterative
estimationmethodhas higher accuracy.Based on the estimatedmodel, a designmethod
of the proportional derivative controller is presented according to the systemdynamical
performance. The simulation test shows that the proposed controller design method
can meet the desired dynamic specifications.
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1 Introduction

System identification problems for dynamical systems have been attracting much
attentions [1–4]. System identification is building the mathematical models of sys-
tems by minimizing a cost function from the measured data [5–10]. Various exper-
iments were used to generate the measured data for system identification [11]. The
impulse response test, the step response test [12–16] and the relay feedback test [17]
are used widely for system identification. For examples, Hidayat et al proposed a
Laguerre domain identification method for continuous linear time-delay systems from
the impulse response data [18]. Deb et al studied the transfer function identification
from impulse response via orthogonal hybrid functions [19]. Liu et al proposed a
frequency domain step response identification method for continuous-time processes
with time delay [20]. Mei et al presented a decentralized identification method for
multivariable integrating processes with time delays from closed-loop step tests [21].
Panda et al presented a parameter estimation algorithm for integrating and time delay
processes using single relay feedback test [22]. Among these experiments for system
identification, the impulse response test is easy to realize. So, the impulse response
test is used to generate the measured data in this paper.

System identification plays an important role in designing controller parameters.
After estimating the systemmathematical model, some methods can be used to design
the controller [23]. Malek et al studied the identification and controller design meth-
ods for time delay systems [24]. Baran et al presented an approach to the model
identification and the proportional integral controller tuning based on a model-based
experimental design [25]. Mohideen et al studied the modeling and control of level
processes [26]. System identification is the prerequisite for the system control.

The iterative algorithm is widely used in system identification and for solving the
solutions of nonlinear equations ormatrix equations. [27–29]. Ding et al presented gra-
dient based and least squares-based iterative algorithms forHammerstein systems [30].
Ding et al proposed a two-stage least squares based iterative estimation algorithm for
CARARMA systems [31]. Yun utilized iterative methods for obtaining all the roots of
a nonlinear equation. [32]. Chidume et al provided an iterativemethod for approximat-
ing solutions of Hammerstein nonlinear integral equations. [33]. Noor et al proposed
iterative methods for solving nonlinear equations by using the homotopy perturbation
approach [34]. Wu et al presented an iterative algorithm for solving complex conju-
gate and transpose matrix equations. [35]. Sharma et al proposed a weighted-Newton
methods for solving systems of nonlinear equations. [36]. Li presented a parameter
estimation algorithm based on the Newton iteration for Hammerstein CARARMA
systems [37]. Among the iterative algorithms, the Newton iterative method is the well
known iterative algorithm for solving nonlinear equation and estimating parameters.
By applying the iterative identification methods, the systems parameters can be esti-
mated. The iterative identification algorithm can be derived by means of defining and
minimizing an output error criterion function. On the basis of the Newton iterative
principle, this paper derives the Newton iterative identification algorithm to estimate
the parameters of a stable second-order system.
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Newton iterative algorithm based modeling and proportional derivative controller design 559

In many research areas, the plants to be controlled can be described as second-order
system models. Bruschetta et al builded a second-order model for linear mechanical
systems [38]. Delis et al constructed second-order macroscopic traffic flow models
[39]. For the control systems, the stability and good dynamic performance are the
basic requirements [40,41]. In order to meet these requirements, designing an effi-
cient controller is very important. The proportional integral derivative controller is the
most popular controller in process control [42–45]. Many design methods have been
presented for designing the proportional integral derivative controller based on math-
ematical models of systems [46–48]. Ramasamy et al proposed a proportional integral
derivative tuning method for single-input single-output systems using the impulse
response [49]. Chen et al designed a fractional-order proportional integral deriva-
tive controller for the hydraulic turbine regulating system using the genetic algorithm
[50]. Yuan et al proposed the proportional spatial derivative control method to the
synchronization of the coupled distributed parameter system with time delay [51]. In
this paper, a proportional derivative controller is designed according to some stability
specifications.

The rest of this paper is organized as follows. Sect. 2 derives the Newton iterative
algorithm to estimate the parameters of the second-order system with different poles
and one zero. Sect. 3 gives the design procedure of a proportional derivative controller
in terms of the estimated second-order system. Sect. 4 provides a simulation example
and compares with multi-point identification method to show the effectiveness of the
proposed algorithm. Finally, Sect. 5 offers some concluding remarks.

2 The Newton iterative estimate algorithm

Consider a stable second-order system with the following transfer function

G(s) = K (s + z1)

(s + p1)(s + p2)
, (1)

where K is the gain, −z1 is the zero, and −p1 and −p2 are the poles. When these
parameters are unknown, some identification methods can be used to estimate these
parameters from the measured data. The gain K can be estimated according to the
steady output value [16]. But it is difficult to obtain the accurate steady-state value of
the system because disturbances exist in practical processes. In order to avoid using
the steady-state value, we change the transfer function of the second-order system in
(1) into the sum of partial fractions,

G(s) = K (s + z1)

(s + p1)(s + p2)
= a3

s + a1
+ a4

s + a2
.

For the sake of finding the relations of the parameters of both sides of the above
equation, we have the following analysis,

a3
s + a1

+ a4
s + a2

= a3(s + a2) + a4(s + a1)

(s + a1)(s + a2)
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= (a3 + a4)s + a2a3 + a1a4
(s + a1)(s + a2)

= (a3 + a4)(s + a2a3+a1a4
a3+a4

)

(s + a1)(s + a2)

= K (s + z1)

(s + p1)(s + p2)
.

Then, the relations among the parameters are given by

a1 = p1, a2 = p2, a3 = Kp1 − Kz1
p1 − p2

, a4 = Kz1 − Kp2
p1 − p2

. (2)

Assume that the input r(t) is a unit impulse signal r(t) = δ(t).

r(t) =
{

∞, t = 0,

0, t �= 0.

The Laplace transform of r(t) is given by

R(s) = L [r(t)] =
∫ ∞

0
δ(t)e−stdt = 1,

where R(s) denotes the Laplace transform of the input r(t).
The Laplace transform of the system output is

Y (s) = G(s)R(s) = a3
s + a1

+ a4
s + a2

.

The system output response can be obtained by the inverse Laplace transform

y(t) = L −1[Y (s)] = L −1
[

a3
s + a1

+ a4
s + a2

]
= a3e

−a1t + a4e
−a2t ,

where a1, a2, a3 and a4 are the parameters to be estimated.
Define the parameter vector θ as

θ = [a1, a2, a3, a4]T ∈ R
4.

Define the residual

εi = y(ti ) − a3e
−a1ti − a4e

−a2ti ,

where (ti , y(ti ) i = 1, 2, ..., L) is the measured data, L is the data length. The para-
meters of the second-order system can be estimated by defining and minimizing a cost
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function. Define the cost function

J (θ) = 1

2

L∑
i=1

ε2i .

Minimizing J (θ) and using the Newton iterative method give the Newton iterative
estimate algorithm [52],

θ̂k = θ̂k−1 − H−1(θ̂k−1)F(θ̂k−1), (3)

F(θ̂k) = [ f1(k), f2(k), f3(k), f4(k)]
T, (4)

H(θ̂k) =

⎡
⎢⎢⎣
h11(k) h12(k) h13(k) h14(k)
h21(k) h22(k) h23(k) h24(k)
h31(k) h32(k) h33(k) h12(k)
h41(k) h42(k) h43(k) h44(k)

⎤
⎥⎥⎦, (5)

f1(k) =
L∑

i=1

εik â3k tie
−â1k ti, (6)

f2(k) =
L∑

i=1

εik â4k tie
−â2k ti, (7)

f3(k) = −
L∑

i=1

εike
−â1k ti, (8)

f4(k) = −
L∑

i=1

εike
−â2k ti, (9)

h11(k) =
L∑

i=1

â3k t
2
i (â3ke

−â1k ti − εik)e
−â1k ti, (10)

h12(k) = 2
L∑

i=1

â3k â4k t
2
i e

−(â1k+â2k )ti, (11)

h13(k) =
L∑

i=1

ti (εik − â3ke
−â1k ti )e−â1k ti, (12)

h14(k) = −
L∑

i=1

â3k tie
−(â1k+â2k )ti, (13)

h22(k) =
L∑

i=1

â4k t
2
i (â4ke

−â2k ti − εik)e
−â2k ti, (14)

h23(k) = −
L∑

i=1

â4k tie
−(â1k+â2k )ti, (15)
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h24(k) =
L∑

i=1

tie
−â2k ti (εik − â4ke

−â2k ti ), (16)

h33(k) =
L∑

i=1

e−2â1k ti, (17)

h34(k) =
L∑

i=1

e−(â1k+â2k )ti, (18)

h44(k) =
L∑

i=1

e−2â2k ti, (19)

h21(k) = h12(k), h31(k) = h13(k), h41(k) = h14(k), (20)

h32(k) = h23(k), h42(k) = h24(k), h43(k) = h34(k), (21)

εik = y(ti ) − â3ke
−â1k ti − â4ke

−â2k ti , (22)

K̂k = â3k + â4k, ẑ1k = (â2k â3k + â1k â4k)/(â3k + â4k),

p̂1k = â1k, p̂2k = â2k . (23)

The steps of implementing the Newton iterative estimate algorithm are listed in the
following.

1. Collect the measured data {(ti , y(ti )): i = 1, 2, 3, ..., L}, where L is the data
length.

2. To initialize: let k = 1, θ̂0 = [a10, a20, a30, a40]T be a random vector, and give a
small number ε > 0.

3. Compute εik by (22).
4. Compute fl(k), l = 1, 2, 3, 4 by (6)–(9), and form F(θ̂k) by (4).
5. Compute hmn(k), m = 1, 2, 3, 4, n = 1, 2, 3, 4 by (10)–(21), and form H(θ̂k)

by (5).
6. Update the parameter estimate θ̂k by (3).
7. If ‖θ̂k − θ̂k−1‖ > ε, increase k by 1 and go to step 3; otherwise terminate the

procedure and obtain the parameter estimate θ̂k .
8. Compute K̂k = â3k + â4k , ẑ1k = (â2k â3k + â1k â4k)/(â3k + â4k), p̂1k = â1k ,

p̂2k = â2k .

3 The proportional derivative controller design

In this section, a proportional derivative controller is designed to control the second-
order system. In general, the transfer function of the proportional derivation controller
in the following form

C(s) = Kp(1 + Kds),

where Kp and Kd are the parameters of the controller to be designed.
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In order to improve the robustness of the system, a low-pass filter is introduced.
Then, the transfer function of the proportional derivative controller with a low-filter
is given by

C(s) = Kp(1 + Kds

τ s + 1
), (24)

where τ is a small positive real number. The parameters Kp and Kd of the propor-
tional derivative controller can be obtained according to some specifications. For the
sake of ensuring enough stability and good dynamic performance, we use the gain
crossover frequency ωc and the phase margin φm as the specifications for designing
the proportional derivation controller. The gain crossover frequency ωc specification
is

|C( jωc)G( jωc)| = 1.

The phase margin φm specification is

argC(jωc)G(jωc) = −π + φm.

The system open-loop transfer function is given by

Gk(s) = C(s)G(s). (25)

Letting s := jω and substituting it into (25) give

Gk( jω) = C( jω)G( jω).

The above equation is the system frequency characteristics. Substituting (1) and (24)
into (25) and letting s := jω give

Gk( jω) = KKp( jω + z1)

( jω + p1)( jω + p2)
×

(
1 + j Kdω + jτω

jτω + 1

)

= KKp( jω + z1)( j Kdω + jτω + 1)

( jω + p1)( jω + p2)( jτω + 1)
.

According to the gain crossover frequency specification ωc, we get the following
equations

|Gk( jωc)| =
∣∣∣∣KKp( jωc + z1)( j Kdωc + jτωc) + 1)

( jωc + p1)( jωc + p2)

∣∣∣∣
=

KKp

√
(ω2

c + z21)(K
2
dω2

c + τ 2ω2
c + 1)√

(ω2
c + p21)(ω

2
c + p22)(τ

2ω2
c + 1)

= 1. (26)
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According to the phase margin φm specification, we get

argGk(jωc) = arctan
ωc

z1
+ arctan(Kd + τ)ωc − arctan

ωc

p1
− arctan

ωc

p2
− arctan τωc

= φm − π.

Let β := arctan ωc
z1

− arctan ωc
p1

− arctan ωc
p2

− arctan τωc. Then we have

argGk(jωc) = β + arctan Kdωc = φm − π. (27)

Kd is an unknown parameter in (27). Solving (27) gives

Kd = tan(φm − π − β)

ωc
. (28)

Substituting (28) into (26) gives

KKp

√
(ω2

c + z21)[tan2(φm − π − β) + 1]√
(ω2

c + p21)(ω
2
c + p22)(τ

2ω2
c + 1)

= 1. (29)

From (29), we get

Kp =
√

(ω2
c + p21)(ω

2
c + p22)(τ

2ω2
c + 1)

K
√

(ω2
c + z21)[tan2(φm − π − β) + 1]

. (30)

When the specifications ωc and φm are given, the parameters of the controller can be
obtained according to (28) and (30).

4 Simulation example

In this section, a numerical experiment is presented to show the effectiveness of the
Newton iterative algorithm for the second-order system by using the impulse response.
For comparison, we also present numerical results of a multi-point identification algo-
rithm for the second-order system based on the step response tests in [16].

Consider the following second-order system:

G1(s) = 6s + 10

(s + 1)(s + 3)
.

According to (2), the transfer function G1(s) can be rewritten as

G1(s) = 6s + 10

(s + 1)(s + 3)
= 2

s + 1
+ 4

s + 3
.
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Table 1 The parameter
estimates and errors (σ 2 = 02)

k a1 a2 a3 a4 δ

1 1.6318 3.2773 2.1797 4.7007 0.1825

2 1.2800 3.0899 1.8964 4.6708 0.1351

3 1.1148 3.0863 1.9051 4.4794 0.0930

4 1.0592 3.0889 1.9438 4.3267 0.0636

5 1.0302 3.0887 1.9720 4.2208 0.0441

10 0.9916 3.0794 2.0312 4.0124 0.0158

15 0.9937 3.0704 2.0488 3.9677 0.0168

20 1.0002 3.0634 2.0583 3.9520 0.0180

30 1.0110 3.0533 2.0704 3.9358 0.0200

40 1.0182 3.0471 2.0782 3.9260 0.0217

50 1.0227 3.0431 2.0833 3.9197 0.0229

True values 1.0000 3.0000 2.0000 4.0000

Table 2 The parameter
estimates and errors
(σ 2 = 0.052)

k a1 a2 a3 a4 δ

1 1.6507 3.3063 2.1892 4.7345 0.1908

2 1.3205 3.1194 1.9166 4.7179 0.1460

3 1.1481 3.1125 1.9098 4.5537 0.1079

4 1.0894 3.1167 1.9451 4.4132 0.0807

5 1.0587 3.1184 1.9712 4.3160 0.0628

10 1.0128 3.1174 2.0218 4.1304 0.0324

15 1.0081 3.1150 2.0318 4.0974 0.0282

20 1.0088 3.1131 2.0350 4.0899 0.0272

30 1.0113 3.1104 2.0377 4.0856 0.0265

40 1.0130 3.1087 2.0392 4.0836 0.0261

50 1.0139 3.1076 2.0400 4.0825 0.0259

True values 1.0000 3.0000 2.0000 4.0000

In simulation, the measured data are generated by the impulse response experiment.
The input signal is an impulse signal and the disturbance signal {v(t)} is an uncorrelated
noise sequence with zero mean and variance σ 2 = 0 and σ 2 = 0.052.
Case 1: The parameter estimates using the Newton iterative algorithm

Utilizing the Newton iterative algorithm to estimate the parameters of the second-
order system, the parameter estimates and their estimation errors are shown in Tables 1
and 2 and the estimation error δ := ‖θ̂k − θ‖/‖θ‖ versus k is shown in Fig. 1.

In practical industrial processes, the disturbances exist widely. We add noise with
zero mean and the variance σ 2 = 0.052 to the output data. The estimated model of
the second-order system by the Newton iterative algorithm is given by

G2(s) = 6.1225(s + 1.7115)

(s + 1.0139)(s + 3.1076)
.
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Fig. 1 The estimation error δ versus k

Table 3 The measured data of
the step response test
(σ 2 = 0.052)

ti y(ti ) ti y(ti ) ti y(ti ) ti y(ti )

0.2 4.83 1.2 13.52 2.2 15.81 3.2 16.40

0.4 7.97 1.4 14.16 2.4 16.00 3.4 16.35

0.6 10.04 1.6 14.49 2.6 16.12 3.6 16.39

0.8 11.58 1.8 14.95 2.8 16.08 4.0 16.52

1.0 12.63 2.0 15.57 3.0 16.37 5.0 16.61

Case 2: The comparison with the multi-point method
For comparison, the multi-point identification method based on the step response

test in [16] is used to compare the performance of the proposed algorithm. We apply
a step signal with the amplitude 5 (r(t) = 5, t ≥ 0) to the input port of the second-
order system and take a disturbance signal {v(t)} to be an uncorrelated noise sequence
with variance σ 2 = 0.052. The variance is the same as the impulse experiment by
the Newton iterative algorithm. The measured data of the step responses is shown in
Table 3.

Themain idea of themulti-point identificationmethod in [16] is that choosing some
special points data of the dynamical process constructs algebraic equations and solves
these equations to compute the parameters of the transfer function. In order to enhance
the accuracy of the parameters estimation, we take three groups data to estimate the
parameters of the second-order system model.

Consider the second-order system model is described as

G(s) = K (T3s + 1)

(T1s + 1)(T2s + 1)
, T1 < T2, T3 �= T1, T3 �= T2,

where K is the gain, T1, T2 and T3 are the time constants. The gain K = 3.332 is
estimated by the steady-sate value. In the simulation, the special points are located at
ti , 2ti and 3ti (ti = 0.2, 0.4, 0.6). The parameters to be estimated are obtained by the
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Table 4 The special points data
and the parameter estimates
(σ 2 = 0.052)

ti y(ti ) y(2ti ) y(3ti ) T̂1 T̂2 T̂3

0.2 4.83 7.97 10.04 0.4304 2.4981 1.0050

0.4 7.97 11.58 13.57 0.2385 0.8376 0.7007

0.6 10.04 13.52 14.95 0.4590 1.3432 0.7636

Parameter estimates 0.3760 1.5596 0.8231

True values 0.3333 1.0000 0.6000

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

 t /s

 y
 (

t )

G
3
(s)

G
1
(s)

G
2
(s)

Fig. 2 The unit-step responses curves

average parameter estimation values. The data of the special points and the parameter
estimates are shown in Table 4.

The estimated model of the second-order system by the multi-point identification
method is given by

G3(s) = 3.332(0.8231s + 1)

(0.3760s + 1)(1.5596s + 1)
= 4.6799(s + 1.2149)

(s + 2.6957)(s + 0.6412)
.

Case 3: The comparison of the step responses
In order to test the accuracy of the estimated models using the Newton iterative

algorithm and the multi-point identification method, we take a unit-step signal as an
input signal to the system. The unit-step responses curves of G1(s), G2(s) and G3(s)
are shown in Fig. 2. The solid-line is the response curve of the true model, the dot-line
is the response curve of the estimated model by the Newton iterative identification
method and the dash-line is the response curve of the estimated model by the multi-
point identification method. From the unit-step response curves, we can see that the
unit-step response curve of G2(s) are closer to that of G1(s) than G3(s). It means that
the Newton iterative algorithm is more effective than the multi-point identification
method.
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Case 4: The controller design
After obtaining the model of the second-order system, we design a proportional

derivative controller to achieve the desired dynamical performance of the system.
Because the estimatedmodel using theNewton iterative algorithmhas higher accuracy,
we take G2(s) as the plant to be controlled.

Suppose that ωc = 300 rad/s and φm = π/6. The proportional derivative controller
can be designed according to the above specifications. Utilizing (28) and (30) gives
the transfer function of the proportional derivative controller

C(s) = 25.4382

(
1 − 0.0056s

0.0001s + 1

)
.

Then, the open-loop transfer function of the system is

Gk(s) = G2(s)C(s) = 25.4382

(
1 − 0.0056s

0.0001s + 1

)
× 6.1225(s + 1.7115)

(s + 1.0139)(s + 3.1076)
.

The bode diagrams of G2(s) and Gk(s) are shown in Fig. 3, where the solid-line is the
bode diagram of Gk(s) and the dot-line is the bode diagram of G2(s). As is observed
from Fig. 3, the crossover frequency and phase margin specifications can be fulfilled
in the control of the proportional derivative controller and the frequency bandwidth of
the system is broaden. In practical process control, the closed-loop systems have more
advantages than the open-loop systems. So, we construct a closed-loop system and
apply a unit-step signal to the input port of the closed-loop system. The step response
curve is shown in Fig. 4.

From the simulation results, we can draw the following conclusions.

– The parameter estimation errors obtained by the Newton iterative algorithm
decrease gradually with the increasing of iteration k and some minor fluctuation
exists – see the estimation errors in the last columns of Tables 1 and 2. As the vari-
ance of the noise decreases, the parameter estimation errors given by the proposed
Newton iterative algorithm become smaller gradually. For a deterministic system
with the noise variance σ 2 = 0, the estimated parameters of the second-order
system are very close to the true parameter values.

– For comparison, the Newton iterative algorithm and the multi-point identifica-
tion method are compared to show the effectiveness of the proposed method in
this paper. The estimated model of the system by the Newton iterative algorithm
has higher accuracy than the multi-point identification method. For the systems
with disturbances, the parameter estimation errors become large. Moreover, the
gain is estimated by the system steady-state value when we use the multi-point
identification method. But in practical industrial processes, the exact steady-state
values are not easy to obtain because of disturbances. For the proposed Newton
iterative identification algorithm based on the impulse response experiment, it can
avoid estimating the gain according to the steady-state value. The drawback of the
proposed Newton iterative algorithm is that the selection of the initial value can
affect the results of the parameter estimation. So, the initial values should be at
the vicinity of the true values when using the Newton iterative algorithm.
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Fig. 3 The bode diagrams of G2(s) and Gk (s)
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Fig. 4 The step response of the closed-loop system

– The proportional derivative controller can be designed according to the proposed
controller design method. Once the specifications of the gain crossover frequency
ωc and the phase margin φm are given, a proportional derivative controller can
be obtained. The Bode diagrams of the control plant transfer function and the
open-loop system transfer function show that the specifications can be fulfilled
by the proportional derivative controller. The step response curve shows that the
closed-loop second-order systemhas good dynamic performance and stability. The
settling time is very short in the control of the proportional derivative controller
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by the proposed controller design method. The output response of the closed-loop
can reach the setting value quickly.

5 Conclusions

This paper presents a Newton iterative estimation algorithm to estimate the parameters
of a second-order system with different poles and one zero. Using the partial fraction
method, the transfer function of the second-order system is rewritten as the sum of the
partial fractions for avoiding utilizing the steady-state values of systems to estimate
the gain. This method can reduce the impact on the estimation accuracy because of
the existence of disturbances. After obtaining the estimated model, a controller design
method is proposed based on the specifications of the gain crossover frequency and
the phase margin. The simulation results show that the parameters of the second-
order system can be estimated by the proposed method and the dynamic and stability
performance is good in the control of the designed proportional derivative controller.
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