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Abstract This paper deals with the approximate controllability of retarded semilinear
stochastic systemwith nonlocal conditions inHilbert Spaces under the assumption that
the corresponding linear system is approximately controllable. The control function
for this system is suitably constructed by using the infinite dimensional controllability
operator. With this control function, the sufficient conditions for the approximate
controllability of the proposed problem in Hilbert Space are established. The results
are obtained by using Banach fixed point theorem. Finally, two examples are provided
to illustrate the application of the obtained results.
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1 Introduction

Controllability is one of the fundamental concepts in modern mathematical control
theory. This is the qualitative property of control systems and is of particular impor-
tance in control theory. Many dynamical systems are such that the control does not
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affect the complete state of the dynamical system but only a part of it. On the other
hand, very often in real industrial processes it is possible to observe only a certain
part of the complete state of the dynamical system. Therefore, it is very important
to determine whether or not control of the complete state of the dynamical system
is possible.So, here the concept of complete controllability and approximate control-
lability arises. Roughly speaking ,controllability generally means, that it is possible
to steer dynamical system from an arbitrary final state using the set of admissible
controls.Controllability is also strongly connected with the theory of minimal realiza-
tion of linear time-invariant control systems.

It is well known that controllability of deterministic equation is widely used inmany
fields of science and technology. Kalman [1] introduced the concept of controllability
for finite dimensional deterministic linear control systems. Then Barnett [2] and Cur-
tain [3] introduced the concepts of deterministic control theory in finite and infinite
dimensional spaces. Balachandran [4] and Dauer et al. [5] studied the controllability
of nonlinear systems in infinite dimensional spaces. However, in many cases, some
kind of randomness can appear in the problem, so that the system should be modelled
by a stochastic form. Only few authors have studied the extensions of deterministic
controllability concepts to stochastic control systems. Klamka [6] studied the control-
lability of linear stochastic systems in finite dimensional spaceswith delay andwithout
delay in control as well as in state. In [7–11], Mahmudov et al. established results for
controllability of linear and semilinear stochastic systems in Hilbert Spaces. Instead
of this, Sakthivel et al. [12] studied the approximate controllability of nonlinear sto-
chastic systems. Shen and Sun [13] studied the controllability of stochastic nonlinear
systems with delay in control in finite dimensional as well as in infinite dimensional
spaces.

Now, in the last few decades, there has been an expanding interest in the problems
involving retarded systems. Retarded Systems are the systems having retarded argu-
ments. Many real life problems that have in the past, sometimes been modelled by
initial value problems for differential equations actually involve a significant memory
effect that can be represented in a more refined model, using a differential equation
incorporating retarded or delayed arguments(arguments that lag behind the current
value).Therefore it becomes necessary and important to consider retarded systems as
these systems have found many applications in mathematical physics, biology and
finance.

On the other hand, Byszewski et al. [14] introduced nonlocal conditions into the
initial value problems and argued that the corresponding models more accurately
describe the phenomena since more information was taken into account at the oneset
of the experiment , thereby reducing the ill effects incurred by a single initial mea-
surement. Motivated by these facts, our main purpose in this paper is to study the
approximate controllability of retarded semilinear stochastic system with nonlocal
conditions. However, to the best of our knowledge, there are no results on the approxi-
mate controllability of retarded semilinear stochastic system with nonlocal conditions
as treated in the current paper.

Let (�,�, P) be a complete space equipped with a normal filtration �t , t ∈ J =
[0, T ] generated byω. Let X,U and E be the separableHilbert spaces and A : D(A) ⊂
X → X generates a strongly continuous compact semigroup (see [15]) denoted as
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Retarded semilinear stochastic system with non local conditions 515

S(t). B : U → X is a linear continuous operator. Supposeω be a Q-Weiner process on
(�,�T , P)with the covariance operator Q such that tr Q < ∞. We assume that there
exists a complete orthonormal system en in E , a bounded sequence of nonnegative real
numbers λn such that Qen = λnen , n = 1, 2, . . . and a sequence βn of independent
Brownian motions such that

w(t) =
∞∑

n=1

√
λnβn(t)en, en ∈ E, t ∈ J

and �t = �t
ω, where �t

ω is the σ -algebra generated by ω. Let L2
0 = L2(Q1/2E; X)

be the space of all Hilbert-Schmidt operators from Q1/2E to X . Then the space
L2

0 is a separable Hilbert space equipped with the norm ||ψ ||2Q = tr [ψQψ∗]. Let
L2(�,�t , X) be the space of �t measurable square integrable random variables with
values in the Hilbert space X . Let L�

2 (J, X) is the space of all �t adapted,X -valued
measurable square integrable processes on J × �. Let C([0, T ]; L2(�, X)) be the
Banach space of continuous maps from [0, T ] into L2(�, X) satisfying the condition
sup
t∈J

E||x(t)||2 < ∞.

Let X2 be the closed subspace ofC([0, T ]; L2(�, X)) consisting ofmeasurable and
�t - adapted X valued processes φ ∈ C([0, T ]; L2(�, X)) endowed with the norm

||φ||X2 =
(

sup
t∈[0,T ]

E||φ(t)||2X
)1/2

In this paper we examine the approximate controllability of the following semi-linear
stochastic Retarded system with nonlocal conditions :

dx(t) = [Ax(t) + Bu(t) + f (t, xt )]dt + σ(t, xt )dω(t) for t ∈ (0, T ]
x(t) = ψ(t), for t ∈ [−h, 0), x(0) = x0 + g(x).

}
(1.1)

where the state x(t) ∈ L2(�,�t , X) and the control u(t) ∈ L�
2 (J,U ). xt ∈

L2([−h, 0], X) and is defined as xt (s) = {x(t + s)| − h ≤ s ≤ 0|} and ψ =
{ψ(s)| − h ≤ s ≤ 0} ∈ L2([−h, 0], X). Moreover, the function f : J × X → X is a
purely nonlinear function and σ : J × X → L0

2 is a nonlinear function and g(x) is a
continuous function from C(J, X) → X .
For simplicity of considerations, we generally assume that the set of admissible con-
trols Uad = L�

2 (J,U ).

2 Preliminaries

It iswell known that for given initial conditions, any admissible controlu ∈ Uad , for t ∈
[−h, T ] and suitable nonlinear functions f (t, x(t)) and σ(t, x(t)) there exists unique
mild solution x(t; x0, u) ∈ L2(�,�t , X) of the semilinear stochastic differential state
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Eq. (1.1) which can be represented in the following integral form

x(t; x0, u) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

S(t)(x0 + g(x)) +
∫ t

0
S(t − s)(Bu(s) + f (s, xs))ds

+
∫ t

0
S(t − s)σ (s, xs)dω(s) f or t ≥ 0

ψ(t) f or t ∈ [−h, 0)

(2.1)

Let us introduce the following operators and sets LT ∈ L(Uad ,

L2(�,�T , X)) defined by

LT u =
∫ T

0
S(T − s)Bu(s)ds

where L(X,Y ) denotes the set of bounded linear operators from X to Y .
Then it can be seen that the adjoint operator L∗

T ∈ L2(�,�T , X) → Uad is given
by

L∗
T z = B∗S∗(T − t)E{z|�t }

The set of all states reachable in time T from initial state x(0) = x0 ∈ L2(�,�0, X),
using admissible controls is defined as

RT (Uad) = {x(T ; x0, u) ∈ L2(�,�T , X) : u ∈ Uad}
where x(T ; x0, u) = S(t)(x0 + g(x)) +

∫ T

0
S(T − s)Bu(s)ds

+
∫ T

0
S(T − s) f (s, xs)ds +

∫ T

0
S(T − s)σ (s, xs)dω(s)

Let us now we introduce the linear controllability operator 	T
0 ∈ L(L2(�,�T , X),

L2(�,�T , X)) as follows:

	T
0 {.} = LT (LT )∗{.}

=
∫ T

0
S(T − t)BB∗S∗(T − t)E{.|�t }dt

The corresponding controllability operator for deterministic model is:


T
s = LT (s)L∗

T (s)

=
∫ T

s
S(T − t)BB∗S∗(T − t)dt
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Retarded semilinear stochastic system with non local conditions 517

Definition 2.1 The stochastic dynamic system (1.1) is said to be approximately con-
trollable on [0, T ] if

RT (Uad) = L2(�,�T , X)

Lemma 1 [16] Let G : J × � → L2
0 be a strongly measurable mapping such that∫ T

0
E||G(t)||p

L0
2
dt < ∞. Then

E

∣∣∣∣

∣∣∣∣
∫ t

0
G(s)dω(s)

∣∣∣∣

∣∣∣∣
p

≤ LG

∫ t

0
E||G(s)||pds, (2.2)

for all t ∈ J and p ≥ 2, where LG is the constant involving p and T .

Lemma 2 Schwartz inequality: Let ψ1(x) and ψ2(x) be any two real integrable
functions in [a, b] then

[ ∫ b

a
ψ1(x)ψ2(x)dx

]2
≤

∫ b

a
[ψ1(x)]2dx

∫ b

a
[ψ2(x)]2dx

3 Main result

In this section, it will be shown that the system (1.1) is approximately controllable
under appropriate conditions. Some sufficient conditions will be investigated to show
how the solutions of (1.1) be steered approximately close to xT at T . In order to prove
our main results, we assume the following hypotheses:

(i) The functions f : J × X → X and σ : J × X → L0
2 satisfy linear growth and

Lipschitz conditions. Moreover, there exist positive constants L1, L2, L3 and L4
such that

|| f (t, xt ) − f (t, yt )||2 ≤ L1||xt − yt ||2,
||σ(t, xt ) − σ(t, yt )||2L0

2
≤ L2||xt − yt ||2

|| f (t, xt )||2 ≤ L3(1 + ||xt ||2), ||σ(t, xt )||2L0
2

≤ L4(1 + ||xt ||2)

(ii) The function g(x) is a continuous function and there exists a positive constants
Lg such that

||g(x) − g(y)||2 ≤ Lg||x − y||2, ||g(x)||2 ≤ Lg(1 + ||x ||2)

for all x, y ∈ C(J, X)
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(iii) For each 0 ≤ t < T , the operator α(α I + 
T
s )−1 → 0 in the strong operator

topology as α → 0+, where


T
s =

∫ T

s
S(T − t)BB∗S∗(T − t)dt

is the controllability Grammian. Observe that the linear deterministic system cor-
responding to (1.1)

dx ′(t) = [Ax(t) + Bu(t)]dt, t ∈ J
x(0) = x0

}
(3.1)

is approximately controllable on [s, T ] iff the operatorα(α I+
T
s )−1 → 0 strongly

as α → 0+ [7].

Now, for convenience, let us introduce the notation

l1 = max{||S(t)||2 : t ∈ [0, T ]}, l2 = ||B||2
M = max{||
T

s ||2 : s ∈ [0, T ]}

Let us recall two lemmas concerning approximate controllability, which will be used
in the proof. The following lemma is required to define the control function

Lemma 3 For any xT ∈ L2(�,�T , X), there exists φ ∈ L�
2 (J, L2

0) such that xT =
ExT +

∫ T

0
φ̃(s)dω(s).(see [7])

Now for any α > 0 and xT ∈ L2(�,�T , X), we define the control function

uα(t, x) = B∗S∗(T − t)

(
(α I + 
T

0 )−1(ExT − S(T )(x0 + g(x))

+
∫ t

0
(α I + 
T

s )−1φ̃(s)dω(s)

)

−B∗S∗(T − t)
∫ t

0
(α I + 
T

s )−1S(T − s) f (s, xs)ds

−B∗S∗(T − t)
∫ t

0
(α I + 
T

s )−1S(T − s)σ (s, xs)dω(s) (3.2)

Lemma 4 There exists a positive constant Mu such that for all x, y ∈ X2, we have

E||uα(t, x) − uα(t, y)||2 ≤ Mu
α2 ||x − y||2X2

E||uα(t, x)||2 ≤ Mu
α2

(
1 + ||x ||2X2

)
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Retarded semilinear stochastic system with non local conditions 519

Proof Let x, y ∈ X2. From lemma 1, 2 and the assumptions on the data, we obtain
E||uα(t, x) − uα(t, y)||2

≤ 3E
∣∣∣∣B∗S∗(T − t)(α I + 
T

0 )−1S(T )[g(y) − g(x)]∣∣∣∣2

+ 3E

∣∣∣∣

∣∣∣∣B
∗S∗(T − t)

∫ t

0
(α I + 
T

s )−1S(T − s)[ f (s, xs) − f (s, ys)]ds
∣∣∣∣

∣∣∣∣
2

+ 3E

∣∣∣∣

∣∣∣∣B
∗S∗(T − t)

∫ t

0
(α I + 
T

s )−1S(T − s)[σ(s, xs) − σ(s, ys)]dω(s)

∣∣∣∣

∣∣∣∣
2

≤ 3

α2 ||B||2l21
[
Lg||x−y||2X2

+t
∫ t

0
L1E||xs−ys ||2ds + Lσ

∫ t

0
L2E||xs − ys ||2ds

]

≤ 3

α2 ||B||2l21
[
Lg||x − y||2X2

+T L1T (T+h)||x−y||2X2
+Lσ L2T (T+h)||x−y||2X2

]

≤ 3

α2 l2l
2
1 [Lg + T 2L1(T + h) + Lσ L2T (T + h)]||x − y||2X2

= Mu

α2 ||x − y||2X2

where Mu = 3l2l21 [Lg + T 2L1(T + h) + Lσ L2T (T + h)]. Since
∫ t

0
E||xs − ys ||2ds ≤

∫ T

0
E

∫ 0

−h
||x(t + s) − y(t + s)||2dtds

=
∫ T

0
E

∫ s

s−h
||x(v) − y(v)||2dvds

≤
∫ T

0
E

∫ T

−h
||x(v) − y(v)||2dvds

≤ T

(∫ T

−h
E||x(v) − y(v)||2dv

)

≤ T (T + h) sup
v∈[−h,T ]

E||x(v) − y(v)||2

= T (T + h)||x − y||2X2

The proof of second inequality can be verified by putting uα(t, y) = 0. So,the proof
of the lemma is completed. ��

For any α > 0, define the operator Pα : X2 → X2 by

(Pαx)(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

S(t)(x0 + g(x)) +
∫ t

0
S(t − s)[Buα(s, x) + f (s, xs)]ds

+
∫ t

0
S(t − s)σ (s, xs)dω(s) f or t > 0

ψ(t) f or t ∈ [−h, 0)

(3.3)
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To prove the approximate controllability, we first prove in theorem 3.1, the existence of
a fixed point of the operatorPα as above, using the contractionmapping principle. Then
in theorem3.2,we show that under certain assumptions the approximate controllability
of the system (1.1) is implied by the approximate controllability of the corresponding
linear system.

Theorem 3.1 Under the hypothesis (i) − (i i i), the system (1.1) has a mild solution
on [0, T ].
Proof The proof of this theorem is divided into several steps.
Step 1: For any x ∈ X2, Pα(x)(t) is continuous on [−h, T ]. Let −h ≤ t1 < t2 ≤ T .
Using lemmas 1, 2 and the assumptions on the theorem, we have

E||(Pαx)(t2) − (Pαx)(t1)||2

≤ 8

{
E||ψ(t2)−ψ(t1)||2+E||(S(t2) − S(t1))(x0 + g(x))||2

+E

∣∣∣∣

∣∣∣∣
∫ t1

0
[S(t2−s)−S(t1−s)] × f (s, xs)ds

∣∣∣∣

∣∣∣∣
2

+ E

∣∣∣∣

∣∣∣∣
∫ t2

t1
S(t2 − s) f (s, xs)ds

∣∣∣∣

∣∣∣∣
2

+E

∣∣∣∣

∣∣∣∣
∫ t1

0
[S(t2 − s) − S(t1 − s)]σ(s, xs)dω(s)

∣∣∣∣

∣∣∣∣
2

+E

∣∣∣∣

∣∣∣∣
∫ t2

t1
S(t2 − s)σ (s, xs)dω(s)

∣∣∣∣

∣∣∣∣
2

+E

∣∣∣∣

∣∣∣∣
∫ t1

0
[S(t2 − s) − S(t1 − s)]Buα(s, x)ds

∣∣∣∣

∣∣∣∣
2

+E

∣∣∣∣

∣∣∣∣
∫ t2

t1
S(t2 − s)Buα(s, x)ds

∣∣∣∣

∣∣∣∣
2}

≤ 8

[
E||ψ(t2) − ψ(t1)||2 + E||(S(t2) − S(t1))(x0 + g(x))||2

+ t1

∫ t1

0
E||[S(t2−s)−S(t1−s)]× f (s, xs)||2ds + l1(t2−t1)

∫ t2

t1
E|| f (s, xs)||2ds

+ t1

∫ t1

0
E||[S(t2 − s) − S(t1 − s)]σ(s, xs)dω(s)||2

+ l1(t2 − t1)
∫ t2

t1
E||σ(s, xs)dω(s)||2

+ t1

∫ t1

0
E||[S(t2 − s) − S(t1 − s)]Buα(s, x)||2ds

+ ||B||2l1(t2 − t1)
∫ t2

t1
E||uα(s, x)||2ds

]

Hence Using Lebesgue’s dominated convergence theorem, we conclude that the
right hand side of the above inequality tends to zero as t2 − t1 → 0. Thus we conclude
that Pα(x)(t) is continuous from right in [−h, T ). A similar argument shows that it is
also continuous from left in (−h, T ]. Thus Pα(x)(t) is continuous on [−h, T ].
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Retarded semilinear stochastic system with non local conditions 521

Step 2:We show that Pα(X2) ⊂ X2. Let x ∈ X2. From 3.2 and assumption (i), we
have

E||(Pαx)||2 ≤ E

∣∣∣∣

∣∣∣∣ψ(t) + S(t)(x0 + g(x)) +
∫ t

0
S(t − s)(Buα(s, x) + f (s, xs))ds

+
∫ t

0
S(t − s)σ (s, xs)dω(s)

∣∣∣∣

∣∣∣∣
2

≤ 6

[
E||ψ(t)||2 + E||S(t)x0||2

+E||S(t)g(x)||2 + E

∣∣∣∣

∣∣∣∣
∫ t

0
S(t − s)Buα(s, x)ds

∣∣∣∣

∣∣∣∣
2

+E

∣∣∣∣

∣∣∣∣
∫ t

0
S(t − s) f (s, xs)ds

∣∣∣∣

∣∣∣∣
2

+ E

∣∣∣∣

∣∣∣∣
∫ t

0
S(t − s)σ (s, xs)dω(s)

∣∣∣∣

∣∣∣∣
2]

≤ 6

[
||ψ(t)||2 + l1||x0||2

+ l1Lg(1 + ||x ||2X2
) + Mul1l2T

α2 (1 + ||x ||2X2
) + l1T L3

×
(
1 +

∫ t

0
E||xs ||2ds

)
+ L4Lσ

(
1 +

∫ t

0
E||xs ||2ds

)]

≤ 6

[
||ψ(t)||2 + l1||x0||2 + l1Lg(1 + ||x ||2X2

)

+ Mul1l2T

α2 (1 + ||x ||2X2
) + l1T L3(1 + T (T + h)||x ||2X2

)

+ L4Lσ (1 + T (T + h)||x ||2X2
)

]

= B1 + B2||x ||2X2

where B1 > 0 and B2 > 0 are suitable constants. Since

∫ t

0
E||xr ||2dr ≤

∫ T

0
E

∫ 0

−h
||x(r + s)||2dsdr

=
∫ T

0
E

∫ r

r−h
||x(v)||2dvdr

≤
∫ T

0
E

∫ T

−h
||x(v)||2dvdr

≤ T

(∫ T

−h
E||x(v)||2dv

)

≤ T (T + h) sup
t∈[−h,T ]

E||x(t)||2

≤ T (T + h)||x ||2X2

for all t ∈ [−h, T ]. Hence E||(Pαx)(t)||2 < ∞, therefore Pα maps X2 into itself.
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Step 3:Now we prove that for each fixed α > 0, the operator Pα has a unique fixed
point in X2. We claim that there exists a natural number n such that Pn

α is a contraction
on X2. To see this, let x ∈ X2 so for t ∈ [−h, T ], we obtain,
E||(Pαx)t − (Pα y)t ||2

= E

∣∣∣∣

∣∣∣∣S(t)[g(x) − g(y)] +
∫ t

0
S(t − s)B[uα(s, x) − uα(s, y)]ds

+
∫ t

0
S(t − s)[ f (s, xs) − f (s, ys)]ds

+
∫ t

0
S(t − s)[σ(s, xs) − σ(s, ys)]dω(s)

∣∣∣∣

∣∣∣∣
2

≤ 4

(
l1Mg||x − y||2X2

+ MuT l2l1
α2 ||x − y||2X2

+ T l1L1

×
∫ t

0
E||xs − ys ||2ds + l1L2Lσ

∫ t

0
E||xs − ys ||2ds

)

≤ 4

(
l1Mg||x − y||2X2

+ MuT l2l1
α2 ||x − y||2X2

+ T l1L1T (T + h)||x − y||2X2

+ l1L2Lσ T (T + h)||x − y||2X2

)

≤ 4

(
l1Mg + MuT l2l1

α2 + T l1L1T (T + h) + l1L2Lσ T (T + h)

)
||x − y||2X2

Hence we obtain a positive real constant γ (α) such that

E||(Pαx)t − (Pα y)t ||2 ≤ γ (α)||x − y||2X2
ds

for all t ∈ [−h, T ] and for any x, y ∈ X2. Moreover,

E||Pα
2(x)(t) − Pα

2(y)(t)||2 ≤ γ (α)

∫ t

0
E||Pα(x)(s) − Pα(y)(s)||2ds

≤ γ (α)

∫ t

0
γ (α)E||x − y||2ds

= γ 2(α)t ||x − y||2X2

Using Mathematical Induction, one can get

E||Pα
n(x)(t) − Pα

n(y)(t)||2 ≤ γ (α)

∫ t

0
E||Pα

n−1(x)(s) − Pα
n−1(y)(s)||2ds

≤ (tn−1)(γ (α))n

(n − 1)! ||x − y||2X2
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Retarded semilinear stochastic system with non local conditions 523

In general,

||Pα
n(x)(t) − Pα

n(y)(t)||2X2
≤ (T n−1)(γ (α))n

(n − 1!) ||x − y||2X2

For any fixed α > 0, there exists n such that
(T n−1)(γ (α))n

(n − 1!) < 1. It follows that Pn
α is

a contraction mapping for sufficiently large n. Then, by the contraction principle the
operator Pα has a unique fixed point xα in X2, which is the mild solution of (1.1). ��
Theorem 3.2 If the assumptions (i) − (i i i) are satisfied, {S(t) : t ≥ 0} is compact
and f , σ are uniformly bounded, then the system (1.1) is approximately controllable
on [−h, T ].
Proof Let xα be a fixed point in Pα in X2. By using the stochastic Fubini theorem, it
is easy to see that

xα(T ) = xT − α(α I + 
T
0 )−1

(
ExT − S(T )(x0 + g(x)

)

+α

∫ T

0
(α I + 
T

s )−1S(T − s) f (s, xα
s )ds

+α

∫ T

0
(α I + 
T

s )−1S(T − s)σ (s, xα
s )dω(s)

−α

∫ T

0
(α I + 
T

s )−1φ̃(s)dω(s)

By the assumption that f and σ are uniformly bounded, there exists D > 0 such that

|| f (s, xα
s )||2 + ||σ(s, xα

s )||2 ≤ D

Then there is a subsequence denoted by{ f (s, xα
s ), σ (s, xα

s )} weakly converging to
say { f (s, w), σ (s, w)} in X × L0

2. Now the compactness of S(t) implies S(T − s)
f (s, xα

s ) → S(T − s) f (s), S(T − s)σ (s, xα
s ) → S(T − s)σ (s) in J × �.

From the above equation, we obtain

E||xα(T ) − xT ||2 ≤ 6||α(α I + 
T
0 )−1||2 ||ExT − S(T )(x0 + g(x))||2

+ 6E

( ∫ T

0
||α(α I+
T

s )−1φ̃(s)||2ds
)

+ 6E

( ∫ T

0
||α(α I+
T

s )−1|| ||S(T−s)[ f (s, xα
s )− f (s)]||ds

)2

+ 6E

( ∫ T

0
||α(α I + 
T

s )−1S(T − s) f (s)||ds
)2
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+ 6E

( ∫ T

0
||α(α I+
T

s )−1||2 ||S(T−s)[σ(r, xα
s ) − σ(s)]||2ds

)

+ 6E

( ∫ T

0

∣∣∣∣

∣∣∣∣α(α I + 
T
s )−1S(T − s)σ (s)

∣∣∣∣

∣∣∣∣
2

ds

)

Since by definition of 
T
s , for all 0 ≤ s < T the operator α(α I + 
T

s )−1 → 0 as
α → 0+ and moreover ||α(α I + 
T

s )−1|| ≤ 1. Thus by the Lebesgue domainated
convergence theorem, we obtain E||xα(T ) − xT ||2 → 0 as α → 0+. This gives the
approximate controllability. ��
Remark 3.1 If we consider the time varying semilinear retarded stochastic differential
equation in finite dimensional spaces with nonlocal conditions of the form

dx(t) = [A(t)x(t) + B(t)u(t) + f (t, xt )]dt + σ(t, xt )dω(t) for t ∈ (0, T ]
x(t) = ψ(t) for t ∈ [−h, 0), x(0) = x0 + g(x).

}
(3.4)

where A(t) and B(t) are the matrices of n × n and n × m respectively, and f, σ and
g are defined as previously. The solution of the above equation is

x(t; x0, u) = φ(t, t0)x0 +
∫ t

0
φ(t, s)B(s)u(s)ds

+
∫ t

0
φ(t, s) f (s, xs)ds +

∫ t

0
φ(t, s)σ (s, xs)dω(s)

If the functions f , σ and g satisfy the conditions (i) and (i i) and the correspond-
ing linear system is approximately controllable, then by suitably applying the above
theorem, one can show that the system (3.4) is approximately controllable.

4 Examples

Example 1 Consider the retarded stochastic heat equation with nonlocal conditions

dt z(t, θ) = [zθθ + Bu(t, θ) + p(t, zt )]dt + k(t, zt )dω(t)
z(t, 0) = z(t, π) = 0, 0 ≤ t ≤ T, 0 < θ < π

z(t, θ) = ψ(θ) − h ≤ t < 0, 0 ≤ θ ≤ π

z(0, θ) +
n∑

i=1

αi z(ti , θ) = z0(θ) t ∈ J

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(4.1)

where B is a bounded linear operator from a Hilbert space U into X , xt ∈
L2([−h, 0], X) and is defined as xt (s) = {x(t + s)| − h ≤ s ≤ 0|} and ψ =
{ψ(s)|−h ≤ s ≤ 0} ∈ L2([−h, 0], X). and p : J × X → X , k : J × X → L0

2 are all
continuous and uniformly bounded, u(t) is a feedback control and w is a Q-Wiener
process.
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Let X = L2[0, π ], and let A : D(A) ⊂ X → X be an operator defined by

Az = zθθ

with domain

D(A) = {z(.) ∈ X |z, zθ are absolutely continuous , zθθ ∈ X, z(0) = z(π) = 0}

Furthermore, A has discrete spectrum, the eigen values are −n2, n = 1, 2, · · · with
the corresponding normalized characterstic vectors en(s) = (2/π)1/2 sin ns,then

Az =
∞∑

n=1

−n2 < z, en > en, z ∈ X

It is known that A generates a compact semigroup S(t), t > 0 in X and is given by

S(t)z =
∞∑

n=1

e−n2t < z, en > en(θ), z ∈ X

Let f : J × X → X be defined by

f (t, xt )(θ) = p(t, xt (θ)), (t, xt ) ∈ J × X, θ ∈ [0, π ].

Let σ : J × X → L0
2 be defined by

σ(t, xt )(θ) = k(t, xt (θ)), (t, xt ) ∈ J × X, θ ∈ [0, π ].

The function g : C(J, X) → X is defined as

g(z)(θ) =
n∑

i=1

αi z(ti , θ)

for 0 < ti < T and θ ∈ [0, π ].
With this choice of A, B, f, σ and g, (1.1) is the abstract formulation of (4.1) such

that the conditions in (i) and (i i) are satisfied.
Now define an infinite-dimensional space

U =
{
u : u =

∞∑

n=2

unen(θ) |
∞∑

n=2

u2n < ∞
}

with the norm defined by

||u||U =
( ∞∑

n=2

u2n

)1/2
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and a linear continuous mapping B from U → X as follows:

Bu = 2u2e1(θ) +
∞∑

n=2

un(t)en(θ)

It is obvious that for u(t, θ, ω) =
∞∑

n=2

un(t, ω)en(θ) ∈ L�
2 (J,U )

Bu(t) = 2u2(t)e1(θ) +
∞∑

n=2

un(t)en(θ) ∈ L�
2 (J, X).

Moreover

B∗v = (2v1 + v2)e2(θ) +
∞∑

n=3

vnen(θ),

B∗S∗(t)z = (2z1e
−t + z2e

−4t )e2(θ) +
∞∑

n=3

zne
−n2t en(θ),

for v = ∑∞
n=1 vnen(θ) and z = ∑∞

n=1 znen(θ).
Let ||B∗S∗(t)z|| = 0, t ∈ [0, T ], it follows that

||2z1e−t + z2e
−4t ||2 +

∞∑

n=3

||zne−n2t ||2 = 0, t ∈ [0, T ]

⇒ zn = 0, n = 1, 2, · · · ⇒ z = 0
Thus by theorem 4.1.7 of [3], the deterministic linear system corresponding to (4.1)

is approximately controllable on [0, T ]. Therefore the system (4.1) is approximately
controllable provided that f, σ and g satisfy the assumptions (i) and (i i).

Example 2 Consider a two-dimensional retarded semi-linear stochastic system

dx(t) = [Ax(t) + Bu(t) + f (t, xt )]dt + σ(t, xt )dω(t) for t ∈ (0, T ]
x(t) = ψ(t) for t ∈ [−h, 0), x(0) = x0 + g(x).

}
(4.2)

where ω(t) is a one dimensional Wiener process, x = (x1, x2) ∈ R2 and

A =
[−1 0

0 1

]
, B =

[
1.2 −0.2
0.6 2.4

]
,

f (t, xt ) = 1
a

[
sin xt

xt

]
, σ (t, xt ) = 1

b

[
xt 0
0 cos xt

]
,
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The controllability matrix can be obtained as


T
0 =

∫ T

0
exp(A(T − s))BB∗exp(A∗(T − s))ds

=
[
0.74 − 0.74e−2T 0.24T

0.24T −0.36 + 0.36e2T

]

which is nonsingular for T > 0.

If we take Euclidean norm then

|| f (t, xt ) − f (t, yt )||2 ≤ 2

a2
||xt − yt ||2, ||σ(t, xt ) − σ(t, yt )||2 ≤ 2

b2
||xt − yt ||2

Let L1 = 2
a2
, and L2 = 2

b2
Now, one can easily see that the assumption (i) is satisfied

by f and σ . Also assumption (iii) is satisfied as described above. So, it can be easily
verified from theorem (3.1),(3.2) that the system (4.2) is approximately controllable
provided the assumption (ii) is also satisfied.
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