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Abstract In this paper, we develop a modified weak Galerkin finite element method
on arbitrary grids for convection–diffusion problems in two dimensions based on our
previous work (Wang et al., J Comput Appl Math 271, 319–327, 2014), in which we
only considered second order Poisson equations and thus only introduced a modified
weak gradient operator. This method, called MWG-FEM, is based on a modified
weak gradient operator and weak divergence operator which is put forward in this
paper. Optimal order error estimates are established for the correspondingMWG-FEM
approximations in both a discrete H1 norm and the standard L2 norm. Numerical
results are presented to demonstrate the robustness, reliability, and accuracy of the
MWG-FEM.
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1 Introduction

In this paper, we are concerned with a MWG-FEM for the convection-diffusion prob-
lems in two-dimensional space which seeks an unknown function u = u(x, y) satis-
fying

− ∇ · (a∇u) + ∇ · (bu) + cu = f (x, y), (x, y) ∈ �, (1)

u(x, y) = g(x, y), (x, y) ∈ �, (2)

where � ⊂ R2 is a bounded domain with boundary � = ∂�; a = a(x, y) is the
diffusion coefficient such that 0 < a0 ≤ a(x, y) ≤ a1, (x, y) ∈ �, here a0, a1
are positive constants, and b = b(x, y) := (b1(x, y), b2(x, y))T is the convection
velocity, and c = c(x, y) ≥ 0 is reaction coefficient, f (x, y) is the right side function,
g(x, y) is the prescribed Dirichlet data on the boundary �, and u = u(x, y) is the
unknown function representing the concentration of the solution in the flow.We impose
the physical condition

∇ · b
2

+ c ≥ 0, (x, y) ∈ �. (3)

It is well known that the convection–diffusion equation that involves a combination
of convection and diffusion dynamical processes is a fundamental equation describing
the process of fluid transfer and is widely used in many fields of science and engi-
neering, such as fluid mechanics, petroleum reservoir simulation, groundwater water
contamination, and environmental protection (see, for example Ref. [1,2,10], etc.). In
many such applications the convection term essentially dominates the diffusion term.
The numerical approximation to the problems presents a challenging computational
task. It is well documented that the governing equation is convection-dominated.Many
standard methods, developed for diffusion-dominated processes such as the standard
finite difference (volume) or finite element methods, often exhibit severe non-physical
oscillations since the corresponding discrete schemes are unstable for the problems.

The weak Galerkin (WG) method refers to general finite element techniques for
partial differential equations in which differential operators are approximated by weak
forms as distributions. In [11], a WGmethod was introduced and analyzed for second
order elliptic equations based on a discrete weak gradient arising from local RT [8] or
BDM [5] elements. However the WG finite element formulation of [11] was limited
to classical finite element partitions of triangles (d = 2) or tetrahedra (d = 3). This
restriction was lifted for WG mixed finite element formulation developed in [12]. In
[9], we introduced a new discrete weak gradient operator and a newWGfinite element
method for second order Poisson equations based on this new operator. The goal of
this paper is to introduce a new discrete weak divergence operator and a MWG-FEM
for convection–diffusion Eqs. (1) and (2) based on these new operators.

The paper is organized as follows. In Sect. 2, we introduce the definition and
approximation of the modified weak gradient operator and weak divergence operator.
In this section, we define some local projection operators. In Sect. 3, we provide a
detailed description for theMWGfinite element scheme, including a discussion on the
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A modified weak Galerkin finite element methods 495

element shape regularity assumption. We also derive some approximation properties
which are useful in error analysis. In Sect. 4, we establish an optimal order error
estimate for theMWGfinite element approximation in a H1-equivalent discrete norm.
We also derive an optimal order error estimate in L2 by using a duality argument aswas
commonly employed in the standard Galerkin finite element methods [3,6]. Finally,
in Sect. 5, we present some numerical results which confirm the theory developed in
earlier sections.

2 Discrete weak gradient and weak divergence

For the convection–diffusion problem (1) with non-homogenous Dirichlet boundary
condition (2), the corresponding variational form is given by seeking u ∈ H1(�)

satisfying u|∂� = g and

(a∇u,∇v) − (∇ · (bu), v) + (cu, v) = ( f, v), ∀v ∈ H1
0 (�), (4)

where H1
0 (�) is the subspace of H1(�) consisting of functions with vanishing value

on ∂�.
The key in MWG-FEMs is the use of new discrete weak derivatives in the place

of strong derivatives and weak divergences in the place of strong divergence in the
variational form for the underlying partial differential equations. For the model prob-
lem (4), the gradient ∇ is the principle differential operator involved in the variational
formulation. Thus, it is critical to define and understand discrete weak gradients for
the corresponding numerical methods. Following the idea originated in [11], the new
discrete weak gradient is given by approximating the strong gradient operator with
piecewise vector-valued polynomial functions and the weak divergence is given by
approximating the strong divergence operator with piecewise polynomial functions;
details are presented in the rest of this section.

Let Th be a partition of the domain � consisting of polygons. Denote by Eh the set
of all edges in Th and by E0

h = Eh\∂� the set of all interior edges. For each element
K ∈ Th , we denote by hK its diameter and mesh size h = maxK∈Th hK for Th .

All the elements of Th are assumed to be closed and simply connected polygons.
We need some shape regularity for the partition Th described as follows (see [7] for
more details).

A1 There exists a positive constant � such that for every element K ∈ Th and each
edge e of K , one can define an irregular pyramid P(e) ⊆ T with base e and apex
Ve ∈ K , such that the height of P(e), denoted by HK ,e, satisfies

HK ,e ≥ �hK .

A2 There exists a positive constant N such that for every element K ∈ Th , it has at
most N edges.

A3 The convex hull of each K ∈ Th , denoted by SK , is contained in �̄, the closure of
�. Further more, each convex hull intersects with only a fixed and small number
of convex hulls of other polygons in Th .
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496 F. Gao et al.

We define Vh , for k ≥ 1, as follows

Vh = {v ∈ L2(�) : v|K ∈ Pk(K ),∀K ∈ Th}, (5)

where Pk(K ) is the set of polynomials defined on K with degree no more than k.
Based on Vh , we define V 0

h as a subspace of Vh with zero boundary value, i.e.,

V 0
h = {v : v ∈ Vh, v|∂� = 0}. (6)

We also introduce a scalar polynomial space Wh

Wh := {w ∈ L2(�),w|K ∈ Pk−1(K ),∀K ∈ Th}, (7)

and a vector valued space Gh

Gh := {q ∈ [L2(�)]2, q|K ∈ [Pk−1(K )]2,∀K ∈ Th}. (8)

For each v ∈ V 0
h , if Ki , i = 1, 2, are two elements with a common edge e, and

unit outward normal vectors ni , i = 1, 2, across e, the average and jump of v across
e are denoted by {{v}} = (v|K1 + v|K2)/2 and

[[v]]e =
{

v|K1n1 + v|K2n2, e ∈ E0
h ,

0, e ∈ ∂�,
(9)

For each element K ∈ Th , denote by Qh the local L2-projection onto Gh , i.e., for
any vector valued function w(x), Qhw(x) satisfies

(Qhw, q)K = (w, q)K , ∀q ∈ Gk−1(K ), (10)

where Gk−1(K ) := [Pk−1(K )]2. Denote by Qh the local L2 projection from L2(K )

to Pk(K ).

Definition 2.1 Given a partition Th of� and a piecewise smooth function v, we define
the weak gradient of v on K , ∀K ∈ Th , as ∇wv ∈ Gh , such that

(∇wv, q)K = −(v,∇ · q)K + 〈{{v}}, q · n〉∂K , ∀q ∈ Gk−1(K ), (11)

where n is the unit outward normal to ∂K .

Remark 2.1 First, note that the definition for∇w here is different from the one defined
in [11]. Second, when v is continuous in �, {{v}} = v on ∂K , ∀K ∈ Th . Thus from
the definition of ∇w,

(∇wv, q)K = −(v,∇ · q)K + 〈v, q · n〉∂K = (∇v, q)K , ∀q ∈ Gk−1(K ), (12)

that is to say, the weak gradient ∇wv is actually the same as L2 projection of the
traditional gradient ∇v for such a v. Thus if v ∈ Pk(�),∇wv = ∇v.
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A modified weak Galerkin finite element methods 497

Definition 2.2 Given a partition Th of � and a piecewise smooth vector-valued func-
tion v, we define the weak divergence of v on K , ∀K ∈ Th , as ∇w · v ∈ Wh , such
that

(∇w · v, w)K = −(v, ∇w)K + 〈{{v}}, wn〉∂K , ∀w ∈ Wh, (13)

where n is the unit outward normal to ∂K .

Remark 2.2 When v is continuous in �, {{v}} = v on ∂K , ∀K ∈ Th . Thus from the
definition of ∇w·,

(∇w · v, w)K = −(v, ∇w)K + 〈v, wn〉∂K = (∇ · v,w)K , ∀w ∈ Wh, (14)

that is to say, the weak divergence ∇w · v is actually the same as L2 projection of
the traditional divergence ∇ · v for such a vector-valued function v. Thus if v ∈
[Pk(�)]2,∇w · v = ∇ · v.

Example 1 Let K is a triangular element�ABC , whose nodes are A(0, 0), B(1, 1),
C(0, 1), and AB = e1, BC = e2, CA = e3. It is easy to know that n1 =(

1√
2
,− 1√

2

)
, n2 = (0, 1), n3 = (−1, 0). Suppose u|K = (1, 1); u = 0, x ∈ �/K .

It is not hard to derive {{u}}|ei =
(
1

2
,
1

2

)
, (i = 1, 2, 3).

(1) When we choose k = 1, ∇w · u|K = a ∈ P0(K ), K ∈ Th . We have

a

2
= (∇w · u, 1)K = −(u, ∇1)K +

3∑
i=1

〈{{u}}, n〉ei
= 0 +

∫
e1

0ds + 1

2

∫
e2

1ds − 1

2

∫
e3

1ds

= 0.

So a = 0, and thus ∇w · u = 0.
(2) When we choose k = 2, ∇w · u|K = a + bx + cy ∈ P1(K ). We have

a

2
+ b

6
+ c

3
=

∫ 1

0

∫ 1

x
(a + bx + cy)dydx = (∇w · u, 1)K = 0

a

6
+ b

12
+ c

8
=

∫ 1

0

∫ 1

x
(ax + bx2 + cxy)dydx = (∇w · u, x)K

= −
∫ 1

0

∫ 1

x
1dydx +

∫
e1

1

2
u|e1 · xn1ds +

∫
e2

1

2
u|e2 · xn2ds

+
∫
e3

1

2
u|e3 · xn3ds = −1

4
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a

3
+ b

8
+ c

4
=

∫ 1

0

∫ 1

x
(ay + bxy + cy2)dydx = (∇w · u, y)K

= −
∫ 1

0

∫ 1

x
1dydx +

∫
e1

1

2
u|e1 · yn1ds +

∫
e2

1

2
u|e2 · yn2ds

+
∫
e3

1

2
u|e3 · yn3ds = −1

4

So a = 6, b = −6, c = −6, and thus ∇w · u = 6 − 6x − 6y.

3 MWG-FEMs and some lemmas

In finite element methods, mesh generation is a crucial first step in the algorithm
design. For the usual finite element methods [4,6], the meshes are mostly required to
be simplices: triangles or quadrilaterals in two dimensions and tetrahedra or hexahedra
in three dimensions, or their variations known as isoparametric elements. Our MWG-
FEM is designed to be sufficiently flexible so that general meshes of polytopes (e.g.,
polygons in 2D) are allowed. For simplicity, we shall refer to the elements as polygons
in the rest of the paper.

Now we introduce two bilinear forms on Vh as follows:

a(w, v) =
∑
K∈Th

(a∇ww, ∇wv)K +
∑
K∈Th

(∇w · (bw), v)K +
∑
K∈Th

(cw, v)K

s(w, v) = ρ
∑
K∈Th

h−1〈[[w]], [[v]]〉∂K ,

where ρ > 0 is a constant-valued parameter without the need of being “large enough”.
In practical computation, one might set ρ = 1. Denote by as(·, ·) a stabilization of
a(·, ·) given by

as(w, v) := a(w, v) + s(w, v).

Remark 3.1 Note that the stabilization term s(w, v) here is different from the one
defined in [11].

3.1 Modified weak Galerkin algorithm

A numerical approximation for (1) and (2) can be obtained by seeking uh ∈ Vh
satisfying both uh |∂� = gI on ∂� and the following equation:

as(uh, v) = ( f, v), ∀ v ∈ V 0
h , (15)

where gI is an approximation of the Dirichlet boundary value in the polynomial space
Pk(∂T ∩ ∂�). For simplicity, one may take gI as the standard L2 projection of the
boundary value g on each boundary segment.

Now, we introduce a norm in Vh as follows

123



A modified weak Galerkin finite element methods 499

|||v||| :=
√ ∑

K∈Th
(‖∇wv‖20,K + h−1‖[[v]]‖20,∂K ), v ∈ Vh . (16)

Lemma 3.1 Let K ∈ Th and e ∈ ∂K. For any function w ∈ Gh and v ∈ L2(�),
v|K ∈ C1(K ),

∑
K∈Th

(∇v,w)K =
∑
K∈Th

(∇wv,w)K +
∑
e∈Eh

〈[[v]], {{w}}〉e. (17)

Proof From the definition of ∇w and integration by parts, for each K ∈ Th , we have

(∇wv, w)K = −(v, ∇ · w)K + 〈{{v}}, w · n〉∂K ,

and

(∇v, w)K = −(v, ∇ · w)K + 〈v, w · n〉∂K .

So,

(∇v − ∇wv, w)K = 〈(v − {{v}}) · n1, w1〉∂K
= 〈v1 · n1 + v2 · n2, w1

2
〉∂K = 〈[[v]], w1

2
〉∂K ,

where v1, w1 are the values of v,w restricted to element K and v2 is the value of v

restricted in K ’s adjacent elements. Summing up the identities over all K ∈ Th yields,
∑
K∈Th

(∇v − ∇wv, w)K =
∑
e∈Eh

〈[[v]], {{w}}〉e.

��
Lemma 3.2 Let K ∈ Th. For any function v ∈ V 0

h ,

∑
K∈Th

(∇w · (bv), v)K =
∑
K∈Th

(
∇ · b
2

v, v)K . (18)

Proof From the definition of weak divergence ∇w·, for v ∈ V 0
h , we have

∑
K∈Th

(∇w · (bv), v)K = −
∑
K∈Th

(bv, ∇v)K +
∑
e∈Eh

〈{{bv}}, [[v]]〉e.

=
∑
K∈Th

(
∇ · b
2

v, v)K −
∑
e∈Eh

〈{{bv}}, [[v]]〉e

+
∑
e∈Eh

〈{{bv}}, [[v]]〉e.
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500 F. Gao et al.

We are now in a position to establish the uniqueness and existence for the solution
of MWG-FEM (15). It suffices to prove that the solution is unique. To this end, we let
f = g = 0.

Lemma 3.3 The modified WG finite element scheme (15) has a unique solution.

Proof Taking v = uh ∈ V 0
h in (15) and using Lemma 3.2 gives

(a∇wuh, ∇wuh) +
((∇ · b

2
+ c

)
uh, uh

)
+ s(uh, uh) = 0,

combining this with (3) implies that s(uh, uh) = 0, and (a∇wuh, ∇wuh) = 0. Thus
uh is continuous in the whole domain �. Therefore ∇wuh = ∇uh = 0. Thus we have
uh = C in �. Note uh = 0 on ∂�, we can complete the proof of this lemma. ��

The following lemma provides some estimates for the projection operators Qh and
Qh . Observe that the underlying mesh Th is assumed to be sufficiently general to allow
polygons. A proof of the lemma can be found in [7,12]. It should be pointed out that
the proof of the lemma requires some non-trivial technical tools in analysis, which
have also been established in [7,12].

Lemma 3.4 Let Th be a finite element partition of � satisfying the shape regularity
assumptions A1–A3. Then, for any φ ∈ Hk+1(�), we have

∑
K∈Th

‖φ − Qhφ‖2K +
∑
K∈Th

h2K ‖∇(φ − Qhφ)‖2K ≤ Ch2(k+1)‖φ‖2k+1, (19)

∑
K∈Th

‖a(∇φ − Qh(∇φ))‖2K ≤ Ch2k‖φ‖2k+1. (20)

Here and in what follows of this paper, C denotes a generic constant independent of
the mesh size h and the functions in the estimates.

Let K be an element with e as an edge. For any function ϕ ∈ H1(K ), the following
trace inequality has been proved to be valid for general meshes satisfyingA1–A3 (see
[7,12] for details):

‖ϕ‖2e ≤ C
(
h−1
K ‖ϕ‖2K + hK ‖∇ϕ‖2K

)
. (21)

Using (21), we can obtain the following estimates.

Lemma 3.5 Assume thatTh is shape regular. Then, for anyw ∈ Hk+1(�) and v ∈ Vh,
We have the following relation

∣∣∣∣∣∣
∑
K∈Th

h−1
K 〈[[Qhw]], [[v]]〉∂K

∣∣∣∣∣∣ ≤ Chk‖w‖k+1|||v|||, (22)
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and

∣∣∣∣∣∣
∑
K∈Th

〈{{a(∇w − Qh∇w)}}, [[v]]}〉∂K
∣∣∣∣∣∣ ≤ Chk‖w‖k+1|||v|||. (23)

Proof Using the definition of Qh , trace inequality (21), Lemma 3.4, and [[w]] = 0
for w ∈ Hk+1(�), we have

∣∣∣∣∣
∑

K∈Th
h−1
K 〈[[Qhw]], [[v]]〉∂K

∣∣∣∣∣ =
∣∣∣∣∣

∑
K∈Th

h−1
K 〈[[Qhw − w]], [[v]]〉∂K

∣∣∣∣∣
≤ C

∑
K∈Th

h−1
K ‖[[Qhw − w]]‖∂K ‖[[v]]‖∂K

≤ C

( ∑
K∈Th

h−1
K (‖[[Qhw − w]]‖∂K )2

)1/2 ( ∑
K∈Th

h−1
K ‖[[v]]‖2∂K

)1/2

≤ C
( ∑
K∈Th

h−2
K ‖[[Qhw − w]]‖2K

+‖[[∇(Qhw − w)]]‖2K
)1/2 ( ∑

K∈Th
h−1
K ‖[[v]]‖2∂K

)1/2

≤ Chk‖w‖k+1|||v|||.

(24)

Similarly, it follows from (21) and Lemma 3.4

∣∣∣∣∣
∑

K∈Th
〈{{a(∇w − Qh∇w)}}, [[v]]〉∂K

∣∣∣∣∣
≤ C

( ∑
K∈Th

hK ‖a(∇w − Qh∇w)‖2∂K
)1/2 ( ∑

K∈Th
h−1
K ‖v‖2∂K

)1/2

≤ Chk‖w‖k+1|||v|||.

(25)

This completes the proof of Lemma 3.5. ��

4 Error analysis

The goal of this section is to establish some error estimates for theMWGfinite element
solution uh arising from (15). The error will be measured in two natural norms: the
triple-bar norm as defined in (16) and the standard L2 norm. The triple bar norm is
essentially a discrete H1 norm for the underlying weak function.

4.1 Error equation

For simplicity of analysis, we assume that the coefficient tensor a in (1) is a piecewise
constant matrix with respect to the finite partition Th . The result can be extended
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to variable tensors without any difficulty, provided that the tensor a is piecewise
sufficiently smooth.

Lemma 4.1 Let uh ∈ Vh be the MWG finite element solution of the problem (1,
2) arising from (15). Assume the exact solution u ∈ Hk+1(�). Then, there exists a
constant C such that

|||Qhu − uh ||| ≤ C(hk + ‖Qhu − uh‖)|u|k+1. (26)

Proof Let φ ∈ H1(�) and v ∈ Vh be any finite element function. It follows from the
definition of the divergence (13), the definition of the discrete weak gradient (11), and
the integration by parts that

∑
K∈Th

(∇ · (bφ), v)K = −
∑
K∈Th

(bφ, ∇v)K +
∑
K∈Th

〈bφ, [[v]]〉∂K

=
∑
K∈Th

(∇w · (bφ), v)K , (27)

and

−
∑
K∈Th

(∇ · (a∇φ), v)K =
∑
K∈Th

(a∇φ, ∇v)K −
∑
e∈Eh

〈a∇φ, [[v]]〉e

=
∑
K∈Th

(a∇wφ, ∇v)K −
∑
e∈Eh

〈a∇φ, [[v]]〉e

=
∑
K∈Th

(a∇wφ, ∇wv)K +
∑
e∈Eh

〈[[v]], {{a∇wφ}}〉e

−
∑
e∈Eh

〈a∇φ, [[v]]〉e

=
∑
K∈Th

(a∇wφ, ∇wv)K +
∑
e∈Eh

〈[[v]], {{a∇wφ−a∇φ}}〉e.

(28)

Testing (1) by using v ∈ V 0
h we arrive at

∑
K∈Th

(−∇ · (a∇u), v)K +
∑
K∈Th

(∇ · (bu), v)K + (cu, v) = ( f, v). (29)

Letting φ = u in (27) and (28), combining (27), (28), and (29), we have that

∑
K∈Th

(a∇wu, ∇wv)K + ∑
e∈Eh

〈{{a∇wu − a∇u}}, [[v]]〉e
+ ∑

K∈Th
(∇w · (bu), v)K + (cu, v) = ( f, v).

(30)
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Subtracting (15) from (30) yields the following error equation

as(u − uh, v) =
∑
K∈Th

〈{{a∇u − a∇wu}}, [[v]]〉∂K ,∀v ∈ V 0
h . (31)

We have used the fact [[u]] = 0 for the true solution u.
Denote θ = u − uh and ρ = u − Qhu. Let v = Qhu − uh in (31), we have

as(v, v) = −as(ρ, v) −
∑
K∈Th

〈{{a∇u − a∇wu}}, [[v]]〉∂K ≡ r1 + r2, (32)

and

r1 = −as(ρ, v)

= −
∑
K∈Th

(a∇wρ, ∇wv)K −
∑
K∈Th

(∇w · (bρ), v)K − (cρ, v) − s(ρ, v)

≡ r11 + r21 + r31 + r41 . (33)

Obviously, we have

∣∣∣r11
∣∣∣ =

∣∣∣∣∣∣−
∑
K∈Th

(a∇wρ, ∇wv)K

∣∣∣∣∣∣
≤

∑
K∈Th

|(a∇ρ, ∇wv)K | + C
∑
e∈Eh

∣∣〈[[ρ]], {{∇wv}}〉e
∣∣

≤ |||v|||Chk |u|k+1 + Chk+1/2|u|k+1h
−1/2‖∇wv‖ ≤ Chk |||v||||u|k+1, (34)

∣∣∣r31
∣∣∣ = |−(cρ, v)| ≤ Chk+1‖v‖|u|k+1

and
∣∣∣r41

∣∣∣ = |−s(ρ, v)| ≤ Chk+1/2|u|k+1h
−1/2|||v||| ≤ Chk |u|k+1|||v|||.

Note that

∑
K∈Th

(∇w · (bρ), v)K =
∑
K∈Th

(∇ · (bρ), v)K −
∑
e∈Eh

〈[[bρ]], {{v}}〉e.

We have

∣∣∣r21
∣∣∣ =

∣∣∣∣∣∣−
∑
K∈Th

(∇w · (bρ), v)K

∣∣∣∣∣∣ ≤ C |bρ|1‖v‖ + Ch−1/2‖v‖hk+1/2|u|k+1,

≤ Chk‖v‖|u|k+1.
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So, we obtain

|r1| ≤ Chk |u|k+1(|||v||| + ‖v‖). (35)

Using trace inequality and Cauchy-Schwartz inequality, we can get

|r2| =
∣∣∣∣∣−

∑
K∈Th

〈{{a∇u − a∇wu}}, [[v]]〉∂K
∣∣∣∣∣

≤ C |||v|||h1/2(h−1/2‖a(∇u − ∇wu)‖ + h1/2‖a(∇u − ∇wu)‖1)
≤ Chk |u|k+1|||v|||.

(36)

Using ab ≤ εa2 + 1

ε
b2, it is not hard to get

‖|v‖| ≤ C(hk + ‖v‖)|u|k+1. (37)

��
Corollary 4.1 Let uh ∈ Vh be the MWG finite element solution of the problem (1, 2)
arising from (15). Assume that the exact solution u ∈ Hk+1(�). Then, there exists a
constant C such that

|||u − uh ||| ≤ C(hk + ‖u − uh‖)‖u‖k+1. (38)

Proof From triangle inequality, we have

|||u − uh ||| ≤ |||Qhu − uh ||| + |||u − Qhu|||
≤ C(hk + ‖Qhu − uh‖)‖u‖k+1 + Chk+1‖u‖k+1

≤ C(hk + ‖u − uh‖ + ‖u − Qhu‖)‖u‖k+1

≤ C(hk + ‖u − uh‖)‖u‖k+1.

This completes the proof. ��

4.2 Error estimates

The error equation (32) can be used to derive the following error estimate for the
MWG finite element solution.

To obtain an error estimate in the standard L2 norm, we consider a dual problem
that seeks � ∈ H1

0 (�)
⋂

H2(�) satisfying

− ∇ · (a∇�) − b · ∇� + c� = θ in �. (39)

Assume that the usual H2-regularity is satisfied for the dual problem. This means that
there exists a constant C such that

‖�‖2 ≤ C‖θ‖, (40)

where θ = u − uh .
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Theorem 4.1 Let uh ∈ Vh be the MWG finite element solution of the problem (1, 2)
arising from (15). Assume that the exact solution u ∈ Hk+1(�) and the dual problem
(39) has the usual H2-regularity (40). Then, there exists a constant C such that

‖u − uh‖ ≤ Chk+1‖u‖k+1. (41)

Proof By testing (39) with θ we obtain

‖θ‖2 = −(∇ · (a∇�), θ) − (b · ∇�, θ) + (c�, θ)

=
∑
K∈Th

(a∇�, ∇θ)K −
∑
K∈Th

〈a∇� · n, θ〉∂K

−
∑
K∈Th

(∇�, bθ)K + (c�, θ)

=
∑
K∈Th

(∇Qh�, a∇θ)K −
∑
e∈Eh

〈a∇�, [[θ]]〉e +
∑
K∈Th

(�, ∇ · (bθ))K

−
∑
e∈Eh

〈�, [[bθ]]〉e + (c�, θ) +
∑
K∈Th

(∇(� − Qh�), a∇θ)K

=
∑
K∈Th

(a∇Qh�, ∇θ)K −
∑
e∈Eh

〈a∇�, [[θ]]〉e +
∑
K∈Th

(Qh�, ∇ · (bθ))K

+
∑
K∈Th

(� − Qh�, ∇ · (bθ))K −
∑
e∈Eh

〈�, [[bθ]]〉e

+
∑
K∈Th

(∇(� − Qh�), a∇θ)K + (c�, θ)

=
∑
K∈Th

(a∇Qh�, ∇wθ)K +
∑
e∈Eh

〈[[θ]], {{a∇Qh�}}〉e −
∑
e∈Eh

〈a∇�, [[θ]]〉e

+
∑
K∈Th

(� − Qh�, ∇ · (bθ))K +
∑
K∈Th

(Qh�, ∇w · (bθ))K

+
∑
e∈Eh

〈[[bθ]], {{Qhφ}}〉e−
∑
e∈Eh

〈�, [[bθ]]〉e+
∑
K∈Th

(∇(� − Qh�), a∇θ)K

+ (cQh�, θ) + (c(� − Qh�), θ)

=
∑
K∈Th

(a∇wQh�, ∇wθ)K +
∑
e∈Eh

〈[[aQh�]], {{∇wθ}}〉e + (cQh�, θ)

+ (c(� − Qh�), θ) +
∑
e∈Eh

〈[[θ]], {{a(∇Qh� − ∇�)}}〉e

+
∑
K∈Th

(� − Qh�, ∇ · (bθ))K +
∑
K∈Th

(Qh�, ∇w · (bθ))K

−
∑
e∈Eh

〈[[bθ]], {{� − Qh�}}〉e +
∑
K∈Th

(∇(� − Qh�), a∇θ)K . (42)
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Here, we have used

∑
K∈Th

(∇w · (bw), q)K =
∑
K∈Th

(∇ · (bw), q)K −
∑
e∈Eh

〈[[bw]], {{q}}〉e.

Letting v = Qh� in (31) yields

∑
K∈Th

(a∇wθ, ∇wQh�)K +
∑
K∈Th

(∇w · (bθ), Qh�)K + (cθ, Qh�)

= −s(θ, Qh�) +
∑
K∈Th

〈{{a(∇u − ∇wu)}}, [[Qh�]]〉∂K . (43)

Substituting (43) into (42) arrives at

‖θ‖2 = −s(θ, Qh�) +
∑
K∈Th

〈{{a(∇u − ∇wu)}}, [[Qh�]]〉∂K

+ (c(� − Qh�), θ) +
∑
e∈Eh

〈[[θ ]], {{a(∇Qh� − ∇�)}}〉e

+
∑
K∈Th

(� − Qh�, ∇ · (bθ))K +
∑
e∈Eh

〈[[aQh�]], {{∇wθ}}〉e

−
∑
e∈Eh

〈[[bθ ]], {{� − Qh�}}〉e +
∑
K∈Th

(∇(� − Qh�), a∇θ)K

=
8∑

i=1

Ri . (44)

Let us bound the terms on the right hand side of (44) one by one. Using the Cauchy-
Schwarz inequality, the definition of s(·, ·), and (26), we obtain

|R1| = |−s(θ, Qh� − �)| ≤ |||θ |||Ch−1/2h3/2‖�‖2 ≤ C(hk + ‖θ‖)h‖θ‖,

and

|R3| ≤ Ch2‖�‖2‖θ‖.

From the trace inequality (21) and the estimate (19) we have

|R2| =
∣∣∣∣∣∣
∑
e∈Eh

〈[[Qh� − �]], {{a∇wu − a∇u}}〉e
∣∣∣∣∣∣ ≤ Chk+1|u|k+1‖θ‖,

|R6| =
∣∣∣∣∣∣
∑
e∈Eh

〈[[aQh�]], {{∇wθ}}〉e
∣∣∣∣∣∣ ≤ C(hk + ‖θ‖)h‖θ‖
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and

|R4| =
∣∣∣∣∣∣
∑
e∈Eh

∣∣∣∣∣∣ ≤ C(hk + ‖θ‖)h‖θ‖,

and

|R7| =
∣∣∣∣∣∣−

∑
e∈Eh

〈[[bθ ]], {{� − Qh�}}〉e
∣∣∣∣∣∣ ≤ C(hk + ‖θ‖)h2‖θ‖.

Using the Cauchy-Schwarz inequality, we obtain

|R5| =
∣∣∣∣∣

∑
K∈Th

(� − Qh�, ∇ · (bθ))K

∣∣∣∣∣ ≤ Ch2(hk + ‖θ‖)‖θ‖,

and

|R8| =
∣∣∣∣∣

∑
K∈Th

(∇(� − Qh�), a∇θ)K

∣∣∣∣∣ ≤ C(hk + ‖θ‖)h‖θ‖.

Substituting all of estimates to Ri , i = 1, 2, . . . , 8 into (44) yields

‖θ‖ ≤ C((hk + ‖θ‖)h + hk+1|u|k+1).

Thus,

‖θ‖ ≤ Chk+1|u|k+1. (45)

which implies (41). This completes the proof. ��
Theorem 4.2 Let uh ∈ Vh be the MWG finite element solution of the problem (1, 2)
arising from (15). Assume that the exact solution u ∈ Hk+1(�). Then, there exists a
constant C such that

|||u − uh ||| ≤ Chk‖u‖k+1. (46)

Proof It follows from Corollary 4.1

|||u − uh ||| ≤ C(hk + ‖u − uh‖)‖u‖k+1. (47)

(47) and (41) imply (46). This completes the proof. ��
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Table 1 Numerical error and convergence rate of Example 5.1.1 in norm |||eh |||
N a = 1 a = 0.01 a = 0.0001

Error Order Error Order Error Order

4 2.1674e−02 2.6483e−02 2.7049e−02

8 1.1590e−02 0.90 1.6543e−02 0.69 1.6817e−02 0.69

16 5.9767e−03 0.96 9.0377e−03 0.87 9.1687e−03 0.88

32 3.0342e−03 0.98 4.7018e−03 0.94 4.7655e−03 0.94

64 1.5288e−03 0.99 2.3955e−03 0.97 2.4269e−03 0.97

5 Numerical experiment

In this section, we will report several numerical results for the MWG finite element
methods. For simplicity, we consider b = (1, 1)T and c = 1, a = 1, 0.01, 0.0001, and
a rectangular domain � = [0, 1] × [0, 1] with uniform triangulation in this section.
The triangular mesh is constructed by: 1) uniformly partitioning the domain into
N × N sub-rectangles; 2) dividing each rectangular element by the diagonal line with
a negative slop. Denote the mesh size by h = 1/N .

All the numerical experiments are conducted by using linear weak Galerkin ele-
ments (k = 1) in the finite element space Vh . In this case, uh is a combination of
piecewise linear functions.

Let uh and u be solutions to the MWG equation and the original equation, respec-
tively. Denote eh = u − uh . The accuracy and efficiency will be examined in the
following tests. The following norms will be measured in all the numerical experi-
ments:

Discrete H1 norm: |||eh ||| =
{ ∑
K∈Th

(∫
K |∇weh |2dx + h−1

∫
∂K |[[eh]]|2ds

)}1/2

.

Element-based L2 norm: ‖eh‖ =
{ ∑
K∈Th

∫
K |eh |2dx

}1/2

.

5.1 Homogeneous boundary cases

First, we consider two homogeneous boundary cases, i.e., g = 0.

Example 5.1.1 Let the analytical solution to (1) be u = x(1− x)y(1− y).It is easy to
derive f by the above u. Tables 1 and 2 show the convergence rate for MWG solutions
measured in discrete H1 norm and element-based L2 norm on triangular meshes. The
numerical results indicate that the MWG solution is convergent with rate O(h) in H1

and O(h2) in L2 norms, which are same as the theoretical results shown in Theorems
4.2 and 4.1.

Example 5.1.2 Again, using the same meshes and elements as those used in Example
5.1.1, and the analytical solution is u = sin(πx) sin(πy). In this test, the error profiles
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Table 2 Numerical error and convergence rate of Example 5.1.1 in norm ‖eh‖
N a = 1 a = 0.01 a = 0.0001

Error Order Error Order Error Order

4 2.0417e−03 2.5563e−03 2.7380e−03

8 4.9600e−04 2.04 7.4964e−04 1.77 8.0362e−04 1.77

16 1.2254e−04 2.02 2.0013e−04 1.91 2.0967e−04 1.94

32 3.0482e−05 2.01 5.1695e−05 1.95 5.3136e−05 1.98

64 7.5996e−06 2.00 1.3137e−05 1.98 1.3362e−05 1.99

Table 3 Numerical error and convergence rate of Example 5.1.2 in norm |||eh |||
N a = 1 a = 0.01 a = 0.0001

Error Order Error Order Error Order

4 3.1635e−01 3.9673e−01 4.0467e−01

8 1.7030e−01 0.89 2.4384e−01 0.70 2.4769e−01 0.69

16 8.7170e−02 0.97 1.3116e−01 0.89 1.3300e−01 0.88

32 4.4038e−02 0.99 6.7625e−02 0.96 6.8529e−02 0.94

64 2.2136e−02 0.99 3.4291e−02 0.98 3.4738e−02 0.97

Table 4 Numerical error and convergence rate of Example 5.1.2 in norm ‖eh‖
N a = 1 a = 0.01 a = 0.0001

Error Order Error Order Error Order

4 2.7329e−02 3.3803e−02 3.5911e−02

8 6.8946e−03 1.99 8.7491e−03 1.95 9.2987e−03 1.95

16 1.7309e−03 1.99 2.2534e−03 1.96 2.3080e−03 2.01

32 4.3267e−04 2.00 5.7701e−04 1.97 5.7763e−04 2.00

64 1.0805e−04 2.00 1.4631e−04 1.98 1.4465e−04 2.00

are presented in Tables 3 and 4, which show an convergence rate of optimal order in
H1 and L2 norms.

5.2 Nonhomogeneous boundary cases

In this subsection, we will test (1) with nonhomogeneous boundary condition.

Example 5.2.1 The analytical solution is u = x + exp(x + y), which is not zero on
∂�. From Tables 5 and 6, we can see that the MWG solution is also convergent with
rate O(h) in H1 and O(h2) in L2 norms, which are same as the theoretical results
shown in Theorems 4.2 and 4.1.
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Table 5 Numerical error and convergence rate of Example 5.2.1 in norm |||eh |||
N a = 1 a = 0.01 a = 0.0001

Error Order Error Order Error Order

4 5.3714e−02 1.3397e−01 1.3843e−01

8 2.0208e−02 1.41 7.2934e−02 0.88 7.5048e−02 0.88

16 7.4557e−03 1.44 3.8077e−02 0.94 3.9102e−02 0.94

32 2.7014e−03 1.46 1.9454e−02 0.97 1.9958e−02 0.97

64 9.6768e−04 1.48 9.8325e−03 0.98 1.0082e−02 0.99

Table 6 Numerical error and convergence rate of Example 5.2.1 in norm ‖eh‖
N a = 1 a = 0.01 a = 0.0001

Error Order Error Order Error Order

4 1.0503e−02 8.6415e−03 9.3296e−03

8 2.4836e−03 2.08 2.0542e−03 2.07 2.2543e−03 2.05

16 5.9845e−04 2.05 4.9839e−04 2.04 5.5385e−04 2.03

32 1.4635e−04 2.03 1.2340e−04 2.01 1.3688e−04 2.02

64 3.6142e−05 2.01 3.0823e−05 2.00 3.3494e−05 2.03

All the three numerical examples given above are in good agreement with the
theoretical analysis in Sect. 4, which demonstrate that theMWG-FEM (15) is accurate
and robust.

6 Conclusion

We developed an MWG-FEM for two-dimensional convection–diffusion problems in
this paper. From experiments and analyses, we can see that the proposed MWG-FEM
is very efficient and successful for solving convection-diffusion problems. It has high-
order accuracy for the problems with small diffusion and large local Peclets numbers.
The important feature of the method is that we introduce a modified weak gradient and
weakdivergence, and a newstabilization termwithout the needof being “large enough”
constant-valued parameter. The algorithm of thisMWG-FEM can be extended to three
and higher dimensional convection–diffusion problems with more general boundary
conditions. However, we do not consider using a upwinding technique to handle the
convection term over the non-standard grid in the present framework of MWG-FEMs
and we will consider this idea in the oncoming works.
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