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Abstract Let Ry denote the polynomial residue ring Fon [u]/(u*), where 2/~ 1 +1 <
k < 2/ for some positive integer j. Motivated by the work in [1], we introduce a
new Gray map from Ry to Fzz,f, It is proved that the Gray image of a linear (1 + u)
constacyclic code of an arbitrary length N over Ry is a distance invariant linear cyclic
code of length 2/ N over Fon. Moreover, the generator polynomial of the Gray image
of such a constacyclic code is determined, and some optimal linear cyclic codes over
F> and Fy are constructed under this Gray map.
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1 Introduction

Linear codes over finite rings have been studied since the early 1970s in [3,11], that
study has regained attention by the works of Nechaev in [8] and Hammons et al in [4] on
some efficient nonlinear binary codes. These works deal with nonlinear binary codes
such as the Nordstrom-Robinson, Kerdock, Preparata, Goethals and Delsarte—Goethals
codes which are considered as binary images under the Gray map of linear codes over
the ring Z4. Since then, many researchers have paid more and more attentions to
study the codes over finite rings. In [15], Wolfmann showed that the Gray image of a
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linear single-root negacyclic code over Z4 is a distance invariant binary cyclic code
(not necessarily linear). This result was later generalized to a (1 + 2¥) constacyclic
code over Zy«+1 by Tapia-Recillas and Vega in [13], where the corresponding Gray
image was a binary distance invariant quasi-cyclic code. In [7], Ling and Blackford
generalized most of the results of [13,15] to the ring Z x+1, where p is any prime and
k is a positive integer.

(1 4 u) constacyclic codes over F, + u F;» were first introduced by Qian et al in [9],
where it was proved that the Gray image of a linear single-root (1 + u) constacyclic
code over F, + uF; is a binary distance invariant linear cyclic code. In [1], Abular
and Siap extended the Gray map of [9] to an arbitrary length over F, + u F> and the
generator polynomial of the correspoding Gray image was obtained, some optimal
binary codes were also constructed via the Gray map. Amarra et al in [2] discussed
the Gray image of a single-root (1 — u) constacyclic code over Fx + uF,x, which
was a quasi-cyclic code over F),. Later, the result of [2] were extended to single-root
(14 u") constacyclic codes over Fy[u]/ (u'*1y and single-root (1 — u™) constacyclic
codes over F ok [ul/ (u'”“) in [12] and [14] respectively, where the Gray images were
quasi-cyclic codes. Kai et al in [5] showed that the Gray image of a linear (1 4+ Au)
constacyclic code with an arbitrary length over F, +u F, was a distance invariant linear
code over F,. The Gray image of a single-root (1 + u + u?) constacyclic code over
the ring F>[u]/(u?) were proved to be a binary distance invariant linear cyclic code in
[10], but the generator polynomials of the corresponding Gray images in [10] and [5]
were not acquired. In this paper, we extend the result of [1] about the Gray map to the
polynomial residue ring Ry, where the generator polynomials of the corresponding
Gray images are obtained and some optimal linear cyclic code over F» and Fy are
constructed via the Gray map.

2 Preliminaries

Let Ry denote the ring Fom[u]/(u*), where 271 + 1 < k < 2/ for some positive
integer jand uk = 0. If x" — 1 = fi fr--- fq is the factorization of (x" — 1) into a
product of monic basic irreducible pairwise coprime polynomials over Rj for an odd
positive integer n, then this factorization is unique and can be directly carried over Ry
from over Fpm. Let C be a code of length N = 2¢n over Ry, where e is a non-negative
integer. For some fixed unit o of Ry, the o constacyclic shift v, on R,iv is the shift
Ve (co,c1,- - ,cn—1) = (xeny—1,c0,C1,--,cn—2). The code C is said to be an «
constacyclic code if v(C) = C. Now, we identify a codeword ¢ = (cg, c1, -+, CN—1)
with its polynomial representation ¢(x) = co+cjx+---+cy_1xV —1 then xc(x) cor-
responds to an « constacyclic shift of ¢(x) in the ring R [x]/(x"¥ — ). Thus « consta-
cyclic codes of length N over Ry can be identified as ideals in the ring R [x]/(x" —a).
In the following, we let j be a positive integer and 2/~! 41 < k < 2/.

3 A class of matrices over Fom

Definition 3.1 If j = 1, then A = 1o Jfj > 1,then Ay, = Agr 0
11 Ajj—1 Ayj
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From the definition of matrix A,;, we see that there are 2J rows and 2/ columns

in A,;. Besides, the first row of A,; is (1, 0,---,0 ), the first and 2/th columns
———
' (27 —1) zeros
of A,; are A,;(1) and A,;(27) respectively, where A,;(1) = (1,1,---, DT and
————
2J ones

Ayi(27)y =(0,---,0,DT.
N——’

(27 —1) ones
Lemma 3.1 A,; is an invertible matrix over Fom.

Proof From the definition of matrix A,;, we see that A,; is a lower triangular matrix

and each element of its main diagonal is one. So A,; is invertible over Fom. O
00---0

Lemma 3.2 Let B,; = | - : with 2J rows and 27 columns, then Byj Ay =
00---0
10---0

(Az.i (2])’ O, ety 0 ) n Fzm.
—_———

(2/—1) zero vectors

Proof Since the first row of A,; is (1, 0,---,0 ), then By; Ay;j = Byj = (Ay; (2f),
N——
(27 —1) zeros
0,---,0 )in Fpm. O
———

(27 =1) zero vectors

110---00 010...0
011---00 001-.-0
001---00

Theorem 3.3 Let Hyy = | . .. . .. |and Dyj = | ::: © | where Hy
000---11 ?88:::(1)
000---01

and D,; are both square matrices with 27 rows and 27 columns, then HyjAyj =
Aszzj in F2m.

Proof We prove the result by induction on j. In Fom, if j = 1, then

= (o1) (1) = (1) = () (V) = o0

Suppose H,j; Ay, = A,j; D,j, for some positive integer jj, then
Hajy Agiy = (Agiy @71, Agiy (1), -+, Ay @21 = 1)),
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From lemma 3.2, we can get
H j1+1A Hal = (H2j1 B2.f1 ) (Azfl 0 ) — (H2/1 AZ/] + szl AZ/] Bzfl Az/l )
2 2 0 H2j1 A2j1 A2j1 Hzn A2j1 th Az/l
(0, Ayjy (1), -+, Ayjy 271 = 1)) (A @), 0,---,0 )
——
(2/1—1) zero vectors

(Agir 271), Agiy (1), -+, Agiy Q71 = 1) (Agsi 271), Agji (1), -+, Ay 271 = 1))

$0 Hyji+1A,j1+1 = A,ji+1D,j1+1, which gives the proof. O
4 A new Gray map and the structure of the corresponding Gray image

k—1
Let a, b be two elements in Ry, then a, b can be written as ¢ = > u'r;(a) and
i=0

k=1
b = > u'r;(b) respectively, where r;(a), r;(b) € Fom for0 <i < k — 1. Itis easy to

i=0
check that r;(a + b) =ri(a) +r;(b) for0 <i <k — 1.

Definition 4.1 For an arbitrary element a in Ry, a new Gray map ®; from Ry to F22,f,
is defined as follows:

qu(a) Z(Oa aO ,”O(a)”’l(a),"' 7rk—1(a))A2J"

(2J —k) zeros

From the definition of @, we see that this Gray map is linear that because

(Dk(a+b) = ( 0’ ’O 7r0(a+b)vrl(a+b)1"' 1rk71(a+b))A2j
——
(27 —k) zeros
=(0,---,0 ,r9(a),r1(a), - ,rk—1(a))A,j
—_———
2/ —k) zeros
+(0,---,0 ,ro(b), ri(D), -+, rr—1(D))Ayj
——
(2/ k) zeros

= Oy (a) + Pr(b).

According to lemma 3.1, A,; is an invertible matrix over Fa», so ®y is a bijection
from R; to Fzz,,jl we identify a codeword ¢ = (co,c1, -+ ,CcN—1) € R,iv with its

polynomial representation c(x) = co+c1x+---+c¢ ~v—1xN¥=1and denote P;[c(x)] =
N—1 k=1

> ri(e)x! for0 <i <k — 1, then c(x) = 3 u' P;[c(x)]. Thus, the Gray map ®;
1=0 i=0

can be extended to Ri[x] in an obvious way.

Definition 4.2 For an arbitrary codeword ¢ = (cg, 1, -+ ,cN—1) € R,ﬁv , its polyno-
mial representation is ¢(x) = ¢+ c1x +- - - +cy_1x¥ 1. The polynomial Gray map
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@y from Ri[x] to Fom[x] is defined as follows:

1
N
Oplc(x)]=(0,---,0, Pole(x)], Pilc(x)], - -+, Pe—1lc(x)D Ay
S——— :
(27 —k) zeros x(zfel)N

Obviously, &y is not only linear, but also a bijection from Ry [x] to Fpm[x].

Definition 4.3 Let Wy, be the Lee weight of the element of Ry and Wy be the Ham-
ming weight of the element of F22,,J, We define that Wy (a) = Wgy[Pr(a)] for an
arbitrary element a in Ry. The Lee weight of a codeword in Ri[x] is the rational inte-
ger sum of the Lee weight of its coefficients. The Lee distance between two codewords
¢ and ¢ is defined as the Lee weight of (¢ — ¢).

The following lemma 4.1 is straightforward from the definitions of the polynomial
Gray map and Lee distance.

Lemma 4.1 The polynomial Gray map ®y is not only a linear bijection from Ry[x]
to Fom[x], but also a distance-preserving map from (Ry[x], Lee distance) to (Fym|[x],
Hamming distance).

Theorem 4.2 IfCisa (1 +u) _constacyclic code of length N over Ry, then ©(C) is
a linear cyclic code of length 2/ N over Fam.

Proof 1t only needs to prove Oplxc(x)] = xPile(x)]. In fact, xN¥ = 1 4+ u in
Ri[x1/(xN — (1 4+ u)), so x2’N = 1. For an arbitrary codeword c¢(x) = ¢o + c1x +
k=1
N=1 ¢ (, it can be written in the form ¢(x) = > u' Pi[c(x)]. Then, we
i=0

"'+CN7]X

k—1

have xc(x) = (1 + u)eny—1 + cox + c1x2 + -+ ey_axVN-1 = > ul Pi[xe(x)],
=0

where Po[xc(x)] = rol(cy—1)]+ x Polc(x)] + xVro(en—1) and P;[xc(x)] = ri[(1 +

k=2
wen—11+ > ri(eNx™ = [ri_i(en—1) + rilen—1)1+ x Pile(x)] + xNri(cy—1) for
=0

1<i<k — 1. Therefore

N
X
Dplxcx)] = (0,---,0, Polxc(x)], Pilxc(x)], -+, Pr—1[xc(x)]) Ay
— :
(27 —k) zeros x(zi—lw
1
1 k—1 N
=(0,---,0 ,ro(cN_1>,Zr,~(cN_1),--- : Z ri(en—1))Ayj
. I=0 l=k72 ,'
(27 —k) zeros x(2/71)N
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1
N
+xN (0,1, 0, rolen—1), r1(en—1), -+, Tk—1(eN—1))Ag
— :
(27 —k) zeros x(2/—])N
1
N
+x(0,---,0, Polc(x)], Pilc(x)], -+, Pr—1lc(x)]DAy;
‘,-/ :
(27 —k) zeros X(ijl)N
=(0,---,0 ,ro(eny=1), r1(cN-1), - s i1 (en—1)) (Hpj Agj + Ay Dyj)
———
(27 —k) zeros
1
N
X . + xOr[c(x)].
x(zf';mv
By theorem 3.3, @i [xc(x)] = xPrc(x)]. O

5 The generator polynomial of the Gray image

1 1
xN 1+ xN
Lemma 5.1 In Fom[x], Ayj . =
x(z-f'—l)N a +x}v)21—1

. . . 1
Proof We prove the result by induction on j. In Fom[x], if j = 1, then Aj (xN) =

() ()= (i)

1 1
XN 1+ xN
Suppose A, , . = . for some positive integer jj in
x(zfl—l)N (1 +xN)2/l—1
Fom[x], then
1 1
xN A2j1 0 XN
Asji+1 . = .
2 : (Azf’l A ) :
K@M =DN K@M =DN
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1
N

A2j1 : 1
L@I1-DN 14+ xV
N .

i X N2+ ]
1
(1+22"M)A,, (e
£ @1=DN
This gives the proof. O

Let n be an odd positive integer and let x* — 1 = f| f2 - - f, be the factorization
of (x" — 1) into a product of monic basic irreducible pairwise coprime polynomials in
Fom[x], then the following lemma is straightforward from the theorem 4 and lemma
3of [7].

Lemma 5.2 Let C be a (1 + u) constacyclic code of length N = 2°n over Ry, then
C = (flklfzkz-uf;q), where 0 < k; < 2°k fori = 0,1,---,q. Furthermore,

q
|C| = 2m&N=D ywhere n = > kideg(f;).

i=1

Theorem 5.3 Let C = { lkl 2’(2 e f;") be a (1 + u) constacyclic code of length
N = 2°n over Ry, where e is a non-negative integer and 0 < k; < 2°k fori =
0,1,---,q. Then the Gray image ®;(C) is a linear cyclic code of length 2/ N over
kq+2"(2/7k))
g .

ki+2°Q20 k) pha+2¢(27 —k
Fzmdnd¢k(c)=(fll+ ( )f22+ ( )f
Proof By theorem 4.2, ®;(C) is a linear cyclic code of length 2/ N over Fpm. So,
we only need to prove @, (C) = (f1k1+2<’(2!—k)f2kz+28(2!—k) o quq+2r(2/7k)

k=1 k-1
we denote c(x) = fAfR2 . £ € €, then c(x) = X ulPle(x)] = >.(1 +
i=0 i=0

). In fact,

xM) Pi[c(x)]. By lemma 5.1,

1
.XN
Grle(x)]=(0,---,0, Pole(x)], Pile(x)], - -+, Pr—1lc(x)]) Ayj
S—— .
2/ —k) zeros x(21'71)N
1
14+ xN
=(0,---,0, Pole(x)], Pilc(x)], -+, Pr—1lc(x)])
~—— .
(2/ —k) zeros (a+ xN)ijl
k=l ,
= L+ x> A+ XN Pile)] = (1 + M) o) € @ (0).
i=0
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So ((1 —|—)cN)2'/_kf]kl fzk2 e f:") C ®;(C). Comparing the number of codewords,

we have @ (C) = ((1+xM)2 =k gk gho gl Gince 1 4+ 3N = (f1 £+ £,)% in
Fom[x], then we get the result. O

6 Examples

Let w be a primitive element of Fy4. In F>[x], 3—1= Q102,where Q1 = x+1and
0> = x>+ x+1.In Fy[x], x> — 1 = g1gog3, where g = x + 1, g2 = x + w and
g3 = x4+’ In Fr[x]and Fy[x],x” =1 = f1 fof3, where fi = x+1, o = x> +x+1
and f3 = x> +x2 4+ 1.

Example 1 Letk = 2 and m = 1 in definition 4.2 and theorem 5.3, we get the result
of Abularub et al about the Gray map in [1]. Now, we let k = 2 and m = 2, we can
get some other optimal codes. For example, C1 = (g gzgg) isa (1 + u) constacyclic
code of length N = 6 over F4 + u F4. According to theorem 5.3, ®>(C1) = (g1g2g§>,
which is a [4,7,12] linear cyclic code over F4 and an optimal code. Table 1 presents

Table 1 Optimal linear codes
over Fy4 obtained from (1 + u)
constacyclic codes over

Length Generator polynomial Gray image

Fy+uFy 3 81 [6,5.2]
3 @ [6,5.2]
3 e [6,5.2]
3 g2 [6,4,2]
3 8182 [6,4,2]
3 8183 [6.4.2]
3 &3 [6.4.2]
3 8283 [6.4.2]
3 3 [6,4,2]
3 glee3 6.2.4]
3 218383 (6.2.4]
3 818283 [6,2,4]
6 g1 [12,11,2]
6 o [12,11,2]
6 @ [12,11,2]
6 gl [12,10,2]
6 2182 [12,10,2]
6 2183 [12,10,2]
6 &3 [12,10,2]
6 8283 [12,10,2]
6 3 [12.10.2]
6 78283 [12,7.4]
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Table 1 continued

Length Generator polynomial Gray image
6 218383 [12,7.4]

6 218283 [12.7.4]

7 fi [14,13,2]

7 f12 [14,12,2]

7 fir [14,9,4]

7 fif [14,9,4]

several optimal linear codes over Fy obtained from (1 + u) constacyclic codes over
F4 + uFy4 of some lengths.

Tables 2, 3, 4, 5, 6 and 7 present some optimal codes obtained from (1 + u)
constacyclic codes of some lengths over Ry under the Gray map.

Table 2 Optimal binary linear

codes obtained from (1 + 1) Length Generator polynomial Gray image
(;(;r;zt]a/c(};c;;c codes over 3 Q% [12.7.4]

3 03 [12,6,4]

3 030, [12,5,4]

3 03 [12,54]

3 03 [12,3,6]

3 0703 [12,2,8]

6 01 [24,20,2]

6 ot [24,17,4]

6 03 [24,16,4]

6 010, [24,15,4]

6 08 [24,15.4]

7 3 [28,12,8]

7 3 [28,12,8]

7 35 [28,6,12]

7 131} [28,6,12]
Ij:rl;j obotzglrzslflrgﬁaflccfzi Length Generator polynomial Gray image
;(;r;zt]a/c(};c;;c codes over 3 g% [12.7.4]

3 &3 [12,7.4]

3 &3 [12,7,4]
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Table 4 Optimal binary linear

codes obtained from (1 + 1) Length Generator polynomial Gray image
(;gr;zt]a/c(};cil)c codes over 3 Q; [12,11.2]
3 0} [12,10,2]
3 0> [12,10,2]
3 03 [12.9.2]
3 0102 [12,9.2]
3 030, [12,7.4]
3 010, [12,6.4]
3 0103 [12.5.4]
3 03 02 [12,5.4]
3 0,04 [12,3,6]
3 0103 [12,2,8]
6 01 [24,23,2]
6 03 [24,22.2]
6 0> [24,22.2]
6 03 [24,21,2]
6 0102 [24,21,2]
6 ot [24,20,2]
6 0320, [24,20,2]
6 03 [24,20,2]
6 030, [24,17,4]
6 080, [24,16,4]
6 03 03 [24,15.4]
6 070, [24,15.4]
7 i h [28,22,4]
7 fif [28,22,4]
7 fith [28,21,4]
7 fitf [28,21,4]
7 Hhf [28,12,8]
7 151 [28,12,8]
7 e 28.,6,12]
7 N 28.6.12]
Ij:rl;j o(biz;;?;lflr?;azf(fzs) Length Generator polynomial Gray image
215]:1;();}10 codes over 3 g1 [12,11,2]
3 @ [12,11.2]
3 a3 [12,11.2]
3 gl [12,10.2]
3 &3 [12,10,2]
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Table 5 continued

Length Generator polynomial Gray image
3 83 [12,102]
3 2182 [12,10,2]
3 aes [12,10,2]
3 8283 [12,10,2]
3 212283 [12,74]
3 218383 [12,74]
3 8283 [12.7.4]
7 f [28,27,2]
7 1} [28,26,2]
7 £ [28,25,2]
7 f3 [28,25.2]
7 1 [28,25,2]
7 R h [28,22,4]
7 2 [28,22,4]
3:;);: gbt;?igctei(;nfarl inn(alr}_/i_li;)ear Length Generator polynomial Gray image
;(;r;zt]a/c(};cslzc codes over 7 f12 [56,54,2]
7 1 [56,53.2]
7 12 [56,53,2]
7 i [56,53,2]
7 /3 [56,52,2]
7 fifz [56,52,2]
7 i [56,52.2]
7 fifs [56.51.2]
7 1t [56.51.2]
7 2 [56,48,4]
7 h [56,48,4]
7 12f [56,47.4]
7 e [56,46.4]
7 filr [56,46,4]
7 R} [56,45.4]
7 71 56,45,4]
7 125 [56,45,4]
7 2 h [56.45,4]
7 L hts [56.45.4]
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Table 7 Optimal binary linear
codes obtained from (1 + u)
constacyclic codes over

Length Generator polynomial Gray image

Falul/{u'®) Z 22 Eiiiéi
7 7} [112,109,2]
7 h [112,109,2]
7 /3 [112,109,2]
7 f1.f2 [112,108,2]
7 N/ [112,108,2]
7 A [112,108,2]
7 A [112,107,2]
7 fih [112,107,2]
7 fih [112,107.2]
7 7 [112,106,2]
7 L h [112,106,2]
7 11 [112,106,2]
7 3 [112,106,2]
7 f2f3 [112,106,2]
7 73 [112,106,2]
7 Rh [112,100,4]
7 Rf [112,100,4]
7 7105 [112,99.4]
7 0 [112,99.4]
7 R [112,3,64]
/ RO A [112,3,64]

7 Conclusion

In this paper, we extend the result of [1] about the Gray map to the polynomial residue
ring Ry = Fom[u]/(u*), where 2/=1 41 < k < 2/ for some positive integer j. Some
optimal linear cyclic code over F> and F4 have been constructed via the Gray map. A
nature problem is to extend the results to the ring F, [u]/ (u*).
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