

ORIGINAL RESEARCH

The Gray images of (1 + u) constacyclic codes over $F_{2^m}[u]/\langle u^k \rangle$

Jian Ding · Hong-ju Li

Received: 29 August 2014 / Published online: 31 October 2014 © Korean Society for Computational and Applied Mathematics 2014

Abstract Let R_k denote the polynomial residue ring $F_{2^m}[u]/\langle u^k \rangle$, where $2^{j-1} + 1 \le k \le 2^j$ for some positive integer j. Motivated by the work in [1], we introduce a new Gray map from R_k to $F_{2^m}^{2^j}$. It is proved that the Gray image of a linear (1 + u) constacyclic code of an arbitrary length N over R_k is a distance invariant linear cyclic code of length $2^j N$ over F_{2^m} . Moreover, the generator polynomial of the Gray image of such a constacyclic code is determined, and some optimal linear cyclic codes over F_2 and F_4 are constructed under this Gray map.

Keywords Linear code · Cyclic code · Constacyclic code · Gray map

Mathematics Subject Classification 11T71 · 94B05 · 94B15

1 Introduction

Linear codes over finite rings have been studied since the early 1970s in [3,11], that study has regained attention by the works of Nechaev in [8] and Hammons et al in [4] on some efficient nonlinear binary codes. These works deal with nonlinear binary codes such as the Nordstrom-Robinson, Kerdock, Preparata, Goethals and Delsarte–Goethals codes which are considered as binary images under the Gray map of linear codes over the ring Z_4 . Since then, many researchers have paid more and more attentions to study the codes over finite rings. In [15], Wolfmann showed that the Gray image of a

J. Ding (🖂) · H. Li

Department of Common Course, Anhui Xinhua University, Hefei 230088, Anhui, People's Republic China e-mail: dingjian_happy@163.com

linear single-root negacyclic code over Z_4 is a distance invariant binary cyclic code (not necessarily linear). This result was later generalized to a $(1 + 2^k)$ constacyclic code over $Z_{2^{k+1}}$ by Tapia-Recillas and Vega in [13], where the corresponding Gray image was a binary distance invariant quasi-cyclic code. In [7], Ling and Blackford generalized most of the results of [13, 15] to the ring $Z_{p^{k+1}}$, where p is any prime and k is a positive integer.

(1+u) constacyclic codes over $F_2 + uF_2$ were first introduced by Oian et al in [9], where it was proved that the Gray image of a linear single-root (1 + u) constacyclic code over $F_2 + uF_2$ is a binary distance invariant linear cyclic code. In [1], Abular and Siap extended the Gray map of [9] to an arbitrary length over $F_2 + uF_2$ and the generator polynomial of the correspoding Gray image was obtained, some optimal binary codes were also constructed via the Gray map. Amarra et al in [2] discussed the Gray image of a single-root (1 - u) constacyclic code over $F_{n^k} + uF_{n^k}$, which was a quasi-cyclic code over F_p . Later, the result of [2] were extended to single-root $(1+u^t)$ constacyclic codes over $F_a[u]/\langle u^{t+1}\rangle$ and single-root $(1-u^m)$ constacyclic codes over $F_{p^k}[u]/\langle u^{m+1} \rangle$ in [12] and [14] respectively, where the Gray images were quasi-cyclic codes. Kai et al in [5] showed that the Gray image of a linear $(1 + \lambda u)$ constacyclic code with an arbitrary length over $F_p + u F_p$ was a distance invariant linear code over F_n . The Gray image of a single-root $(1 + u + u^2)$ constacyclic code over the ring $F_2[u]/\langle u^3 \rangle$ were proved to be a binary distance invariant linear cyclic code in [10], but the generator polynomials of the corresponding Gray images in [10] and [5] were not acquired. In this paper, we extend the result of [1] about the Gray map to the polynomial residue ring R_k , where the generator polynomials of the corresponding Gray images are obtained and some optimal linear cyclic code over F_2 and F_4 are constructed via the Gray map.

2 Preliminaries

Let R_k denote the ring $F_{2^m}[u]/\langle u^k \rangle$, where $2^{j-1} + 1 \le k \le 2^j$ for some positive integer j and $u^k = 0$. If $x^n - 1 = f_1 f_2 \cdots f_q$ is the factorization of $(x^n - 1)$ into a product of monic basic irreducible pairwise coprime polynomials over R_k for an odd positive integer n, then this factorization is unique and can be directly carried over R_k from over F_{2^m} . Let C be a code of length $N = 2^e n$ over R_k , where e is a non-negative integer. For some fixed unit α of R_k , the α constacyclic shift v_α on R_k^N is the shift $v_\alpha(c_0, c_1, \cdots, c_{N-1}) = (\alpha c_{N-1}, c_0, c_1, \cdots, c_{N-2})$. The code C is said to be an α constacyclic code if v(C) = C. Now, we identify a codeword $c = (c_0, c_1, \cdots, c_{N-1})$ with its polynomial representation $c(x) = c_0 + c_1 x + \cdots + c_{N-1} x^{N-1}$, then xc(x) corresponds to an α constacyclic shift of c(x) in the ring $R_k[x]/\langle x^N - \alpha \rangle$. Thus α constacyclic codes of length N over R_k can be identified as ideals in the ring $R_k[x]/\langle x^N - \alpha \rangle$. In the following, we let j be a positive integer and $2^{j-1} + 1 \le k \le 2^j$.

3 A class of matrices over F_{2^m}

Definition 3.1 If
$$j = 1$$
, then $A_2 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$. If $j > 1$, then $A_{2j} = \begin{pmatrix} A_{2j-1} & 0 \\ A_{2j-1} & A_{2j-1} \end{pmatrix}$.

From the definition of matrix A_{2^j} , we see that there are 2^j rows and 2^j columns in A_{2^j} . Besides, the first row of A_{2^j} is $(1, \underbrace{0, \cdots, 0}_{(2^j-1) \text{ zeros}})$, the first and 2^j th columns of A_{2^j} are $A_{2^j}(1)$ and $A_{2^j}(2^j)$ respectively, where $A_{2^j}(1) = (\underbrace{1, 1, \cdots, 1}_{2^j \text{ ones}})^T$ and $A_{2^j}(2^j) = (\underbrace{0, \cdots, 0}_{2^j}, 1)^T$.

$$A_{2j}(2^j) = (\underbrace{0, \cdots, 0}_{(2^j-1) \text{ ones}}, 1)^T.$$

Lemma 3.1 A_{2^j} is an invertible matrix over F_{2^m} .

Proof From the definition of matrix A_{2j} , we see that A_{2j} is a lower triangular matrix and each element of its main diagonal is one. So A_{2j} is invertible over F_{2^m} .

Lemma 3.2 Let
$$B_{2j} = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 \\ 1 & 0 & \cdots & 0 \end{pmatrix}$$
 with 2^j rows and 2^j columns, then $B_{2j}A_{2j} = (A_{2j}(2^j), \underbrace{0, \cdots, 0}_{(2^j-1) \text{ zero vectors}})$ in F_{2^m} .

Proof Since the first row of A_{2j} is $(1, \underbrace{0, \dots, 0}_{(2^j-1) \text{ zeros}})$, then $B_{2j}A_{2j} = B_{2j} = (A_{2j}(2^j), \underbrace{0, \dots, 0}_{(2^j-1) \text{ zeros}})$ in F_{2^m} .

 $(2^{j}-1)$ zero vectors) in F_{2^m} .

Theorem 3.3 Let
$$H_{2^j} = \begin{pmatrix} 1 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 1 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 1 \\ 0 & 0 & 0 & \cdots & 0 & 1 \end{pmatrix}$$
 and $D_{2j} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ 1 & 0 & 0 & \cdots & 0 \end{pmatrix}$, where H_{2^j}

and D_{2^j} are both square matrices with 2^j rows and 2^j columns, then $H_{2^j}A_{2^j} = A_{2^j}D_{2^j}$ in F_{2^m} .

Proof We prove the result by induction on *j*. In F_{2^m} , if j = 1, then

$$H_2A_2 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = A_2D_2.$$

Suppose $H_{2^{j_1}}A_{2^{j_1}} = A_{2^{j_1}}D_{2^{j_1}}$ for some positive integer j_1 , then

$$H_{2^{j_1}}A_{2^{j_1}} = (A_{2^{j_1}}(2^{j_1}), A_{2^{j_1}}(1), \cdots, A_{2^{j_1}}(2^{j_1}-1)).$$

Springer

From lemma 3.2, we can get

$$\begin{split} H_{2^{j_{1}+1}}A_{2^{j_{1}+1}} &= \begin{pmatrix} H_{2^{j_{1}}} & B_{2^{j_{1}}} \\ 0 & H_{2^{j_{1}}} \end{pmatrix} \begin{pmatrix} A_{2^{j_{1}}} & 0 \\ A_{2^{j_{1}}} & A_{2^{j_{1}}} \end{pmatrix} = \begin{pmatrix} H_{2^{j_{1}}}A_{2^{j_{1}}} & B_{2^{j_{1}}}A_{2^{j_{1}}} \\ H_{2^{j_{1}}}A_{2^{j_{1}}} & H_{2^{j_{1}}}A_{2^{j_{1}}} \end{pmatrix} \\ &= \begin{pmatrix} (0, A_{2^{j_{1}}}(1), \cdots, A_{2^{j_{1}}}(2^{j_{1}} - 1)) & (A_{2^{j_{1}}}(2^{j_{1}}), & 0, \cdots, 0 \\ & & & & \\ (A_{2^{j_{1}}}(2^{j_{1}}), A_{2^{j_{1}}}(1), \cdots, A_{2^{j_{1}}}(2^{j_{1}} - 1)) & (A_{2^{j_{1}}}(2^{j_{1}}), & 0, \cdots, 0 \end{pmatrix} \\ & & & & \\ & & & (A_{2^{j_{1}}}(2^{j_{1}}), A_{2^{j_{1}}}(1), \cdots, A_{2^{j_{1}}}(2^{j_{1}} - 1)) & (A_{2^{j_{1}}}(2^{j_{1}}), A_{2^{j_{1}}}(1), \cdots, A_{2^{j_{1}}}(2^{j_{1}} - 1)) \end{pmatrix} . \end{split}$$

so $H_{2^{j_1+1}}A_{2^{j_1+1}} = A_{2^{j_1+1}}D_{2^{j_1+1}}$, which gives the proof.

4 A new Gray map and the structure of the corresponding Gray image

Let *a*, *b* be two elements in R_k , then *a*, *b* can be written as $a = \sum_{i=0}^{k-1} u^i r_i(a)$ and $b = \sum_{i=0}^{k-1} u^i r_i(b)$ respectively, where $r_i(a), r_i(b) \in F_{2^m}$ for $0 \le i \le k-1$. It is easy to check that $r_i(a + b) = r_i(a) + r_i(b)$ for $0 \le i \le k-1$.

Definition 4.1 For an arbitrary element *a* in R_k , a new Gray map Φ_k from R_k to $F_{2^m}^{2J}$ is defined as follows:

$$\Phi_k(a) = (\underbrace{0, \cdots, 0}_{(2^j - k) \text{ zeros}}, r_0(a), r_1(a), \cdots, r_{k-1}(a)) A_{2^j}.$$

From the definition of Φ_k , we see that this Gray map is linear that because

$$\Phi_{k}(a+b) = (\underbrace{0, \dots, 0}_{(2^{j}-k) \text{ zeros}}, r_{0}(a+b), r_{1}(a+b), \dots, r_{k-1}(a+b))A_{2^{j}}$$

$$= (\underbrace{0, \dots, 0}_{(2^{j}-k) \text{ zeros}}, r_{0}(a), r_{1}(a), \dots, r_{k-1}(a))A_{2^{j}}$$

$$+ (\underbrace{0, \dots, 0}_{(2^{j}-k) \text{ zeros}}, r_{0}(b), r_{1}(b), \dots, r_{k-1}(b))A_{2^{j}}$$

$$= \Phi_{k}(a) + \Phi_{k}(b).$$

According to lemma 3.1, A_{2^j} is an invertible matrix over F_{2^m} , so Φ_k is a bijection from R_k to $F_{2^m}^{2^j}$. we identify a codeword $c = (c_0, c_1, \dots, c_{N-1}) \in R_k^N$ with its polynomial representation $c(x) = c_0 + c_1 x + \dots + c_{N-1} x^{N-1}$ and denote $P_i[c(x)] = \sum_{l=0}^{N-1} r_i(c_l) x^l$ for $0 \le i \le k-1$, then $c(x) = \sum_{i=0}^{k-1} u^i P_i[c(x)]$. Thus, the Gray map Φ_k can be extended to $R_k[x]$ in an obvious way.

Definition 4.2 For an arbitrary codeword $c = (c_0, c_1, \dots, c_{N-1}) \in R_k^N$, its polynomial representation is $c(x) = c_0 + c_1 x + \dots + c_{N-1} x^{N-1}$. The polynomial Gray map

 Φ_k from $R_k[x]$ to $F_{2^m}[x]$ is defined as follows:

$$\Phi_k[c(x)] = \left(\underbrace{0, \cdots, 0}_{(2^j - k) \ zeros}, P_0[c(x)], P_1[c(x)], \cdots, P_{k-1}[c(x)]\right) A_{2j} \begin{pmatrix} 1 \\ x^N \\ \vdots \\ x^{(2^j - 1)N} \end{pmatrix}.$$

Obviously, Φ_k is not only linear, but also a bijection from $R_k[x]$ to $F_{2^m}[x]$.

Definition 4.3 Let W_L be the Lee weight of the element of R_k and W_H be the Hamming weight of the element of $F_{2^m}^{2^j}$. We define that $W_L(a) = W_H[\Phi_k(a)]$ for an arbitrary element *a* in R_k . The Lee weight of a codeword in $R_k[x]$ is the rational integer sum of the Lee weight of its coefficients. The Lee distance between two codewords *c* and \acute{c} is defined as the Lee weight of $(c - \acute{c})$.

The following lemma 4.1 is straightforward from the definitions of the polynomial Gray map and Lee distance.

Lemma 4.1 The polynomial Gray map Φ_k is not only a linear bijection from $R_k[x]$ to $F_{2^m}[x]$, but also a distance-preserving map from $(R_k[x], Lee \ distance)$ to $(F_{2^m}[x], Hamming \ distance)$.

Theorem 4.2 If C is a (1 + u) constacyclic code of length N over R_k , then $\Phi_k(C)$ is a linear cyclic code of length $2^j N$ over F_{2^m} .

Proof It only needs to prove $\Phi_k[xc(x)] = x\Phi_k[c(x)]$. In fact, $x^N = 1 + u$ in $R_k[x]/\langle x^N - (1+u) \rangle$, so $x^{2^jN} = 1$. For an arbitrary codeword $c(x) = c_0 + c_1x + \cdots + c_{N-1}x^{N-1} \in C$, it can be written in the form $c(x) = \sum_{i=0}^{k-1} u^i P_i[c(x)]$. Then, we have $xc(x) = (1+u)c_{N-1} + c_0x + c_1x^2 + \cdots + c_{N-2}x^{N-1} = \sum_{i=0}^{k-1} u^i P_i[xc(x)]$, where $P_0[xc(x)] = r_0[(c_{N-1})] + xP_0[c(x)] + x^N r_0(c_{N-1})$ and $P_i[xc(x)] = r_i[(1+u)c_{N-1}] + \sum_{l=0}^{k-2} r_i(c_l)x^{l+1} = [r_{i-1}(c_{N-1}) + r_i(c_{N-1})] + xP_i[c(x)] + x^N r_i(c_{N-1})$ for $1 \le i \le k-1$. Therefore

$$\Phi_{k}[xc(x)] = \left(\underbrace{0, \dots, 0}_{(2^{j}-k) \ zeros}, P_{0}[xc(x)], P_{1}[xc(x)], \dots, P_{k-1}[xc(x)]\right) A_{2^{j}} \begin{pmatrix} 1\\x^{N}\\\vdots\\x^{(2^{j}-1)N} \end{pmatrix}$$
$$= \left(\underbrace{0, \dots, 0}_{(2^{j}-k) \ zeros}, r_{0}(c_{N-1}), \sum_{i=0}^{1} r_{i}(c_{N-1}), \dots, \sum_{i=k-2}^{k-1} r_{i}(c_{N-1})\right) A_{2^{j}} \begin{pmatrix} 1\\x^{N}\\\vdots\\x^{(2^{j}-1)N} \end{pmatrix}$$

🖉 Springer

$$+x^{N}(\underbrace{0,\cdots,0}_{(2^{j}-k)\ zeros},r_{0}(c_{N-1}),r_{1}(c_{N-1}),\cdots,r_{k-1}(c_{N-1}))A_{2^{j}}\begin{pmatrix}1\\x^{N}\\\vdots\\x^{(2^{j}-1)N}\end{pmatrix}$$

$$+x(\underbrace{0,\cdots,0}_{(2^{j}-k)\ zeros},P_{0}[c(x)],P_{1}[c(x)],\cdots,P_{k-1}[c(x)])A_{2^{j}}\begin{pmatrix}1\\x^{N}\\\vdots\\x^{(2^{j}-1)N}\end{pmatrix}$$

$$=(\underbrace{0,\cdots,0}_{(2^{j}-k)\ zeros},r_{0}(c_{N-1}),r_{1}(c_{N-1}),\cdots,r_{k-1}(c_{N-1}))(H_{2^{j}}A_{2^{j}}+A_{2^{j}}D_{2^{j}})$$

$$\times\begin{pmatrix}1\\x^{N}\\\vdots\\x^{(2^{j}-1)N}\end{pmatrix}+x\Phi_{k}[c(x)].$$

By theorem 3.3, $\Phi_k[xc(x)] = x\Phi_k[c(x)]$.

5 The generator polynomial of the Gray image

Lemma 5.1 In
$$F_{2^m}[x]$$
, $A_{2^j}\begin{pmatrix} 1\\x^N\\\vdots\\x^{(2^j-1)N} \end{pmatrix} = \begin{pmatrix} 1\\1+x^N\\\vdots\\(1+x^N)^{2^j-1} \end{pmatrix}$.

Proof We prove the result by induction on *j*. In $F_{2^m}[x]$, if j = 1, then $A_2 \begin{pmatrix} 1 \\ x^N \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x^{N} \\ x^{N} \end{pmatrix} = \begin{pmatrix} 1 \\ x^{N} \\ \vdots \\ x^{(2^{j_{1}}-1)N} \end{pmatrix} = \begin{pmatrix} 1 \\ 1+x^{N} \\ \vdots \\ (1+x^{N})^{2^{j_{1}}-1} \end{pmatrix}$$
for some positive integer j_{1} in
 Fam [x], then

 $F_{2^m}[x]$, then

$$A_{2^{j_{1}+1}}\begin{pmatrix}1\\x^{N}\\\vdots\\x^{(2^{j_{1}+1}-1)N}\end{pmatrix} = \begin{pmatrix}A_{2^{j_{1}}}&0\\A_{2^{j_{1}}}&A_{2^{j_{1}}}\end{pmatrix}\begin{pmatrix}1\\x^{N}\\\vdots\\x^{(2^{j_{1}+1}-1)N}\end{pmatrix}$$

Deringer

$$= \begin{pmatrix} 1 \\ x^{N} \\ \vdots \\ x^{(2^{j_{1}}-1)N} \end{pmatrix} \\ \begin{pmatrix} 1 \\ 1+x^{N} \\ \vdots \\ (1+x^{2^{j_{1}}N})A_{2^{j_{1}}} \begin{pmatrix} 1 \\ x^{N} \\ \vdots \\ x^{(2^{j_{1}}-1)N} \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 1 \\ 1+x^{N} \\ \vdots \\ (1+x^{N})^{2^{j_{1}+1}-1} \end{pmatrix}.$$

This gives the proof.

Let *n* be an odd positive integer and let $x^n - 1 = f_1 f_2 \cdots f_q$ be the factorization of $(x^n - 1)$ into a product of monic basic irreducible pairwise coprime polynomials in $F_{2^m}[x]$, then the following lemma is straightforward from the theorem 4 and lemma 3 of [7].

Lemma 5.2 Let C be a (1 + u) constacyclic code of length $N = 2^e n$ over R_k , then $C = \langle f_1^{k_1} f_2^{k_2} \cdots f_q^{k_q} \rangle$, where $0 \le k_i \le 2^e k$ for $i = 0, 1, \cdots, q$. Furthermore, $|C| = 2^{m(kN-\eta)}$, where $\eta = \sum_{i=1}^q k_i deg(f_i)$.

Theorem 5.3 Let $C = \langle f_1^{k_1} f_2^{k_2} \cdots f_q^{k_q} \rangle$ be a (1 + u) constacyclic code of length $N = 2^e n$ over R_k , where e is a non-negative integer and $0 \le k_i \le 2^e k$ for $i = 0, 1, \cdots, q$. Then the Gray image $\Phi_k(C)$ is a linear cyclic code of length $2^j N$ over F_{2^m} and $\Phi_k(C) = \langle f_1^{k_1+2^e(2^j-k)} f_2^{k_2+2^e(2^j-k)} \cdots f_q^{k_q+2^e(2^j-k)} \rangle$.

Proof By theorem 4.2, $\Phi_k(C)$ is a linear cyclic code of length $2^j N$ over F_{2^m} . So, we only need to prove $\Phi_k(C) = \langle f_1^{k_1+2^e(2^j-k)} f_2^{k_2+2^e(2^j-k)} \cdots f_q^{k_q+2^e(2^j-k)} \rangle$. In fact, we denote $c(x) = f_1^{k_1} f_2^{k_2} \cdots f_q^{k_q} \in C$, then $c(x) = \sum_{i=0}^{k-1} u^i P_i[c(x)] = \sum_{i=0}^{k-1} (1 + x^N)^i P_i[c(x)]$. By lemma 5.1,

$$\begin{split} \Phi_k[c(x)] &= (\underbrace{0, \dots, 0}_{(2^j - k) \ zeros}, P_0[c(x)], P_1[c(x)], \dots, P_{k-1}[c(x)]) A_{2^j} \begin{pmatrix} 1 \\ x^N \\ \vdots \\ x^{(2^j - 1)N} \end{pmatrix} \\ &= (\underbrace{0, \dots, 0}_{(2^j - k) \ zeros}, P_0[c(x)], P_1[c(x)], \dots, P_{k-1}[c(x)]) \begin{pmatrix} 1 \\ 1 + x^N \\ \vdots \\ (1 + x^N)^{2^j - 1} \end{pmatrix} \\ &= (1 + x^N)^{2^j - k} \sum_{i=0}^{k-1} (1 + x^N)^i P_i[c(x)] = (1 + x^N)^{2^j - k} c(x) \in \Phi_k(C). \end{split}$$

🖉 Springer

So $\langle (1+x^N)^{2^j-k} f_1^{k_1} f_2^{k_2} \cdots f_q^{k_q} \rangle \subseteq \Phi_k(C)$. Comparing the number of codewords, we have $\Phi_k(C) = \langle (1+x^N)^{2^j-k} f_1^{k_1} f_2^{k_2} \cdots f_q^{k_q} \rangle$. Since $1+x^N = (f_1 f_2 \cdots f_q)^{2^e}$ in $F_{2^m}[x]$, then we get the result.

6 Examples

Let ω be a primitive element of F_4 . In $F_2[x]$, $x^3 - 1 = Q_1Q_2$, where $Q_1 = x + 1$ and $Q_2 = x^2 + x + 1$. In $F_4[x]$, $x^3 - 1 = g_1g_2g_3$, where $g_1 = x + 1$, $g_2 = x + \omega$ and $g_3 = x + \omega^2$. In $F_2[x]$ and $F_4[x]$, $x^7 - 1 = f_1f_2f_3$, where $f_1 = x + 1$, $f_2 = x^3 + x + 1$ and $f_3 = x^3 + x^2 + 1$.

Example 1 Let k = 2 and m = 1 in definition 4.2 and theorem 5.3, we get the result of Abularub et al about the Gray map in [1]. Now, we let k = 2 and m = 2, we can get some other optimal codes. For example, $C_1 = \langle g_1 g_2 g_3^3 \rangle$ is a (1 + u) constacyclic code of length N = 6 over $F_4 + uF_4$. According to theorem 5.3, $\Phi_2(C_1) = \langle g_1 g_2 g_3^3 \rangle$, which is a [4,7,12] linear cyclic code over F_4 and an optimal code. Table 1 presents

Table 1 Optimal linear codesover F_4 obtained from $(1 + u)$ constacyclic codes over $F_4 + uF_4$	Length	Generator polynomial	Gray image
	3	<i>g</i> 1	[6,5,2]
	3	<i>8</i> 2	[6,5,2]
	3	83	[6,5,2]
	3	g_1^2	[6,4,2]
	3	8182	[6,4,2]
	3	8183	[6,4,2]
	3	g_2^2	[6,4,2]
	3	8283	[6,4,2]
	3	g_{3}^{2}	[6,4,2]
	3	$g_1^2 g_2 g_3$	[6,2,4]
	3	$g_1g_2^2g_3$	[6,2,4]
	3	$g_1g_2g_3^2$	[6,2,4]
	6	<i>g</i> 1	[12,11,2]
	6	<i>g</i> ₂	[12,11,2]
	6	83	[12,11,2]
	6	g_1^2	[12,10,2]
	6	<i>8</i> 1 <i>8</i> 2	[12,10,2]
	6	<i>g</i> 1 <i>g</i> 3	[12,10,2]
	6	g_{2}^{2}	[12,10,2]
	6	8283	[12,10,2]
	6	g_{3}^{2}	[12,10,2]
	6	$g_1^3 g_2 g_3$	[12,7,4]

Table 1 continued	Length	Generator polynomial	Gray image
	6	$g_1g_2^3g_3$	[12,7,4]
	6	$g_1g_2g_3^3$	[12,7,4]
	7	f_1	[14,13,2]
	7	f_1^2	[14,12,2]
	7	$f_1^2 f_2$	[14,9,4]
	7	$f_1^2 f_3$	[14,9,4]

several optimal linear codes over F_4 obtained from (1 + u) constacyclic codes over $F_4 + uF_4$ of some lengths.

Tables 2, 3, 4, 5, 6 and 7 present some optimal codes obtained from (1 + u)constacyclic codes of some lengths over R_k under the Gray map.

Table 2 Optimal binary linear codes obtained from $(1 + u)$	Length	Generator polynomial	Gray image
constacyclic codes over $F_2[u]/\langle u^3 \rangle$	3	Q_1^2	[12,7,4]
	3	Q_{1}^{3}	[12,6,4]
	3	$Q_{1}^{2}Q_{2}$	[12,5,4]
	3	Q_2^2	[12,5,4]
	3	Q_{2}^{3}	[12,3,6]
	3	$Q_1^3 Q_2^2$	[12,2,8]
	6	Q_1	[24,20,2]
	6	Q_1^4	[24,17,4]
	6	Q_{1}^{5}	[24,16,4]
	6	$Q_1^4 Q_2$	[24,15,4]
	6	Q_1^6	[24,15,4]
	7	$f_1^3 f_2^2$	[28,12,8]
	7	$f_1^3 f_3^2$	[28,12,8]
	7	$f_2^2 f_3^3$	[28,6,12]
	7	$f_2^3 f_3^2$	[28,6,12]

Table 3 Optimal linear codes over F_4 obtained from $(1 + u)$	Length	Generator polynomial	Gray image
constacyclic codes over $F_4[u]/(u^3)$	3	g_{1}^{2}	[12,7,4]
14[n]/ (n /	3	s_{2}^{2}	[12,7,4]
	3	g_{3}^{2}	[12,7,4]

Table 4 Optimal binary linear codes obtained from $(1 + u)$ constacyclic codes over $F_2[u]/\langle u^4 \rangle$	Length	Generator polynomial	Gray image
	3	01	[12,11,2]
	3	O_1^2	[12,10,2]
	3	\tilde{v}_1 Q_2	[12,10,2]
	3	Q_1^3	[12,9,2]
	3	$Q_1 Q_2$	[12,9,2]
	3	$Q_{1}^{3}Q_{2}$	[12,7,4]
	3	$Q_{1}^{4}Q_{2}$	[12,6,4]
	3	$Q_1 Q_2^3$	[12,5,4]
	3	$Q_1^3 Q_2^2$	[12,5,4]
	3	$Q_1 Q_2^4$	[12,3,6]
	3	$Q_1^4 Q_2^3$	[12,2,8]
	6	Q_1	[24,23,2]
	6	Q_1^2	[24,22,2]
	6	Q_2	[24,22,2]
	6	Q_1^3	[24,21,2]
	6	$Q_1 Q_2$	[24,21,2]
	6	Q_1^4	[24,20,2]
	6	$Q_{1}^{2}Q_{2}$	[24,20,2]
	6	Q_2^2	[24,20,2]
	6	$Q_{1}^{5}Q_{2}$	[24,17,4]
	6	$Q_1^6 Q_2$	[24,16,4]
	6	$Q_1^5 Q_2^2$	[24,15,4]
	6	$Q_1^7 Q_2$	[24,15,4]
	7	$f_1^3 f_2$	[28,22,4]
	7	$f_1^3 f_3$	[28,22,4]
	7	$f_1^4 f_2$	[28,21,4]
	7	$f_{1}^{4}f_{3}$	[28,21,4]
	7	$f_1^4 f_2 f_3^3$	[28,12,8]
	7	$f_1^4 f_2^3 f_3$	[28,12,8]
	7	$f_1 f_2^4 f_3^3$	[28,6,12]
	7	$f_1 f_2^3 f_3^4$	[28,6,12]
Table 5 Optimal linear codes		~	
over F_4 obtained from $(1 + u)$	Length	Generator polynomial	Gray image
$F_4[u]/\langle u^4 \rangle$	3	<i>8</i> 1	[12,11,2]
-,	3	82	[12,11,2]
	3	83	[12,11,2]
	3	g_1^2	[12,10,2]
	3	g_{2}^{2}	[12,10,2]

Table 4 Op codes obtain constacyclic $F_2[u]/\langle u^4 \rangle$

Length	Generator polynomial	Gray image
3	g_{3}^{2}	[12,10,2]
3	8182	[12,10,2]
3	8183	[12,10,2]
3	8283	[12,10,2]
3	$g_1g_2g_3^3$	[12,7,4]
3	<i>8</i> 1 <i>8</i> ³ ₂ <i>8</i> 3	[12,7,4]
3	$g_1^3 g_2 g_3$	[12,7,4]
7	f_1	[28,27,2]
7	f_{1}^{2}	[28,26,2]
7	f_2	[28,25,2]
7	f_3	[28,25,2]
7	f_{1}^{3}	[28,25,2]
7	$f_1^3 f_2$	[28,22,4]
7	$f_1^3 f_3$	[28,22,4]

Length	Generator polynomial	Gray image
7	f_{1}^{2}	[56,54,2]
7	f_{1}^{3}	[56,53,2]
7	f_2	[56,53,2]
7	f_3	[56,53,2]
7	$f_1 f_3$	[56,52,2]
7	$f_1 f_2$	[56,52,2]
7	f_{1}^{4}	[56,52,2]
7	$f_1^2 f_3$	[56,51,2]
7	$f_1^2 f_2$	[56,51,2]
7	$f_1^5 f_3$	[56,48,4]
7	$f_1^5 f_2$	[56,48,4]
7	$f_1^6 f_3$	[56,47,4]
7	$f_1^7 f_3$	[56,46,4]
7	$f_1^7 f_2$	[56,46,4]
7	$f_1^5 f_3^2$	[56,45,4]
7	$f_1^5 f_2^2$	[56,45,4]
7	$f_1^8 f_3$	[56,45,4]
7	$f_1^8 f_2$	[56,45,4]
7	$f_1^5 f_2 f_3$	[56,45,4]

Table 6 Optimal binary linearcodes obtained from (1 + u)constacyclic codes over $F_2[u]/\langle u^8 \rangle$

Table 5 continued

Table 7 Optimal binary linear codes obtained from $(1 + u)$	Length	Generator polynomial	Gray image
constacyclic codes over $F_2[u]/\langle u^{16} \rangle$	7	f_1	[112,111,2]
	7	f_{1}^{2}	[112,110,2]
	7	f_{1}^{3}	[112,109,2]
	7	f_2	[112,109,2]
	7	f_3	[112,109,2]
	7	$f_1 f_2$	[112,108,2]
	7	$f_1 f_3$	[112,108,2]
	7	f_{1}^{4}	[112,108,2]
	7	f_{1}^{5}	[112,107,2]
	7	$f_1^2 f_2$	[112,107,2]
	7	$f_1^2 f_3$	[112,107,2]
	7	f_{1}^{6}	[112,106,2]
	7	$f_{1}^{3}f_{2}$	[112,106,2]
	7	$f_{1}^{3}f_{3}$	[112,106,2]
	7	f_2^2	[112,106,2]
	7	$f_2 f_3$	[112,106,2]
	7	f_2^2	[112,106,2]
	7	$f_{1}^{9} f_{2}$	[112,100,4]
	7	$f_1^9 f_3$	[112,100,4]
	7	$f_{1}^{10} f_{2}$	[112.99.4]
	7	$f_1^{10} f_3$	[112.99.4]
	7	$f_{1}^{10} f_{10}^{16} f_{15}^{15}$	[112 3 64]
	7	$f_1 f_2 f_3 f_1 f_1 f_1 f_1 f_1 f_1 f_1 f_1 f_1 f_1$	[112,3,64]

7 Conclusion

In this paper, we extend the result of [1] about the Gray map to the polynomial residue ring $R_k = F_{2^m}[u]/\langle u^k \rangle$, where $2^{j-1} + 1 \le k \le 2^j$ for some positive integer *j*. Some optimal linear cyclic code over F_2 and F_4 have been constructed via the Gray map. A nature problem is to extend the results to the ring $F_q[u]/\langle u^k \rangle$.

Acknowledgments The research is supported by National Natural Science Foundation of China (61370089) and Anhui Province Natural Science Research (KJ2013B107).

References

- 1. Abular, T., Siap, I.: Constacyclic codes over $F_2 + uF_2$. J. Franklin Inst. 345, 520–529 (2009)
- 2. Amarra, M.C.V., Nemenzo, F.R.: On (1 u) cyclic codes over $F_{pk} + uF_{pk}$. Appl. Math. Lett. **21**(11), 1129–1133 (2008)

- 3. Blake, F.: Codes over integer residue rings. Inf. Control 29(4), 295-300 (1975)
- Hammons, A.R., Kumar, P.V., Calderbank, A.R., ASloane, N.J.: The Z₄-linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Trans. Inf. Theory 40(2), 301–319 (1994)
- 5. Kai, X., Zhu, S., Li, P.: $(1 + \lambda u)$ Constacyclic codes over $F_p[u]/\langle u^k \rangle$. J. Franklin Inst. **347**, 751–762 (2010)
- Ling, S., Blackford, T.: Z_{pk+1}-Linear codes. IEEE Trans. Inf. Theory 48(7), 2592–2605 (2002)
- Li, Y., Zhu, S.: A class of constacyclic codes over the ring F_{p^m} + uF_{p^m} + ··· + u^{k−1}F_{p^m}. J. Hefei Univ. Technol. 35(3), 408–411 (2013). (in chinese)
- 8. Nechaev, A.: The Kerdock code in a cyclic form. Discret. Math. Appl. 1(1), 123-139 (1989)
- Qian, J.F., Zhang, L.N., Zhu, S.X.: (1+u) Constacyclic and cyclic codes over F₂ + uF₂. Appl. Math. Lett. 19(8), 820–823 (2006)
- Qian, J.F.: Cyclic codes over finite rings, wireless communications, networking and mobile computing (WiCOM). In: 7th international conference, 1–4 (2011)
- 11. Shankar, P.: On BCH codes over arbitrary integer rings. IEEE Trans. Inf. Theory 25(4), 480-483 (1979)
- 12. Sobhani, R., Esmaeili, E.: Some constacyclic and cyclic codes over $F_q[u]/\langle u^{t+1}\rangle$. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. **93**(4), 808–813 (2010)
- Tapia-Recillas, H., Vega, G.: Some constacyclic codes over Z_{2k+1} and binary quasi-cyclic codes. Discret. Appl. Math. 128(1), 305–316 (2003)
- Udomkavanich, P., Jitman, S.: On the Gray image of 1+u^m cyclic codes over F_{pk}+uF_{pk}+···+u^mF_{pk}. Int. J. Contemp Math. Sci. 4(26), 1265–1272 (2009)
- 15. Wolfmann, J.: Negacyclic and cyclic codes over Z₄. IEEE Trans. Inf. Theory 45(7), 2527–2532 (1999)