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Abstract Let Rk denote the polynomial residue ring F2m [u]/〈uk〉, where 2 j−1 + 1 ≤
k ≤ 2 j for some positive integer j . Motivated by the work in [1], we introduce a
new Gray map from Rk to F2 j

2m . It is proved that the Gray image of a linear (1 + u)

constacyclic code of an arbitrary length N over Rk is a distance invariant linear cyclic
code of length 2 j N over F2m . Moreover, the generator polynomial of the Gray image
of such a constacyclic code is determined, and some optimal linear cyclic codes over
F2 and F4 are constructed under this Gray map.
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1 Introduction

Linear codes over finite rings have been studied since the early 1970s in [3,11], that
study has regained attention by theworks ofNechaev in [8] andHammons et al in [4] on
some efficient nonlinear binary codes. These works deal with nonlinear binary codes
such as theNordstrom-Robinson,Kerdock, Preparata,Goethals andDelsarte–Goethals
codes which are considered as binary images under the Gray map of linear codes over
the ring Z4. Since then, many researchers have paid more and more attentions to
study the codes over finite rings. In [15], Wolfmann showed that the Gray image of a
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linear single-root negacyclic code over Z4 is a distance invariant binary cyclic code
(not necessarily linear). This result was later generalized to a (1 + 2k) constacyclic
code over Z2k+1 by Tapia-Recillas and Vega in [13], where the corresponding Gray
image was a binary distance invariant quasi-cyclic code. In [7], Ling and Blackford
generalized most of the results of [13,15] to the ring Z pk+1 , where p is any prime and
k is a positive integer.

(1+u) constacyclic codes over F2 +uF2 were first introduced by Qian et al in [9],
where it was proved that the Gray image of a linear single-root (1 + u) constacyclic
code over F2 + uF2 is a binary distance invariant linear cyclic code. In [1], Abular
and Siap extended the Gray map of [9] to an arbitrary length over F2 + uF2 and the
generator polynomial of the correspoding Gray image was obtained, some optimal
binary codes were also constructed via the Gray map. Amarra et al in [2] discussed
the Gray image of a single-root (1 − u) constacyclic code over Fpk + uFpk , which
was a quasi-cyclic code over Fp. Later, the result of [2] were extended to single-root
(1+ ut ) constacyclic codes over Fq [u]/〈ut+1〉 and single-root (1− um) constacyclic
codes over Fpk [u]/〈um+1〉 in [12] and [14] respectively, where the Gray images were
quasi-cyclic codes. Kai et al in [5] showed that the Gray image of a linear (1 + λu)

constacyclic codewith an arbitrary length over Fp+uFp was a distance invariant linear
code over Fp. The Gray image of a single-root (1 + u + u2) constacyclic code over
the ring F2[u]/〈u3〉 were proved to be a binary distance invariant linear cyclic code in
[10], but the generator polynomials of the corresponding Gray images in [10] and [5]
were not acquired. In this paper, we extend the result of [1] about the Gray map to the
polynomial residue ring Rk , where the generator polynomials of the corresponding
Gray images are obtained and some optimal linear cyclic code over F2 and F4 are
constructed via the Gray map.

2 Preliminaries

Let Rk denote the ring F2m [u]/〈uk〉, where 2 j−1 + 1 ≤ k ≤ 2 j for some positive
integer j and uk = 0. If xn − 1 = f1 f2 · · · fq is the factorization of (xn − 1) into a
product of monic basic irreducible pairwise coprime polynomials over Rk for an odd
positive integer n, then this factorization is unique and can be directly carried over Rk

from over F2m . Let C be a code of length N = 2en over Rk , where e is a non-negative
integer. For some fixed unit α of Rk , the α constacyclic shift να on RN

k is the shift
να(c0, c1, · · · , cN−1) = (αcN−1, c0, c1, · · · , cN−2). The code C is said to be an α

constacyclic code if ν(C) = C . Now, we identify a codeword c = (c0, c1, · · · , cN−1)

with its polynomial representation c(x) = c0+c1x+· · ·+cN−1xN−1, then xc(x) cor-
responds to an α constacyclic shift of c(x) in the ring Rk[x]/〈xN −α〉. Thus α consta-
cyclic codes of length N over Rk can be identified as ideals in the ring Rk[x]/〈xN −α〉.
In the following, we let j be a positive integer and 2 j−1 + 1 ≤ k ≤ 2 j .

3 A class of matrices over F2m

Definition 3.1 If j = 1, then A2 =
(
1 0
1 1

)
. If j > 1, then A2 j =

(
A2 j−1 0
A2 j−1 A2 j−1

)
.
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The Gray images of (1 + u) constacyclic codes over F2m [u]/〈uk 〉 435

From the definition of matrix A2 j , we see that there are 2 j rows and 2 j columns
in A2 j . Besides, the first row of A2 j is (1, 0, · · · , 0︸ ︷︷ ︸

(2 j−1) zeros

), the first and 2 j th columns

of A2 j are A2 j (1) and A2 j (2 j ) respectively, where A2 j (1) = (1, 1, · · · , 1︸ ︷︷ ︸
2 j ones

)T and

A2 j (2 j ) = ( 0, · · · , 0︸ ︷︷ ︸
(2 j−1) ones

, 1)T .

Lemma 3.1 A2 j is an invertible matrix over F2m .

Proof From the definition of matrix A2 j , we see that A2 j is a lower triangular matrix
and each element of its main diagonal is one. So A2 j is invertible over F2m . ��

Lemma 3.2 Let B2 j =
⎛
⎜⎝

0 0 · · · 0
.
.
.

.

.

.
.
.
.

.

.

.

0 0 · · · 0
1 0 · · · 0

⎞
⎟⎠ with 2 j rows and 2 j columns, then B2 j A2 j =

(A2 j (2 j ), 0, · · · , 0︸ ︷︷ ︸
(2 j−1) zero vectors

) in F2m .

Proof Since the first row of A2 j is (1, 0, · · · , 0︸ ︷︷ ︸
(2 j−1) zeros

), then B2 j A2 j = B2 j = (A2 j (2 j ),

0, · · · , 0︸ ︷︷ ︸
(2 j−1) zero vectors

) in F2m . ��

Theorem 3.3 Let H2 j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 · · · 0 0
0 1 1 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

...

0 0 0 · · · 1 1
0 0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and D2 j =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
1 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠
, where H2 j

and D2 j are both square matrices with 2 j rows and 2 j columns, then H2 j A2 j =
A2 j D2 j in F2m .

Proof We prove the result by induction on j . In F2m , if j = 1, then

H2A2 =
(
1 1
0 1

) (
1 0
1 1

)
=

(
0 1
1 1

)
=

(
1 0
1 1

) (
0 1
1 0

)
= A2D2.

Suppose H2 j1 A2 j1 = A2 j1 D2 j1 for some positive integer j1, then

H2 j1 A2 j1 = (A2 j1 (2
j1), A2 j1 (1), · · · , A2 j1 (2

j1 − 1)).
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From lemma 3.2, we can get

H2 j1+1 A2 j1+1 =
(
H2 j1 B2 j1

0 H2 j1

)(
A2 j1 0
A2 j1 A2 j1

)
=

(
H2 j1 A2 j1 + B2 j1 A2 j1 B2 j1 A2 j1

H2 j1 A2 j1 H2 j1 A2 j1

)

=
⎛
⎜⎝

(0, A2 j1 (1), · · · , A2 j1 (2
j1 − 1)) (A2 j1 (2

j1), 0, · · · , 0︸ ︷︷ ︸
(2 j1−1) zero vectors

)

(A2 j1 (2
j1), A2 j1 (1), · · · , A2 j1 (2

j1 − 1)) (A2 j1 (2
j1), A2 j1 (1), · · · , A2 j1 (2

j1 − 1))

⎞
⎟⎠ .

so H2 j1+1 A2 j1+1 = A2 j1+1D2 j1+1 , which gives the proof. ��

4 A new Gray map and the structure of the corresponding Gray image

Let a, b be two elements in Rk , then a, b can be written as a =
k−1∑
i=0

uiri (a) and

b =
k−1∑
i=0

uiri (b) respectively, where ri (a), ri (b) ∈ F2m for 0 ≤ i ≤ k − 1. It is easy to

check that ri (a + b) = ri (a) + ri (b) for 0 ≤ i ≤ k − 1.

Definition 4.1 For an arbitrary element a in Rk , a new Gray map �k from Rk to F2 j

2m

is defined as follows:

�k(a) = ( 0, · · · , 0︸ ︷︷ ︸
(2 j−k) zeros

, r0(a), r1(a), · · · , rk−1(a))A2 j .

From the definition of �k , we see that this Gray map is linear that because

�k(a + b) = ( 0, · · · , 0︸ ︷︷ ︸
(2 j−k) zeros

, r0(a + b), r1(a + b), · · · , rk−1(a + b))A2 j

= ( 0, · · · , 0︸ ︷︷ ︸
(2 j−k) zeros

, r0(a), r1(a), · · · , rk−1(a))A2 j

+ ( 0, · · · , 0︸ ︷︷ ︸
(2 j−k) zeros

, r0(b), r1(b), · · · , rk−1(b))A2 j

= �k(a) + �k(b).

According to lemma 3.1, A2 j is an invertible matrix over F2m , so �k is a bijection

from Rk to F2 j

2m . we identify a codeword c = (c0, c1, · · · , cN−1) ∈ RN
k with its

polynomial representation c(x) = c0 +c1x +· · ·+cN−1xN−1 and denote Pi [c(x)] =
N−1∑
l=0

ri (cl)xl for 0 ≤ i ≤ k − 1, then c(x) =
k−1∑
i=0

ui Pi [c(x)]. Thus, the Gray map �k

can be extended to Rk[x] in an obvious way.

Definition 4.2 For an arbitrary codeword c = (c0, c1, · · · , cN−1) ∈ RN
k , its polyno-

mial representation is c(x) = c0 + c1x +· · ·+ cN−1xN−1. The polynomial Gray map
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�k from Rk[x] to F2m [x] is defined as follows:

�k[c(x)] = ( 0, · · · , 0︸ ︷︷ ︸
(2 j−k) zeros

, P0[c(x)], P1[c(x)], · · · , Pk−1[c(x)])A2 j

⎛
⎜⎜⎜⎝

1
xN

...

x (2 j−1)N

⎞
⎟⎟⎟⎠ .

Obviously, �k is not only linear, but also a bijection from Rk[x] to F2m [x].
Definition 4.3 Let WL be the Lee weight of the element of Rk and WH be the Ham-
ming weight of the element of F2 j

2m . We define that WL(a) = WH [�k(a)] for an
arbitrary element a in Rk . The Lee weight of a codeword in Rk[x] is the rational inte-
ger sum of the Lee weight of its coefficients. The Lee distance between two codewords
c and ć is defined as the Lee weight of (c − ć).

The following lemma 4.1 is straightforward from the definitions of the polynomial
Gray map and Lee distance.

Lemma 4.1 The polynomial Gray map �k is not only a linear bijection from Rk[x]
to F2m [x], but also a distance-preserving map from (Rk[x], Lee distance) to (F2m [x],
Hamming distance).

Theorem 4.2 If C is a (1+ u) constacyclic code of length N over Rk, then �k(C) is
a linear cyclic code of length 2 j N over F2m .

Proof It only needs to prove �k[xc(x)] = x�k[c(x)]. In fact, xN = 1 + u in
Rk[x]/〈xN − (1 + u)〉, so x2

j N = 1. For an arbitrary codeword c(x) = c0 + c1x +
· · · + cN−1xN−1 ∈ C , it can be written in the form c(x) =

k−1∑
i=0

ui Pi [c(x)]. Then, we

have xc(x) = (1 + u)cN−1 + c0x + c1x2 + · · · + cN−2xN−1 =
k−1∑
i=0

ui Pi [xc(x)],
where P0[xc(x)] = r0[(cN−1)] + x P0[c(x)] + xNr0(cN−1) and Pi [xc(x)] = ri [(1+
u)cN−1] +

k−2∑
l=0

ri (cl)xl+1 = [ri−1(cN−1) + ri (cN−1)] + x Pi [c(x)] + xNri (cN−1) for

1 ≤ i ≤ k − 1. Therefore

�k[xc(x)] = ( 0, · · · , 0︸ ︷︷ ︸
(2 j−k) zeros

, P0[xc(x)], P1[xc(x)], · · · , Pk−1[xc(x)])A2 j

⎛
⎜⎜⎜⎝

1
xN

...

x (2 j−1)N

⎞
⎟⎟⎟⎠

= ( 0, · · · , 0︸ ︷︷ ︸
(2 j−k) zeros

, r0(cN−1),

1∑
i=0

ri (cN−1), · · · ,

k−1∑
i=k−2

ri (cN−1))A2 j

⎛
⎜⎜⎜⎝

1
xN

...

x (2 j−1)N

⎞
⎟⎟⎟⎠
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438 J. Ding, H. Li

+xN ( 0, · · · , 0︸ ︷︷ ︸
(2 j−k) zeros

, r0(cN−1), r1(cN−1), · · · , rk−1(cN−1))A2 j

⎛
⎜⎜⎜⎝

1
xN

...

x (2 j−1)N

⎞
⎟⎟⎟⎠

+x( 0, · · · , 0︸ ︷︷ ︸
(2 j−k) zeros

, P0[c(x)], P1[c(x)], · · · , Pk−1[c(x)])A2 j

⎛
⎜⎜⎜⎝

1
xN

...

x (2 j−1)N

⎞
⎟⎟⎟⎠

= ( 0, · · · , 0︸ ︷︷ ︸
(2 j−k) zeros

, r0(cN−1), r1(cN−1), · · · , rk−1(cN−1))(H2 j A2 j +A2 j D2 j )

×

⎛
⎜⎜⎜⎝

1
xN

...

x (2 j−1)N

⎞
⎟⎟⎟⎠ + x�k [c(x)].

By theorem 3.3, �k[xc(x)] = x�k[c(x)]. ��

5 The generator polynomial of the Gray image

Lemma 5.1 In F2m [x], A2 j

⎛
⎜⎜⎜⎝

1
xN

...

x (2 j−1)N

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1
1 + xN

...

(1 + xN )2
j−1

⎞
⎟⎟⎟⎠.

Proof We prove the result by induction on j . In F2m [x], if j = 1, then A2

(
1
xN

)
=(

1 0
1 1

)(
1
xN

)
=

(
1

1 + xN

)
.

Suppose A2 j1

⎛
⎜⎜⎜⎝

1
xN

...

x (2 j1−1)N

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1
1 + xN

...

(1 + xN )2
j1−1

⎞
⎟⎟⎟⎠ for some positive integer j1 in

F2m [x], then

A2 j1+1

⎛
⎜⎜⎜⎝

1
xN

...

x (2 j1+1−1)N

⎞
⎟⎟⎟⎠ =

(
A2 j1 0
A2 j1 A2 j1

)
⎛
⎜⎜⎜⎝

1
xN

...

x (2 j1+1−1)N

⎞
⎟⎟⎟⎠
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=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A2 j1

⎛
⎜⎜⎜⎝

1
xN

...

x (2 j1−1)N

⎞
⎟⎟⎟⎠

(1 + x2
j1N )A2 j1

⎛
⎜⎜⎜⎝

1
xN

...

x (2 j1−1)N

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

1
1 + xN

...

(1 + xN )2
j1+1−1

⎞
⎟⎟⎟⎠ .

This gives the proof. ��
Let n be an odd positive integer and let xn − 1 = f1 f2 · · · fq be the factorization

of (xn −1) into a product of monic basic irreducible pairwise coprime polynomials in
F2m [x], then the following lemma is straightforward from the theorem 4 and lemma
3 of [7].

Lemma 5.2 Let C be a (1 + u) constacyclic code of length N = 2en over Rk, then

C = 〈 f k11 f k22 · · · f kqq 〉, where 0 ≤ ki ≤ 2ek for i = 0, 1, · · · , q. Furthermore,

|C | = 2m(kN−η), where η =
q∑

i=1
kideg( fi ).

Theorem 5.3 Let C = 〈 f k11 f k22 · · · f kqq 〉 be a (1 + u) constacyclic code of length
N = 2en over Rk, where e is a non-negative integer and 0 ≤ ki ≤ 2ek for i =
0, 1, · · · , q. Then the Gray image �k(C) is a linear cyclic code of length 2 j N over

F2m and �k(C) = 〈 f k1+2e(2 j−k)
1 f k2+2e(2 j−k)

2 · · · f kq+2e(2 j−k)
q 〉.

Proof By theorem 4.2, �k(C) is a linear cyclic code of length 2 j N over F2m . So,

we only need to prove �k(C) = 〈 f k1+2e(2 j−k)
1 f k2+2e(2 j−k)

2 · · · f kq+2e(2 j−k)
q 〉. In fact,

we denote c(x) = f k11 f k22 · · · f kqq ∈ C , then c(x) =
k−1∑
i=0

ui Pi [c(x)] =
k−1∑
i=0

(1 +
xN )i Pi [c(x)]. By lemma 5.1,

�k[c(x)] = ( 0, · · · , 0︸ ︷︷ ︸
(2 j−k) zeros

, P0[c(x)], P1[c(x)], · · · , Pk−1[c(x)])A2 j

⎛
⎜⎜⎜⎝

1
xN

...

x (2 j−1)N

⎞
⎟⎟⎟⎠

= ( 0, · · · , 0︸ ︷︷ ︸
(2 j−k) zeros

, P0[c(x)], P1[c(x)], · · · , Pk−1[c(x)])

⎛
⎜⎜⎜⎝

1
1 + xN

...

(1 + xN )2
j−1

⎞
⎟⎟⎟⎠

= (1 + xN )2
j−k

k−1∑
i=0

(1 + xN )i Pi [c(x)] = (1 + xN )2
j−kc(x) ∈ �k(C).
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So 〈(1+ xN )2
j−k f k11 f k22 · · · f kqq 〉 ⊆ �k(C). Comparing the number of codewords,

we have �k(C) = 〈(1+ xN )2
j−k f k11 f k22 · · · f kqq 〉. Since 1+ xN = ( f1 f2 · · · fq)2e in

F2m [x], then we get the result. ��

6 Examples

Let ω be a primitive element of F4. In F2[x], x3 − 1 = Q1Q2, where Q1 = x + 1 and
Q2 = x2 + x + 1. In F4[x], x3 − 1 = g1g2g3, where g1 = x + 1, g2 = x + ω and
g3 = x+ω2. In F2[x] and F4[x], x7−1 = f1 f2 f3, where f1 = x+1, f2 = x3+x+1
and f3 = x3 + x2 + 1.

Example 1 Let k = 2 and m = 1 in definition 4.2 and theorem 5.3, we get the result
of Abularub et al about the Gray map in [1]. Now, we let k = 2 and m = 2, we can
get some other optimal codes. For example, C1 = 〈g1g2g33〉 is a (1 + u) constacyclic
code of length N = 6 over F4 +uF4. According to theorem 5.3, �2(C1) = 〈g1g2g33〉,
which is a [4,7,12] linear cyclic code over F4 and an optimal code. Table 1 presents

Table 1 Optimal linear codes
over F4 obtained from (1 + u)

constacyclic codes over
F4 + uF4

Length Generator polynomial Gray image

3 g1 [6,5,2]

3 g2 [6,5,2]

3 g3 [6,5,2]

3 g21 [6,4,2]

3 g1g2 [6,4,2]

3 g1g3 [6,4,2]

3 g22 [6,4,2]

3 g2g3 [6,4,2]

3 g23 [6,4,2]

3 g21g2g3 [6,2,4]

3 g1g
2
2g3 [6,2,4]

3 g1g2g
2
3 [6,2,4]

6 g1 [12,11,2]

6 g2 [12,11,2]

6 g3 [12,11,2]

6 g21 [12,10,2]

6 g1g2 [12,10,2]

6 g1g3 [12,10,2]

6 g22 [12,10,2]

6 g2g3 [12,10,2]

6 g23 [12,10,2]

6 g31g2g3 [12,7,4]
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Table 1 continued
Length Generator polynomial Gray image

6 g1g
3
2g3 [12,7,4]

6 g1g2g
3
3 [12,7,4]

7 f1 [14,13,2]

7 f 21 [14,12,2]

7 f 21 f2 [14,9,4]

7 f 21 f3 [14,9,4]

several optimal linear codes over F4 obtained from (1 + u) constacyclic codes over
F4 + uF4 of some lengths.

Tables 2, 3, 4, 5, 6 and 7 present some optimal codes obtained from (1 + u)

constacyclic codes of some lengths over Rk under the Gray map.

Table 2 Optimal binary linear
codes obtained from (1 + u)

constacyclic codes over
F2[u]/〈u3〉

Length Generator polynomial Gray image

3 Q2
1 [12,7,4]

3 Q3
1 [12,6,4]

3 Q2
1Q2 [12,5,4]

3 Q2
2 [12,5,4]

3 Q3
2 [12,3,6]

3 Q3
1Q

2
2 [12,2,8]

6 Q1 [24,20,2]

6 Q4
1 [24,17,4]

6 Q5
1 [24,16,4]

6 Q4
1Q2 [24,15,4]

6 Q6
1 [24,15,4]

7 f 31 f 22 [28,12,8]

7 f 31 f 23 [28,12,8]

7 f 22 f 33 [28,6,12]

7 f 32 f 23 [28,6,12]

Table 3 Optimal linear codes
over F4 obtained from (1 + u)

constacyclic codes over
F4[u]/〈u3〉

Length Generator polynomial Gray image

3 g21 [12,7,4]

3 g22 [12,7,4]

3 g23 [12,7,4]
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Table 4 Optimal binary linear
codes obtained from (1 + u)

constacyclic codes over
F2[u]/〈u4〉

Length Generator polynomial Gray image

3 Q1 [12,11,2]

3 Q2
1 [12,10,2]

3 Q2 [12,10,2]

3 Q3
1 [12,9,2]

3 Q1Q2 [12,9,2]

3 Q3
1Q2 [12,7,4]

3 Q4
1Q2 [12,6,4]

3 Q1Q
3
2 [12,5,4]

3 Q3
1Q

2
2 [12,5,4]

3 Q1Q
4
2 [12,3,6]

3 Q4
1Q

3
2 [12,2,8]

6 Q1 [24,23,2]

6 Q2
1 [24,22,2]

6 Q2 [24,22,2]

6 Q3
1 [24,21,2]

6 Q1Q2 [24,21,2]

6 Q4
1 [24,20,2]

6 Q2
1Q2 [24,20,2]

6 Q2
2 [24,20,2]

6 Q5
1Q2 [24,17,4]

6 Q6
1Q2 [24,16,4]

6 Q5
1Q

2
2 [24,15,4]

6 Q7
1Q2 [24,15,4]

7 f 31 f2 [28,22,4]

7 f 31 f3 [28,22,4]

7 f 41 f2 [28,21,4]

7 f 41 f3 [28,21,4]

7 f 41 f2 f
3
3 [28,12,8]

7 f 41 f 32 f3 [28,12,8]

7 f1 f
4
2 f 33 [28,6,12]

7 f1 f
3
2 f 43 [28,6,12]

Table 5 Optimal linear codes
over F4 obtained from (1 + u)

constacyclic codes over
F4[u]/〈u4〉

Length Generator polynomial Gray image

3 g1 [12,11,2]

3 g2 [12,11,2]

3 g3 [12,11,2]

3 g21 [12,10,2]

3 g22 [12,10,2]
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Table 5 continued
Length Generator polynomial Gray image

3 g23 [12,10,2]

3 g1g2 [12,10,2]

3 g1g3 [12,10,2]

3 g2g3 [12,10,2]

3 g1g2g
3
3 [12,7,4]

3 g1g
3
2g3 [12,7,4]

3 g31g2g3 [12,7,4]

7 f1 [28,27,2]

7 f 21 [28,26,2]

7 f2 [28,25,2]

7 f3 [28,25,2]

7 f 31 [28,25,2]

7 f 31 f2 [28,22,4]

7 f 31 f3 [28,22,4]

Table 6 Optimal binary linear
codes obtained from (1 + u)

constacyclic codes over
F2[u]/〈u8〉

Length Generator polynomial Gray image

7 f 21 [56,54,2]

7 f 31 [56,53,2]

7 f2 [56,53,2]

7 f3 [56,53,2]

7 f1 f3 [56,52,2]

7 f1 f2 [56,52,2]

7 f 41 [56,52,2]

7 f 21 f3 [56,51,2]

7 f 21 f2 [56,51,2]

7 f 51 f3 [56,48,4]

7 f 51 f2 [56,48,4]

7 f 61 f3 [56,47,4]

7 f 71 f3 [56,46,4]

7 f 71 f2 [56,46,4]

7 f 51 f 23 [56,45,4]

7 f 51 f 22 [56,45,4]

7 f 81 f3 [56,45,4]

7 f 81 f2 [56,45,4]

7 f 51 f2 f3 [56,45,4]
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Table 7 Optimal binary linear
codes obtained from (1 + u)

constacyclic codes over
F2[u]/〈u16〉

Length Generator polynomial Gray image

7 f1 [112,111,2]

7 f 21 [112,110,2]

7 f 31 [112,109,2]

7 f2 [112,109,2]

7 f3 [112,109,2]

7 f1 f2 [112,108,2]

7 f1 f3 [112,108,2]

7 f 41 [112,108,2]

7 f 51 [112,107,2]

7 f 21 f2 [112,107,2]

7 f 21 f3 [112,107,2]

7 f 61 [112,106,2]

7 f 31 f2 [112,106,2]

7 f 31 f3 [112,106,2]

7 f 22 [112,106,2]

7 f2 f3 [112,106,2]

7 f 23 [112,106,2]

7 f 91 f2 [112,100,4]

7 f 91 f3 [112,100,4]

7 f 101 f2 [112,99,4]

7 f 101 f3 [112,99,4]

7 f 161 f 162 f 153 [112,3,64]

7 f 161 f 152 f 163 [112,3,64]

7 Conclusion

In this paper, we extend the result of [1] about the Gray map to the polynomial residue
ring Rk = F2m [u]/〈uk〉, where 2 j−1 + 1 ≤ k ≤ 2 j for some positive integer j . Some
optimal linear cyclic code over F2 and F4 have been constructed via the Gray map. A
nature problem is to extend the results to the ring Fq [u]/〈uk〉.
Acknowledgments The research is supported by National Natural Science Foundation of China
(61370089) and Anhui Province Natural Science Research (KJ2013B107).
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