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Abstract This paper studies single machine scheduling with a fixed non-availability
interval. The processing time of a job is a linear increasing function of its starting time,
and each job has a release date. A job is either rejected by paying a penalty cost or
accepted and processed on the machine. The objective is to minimize the makespan
of the accepted jobs and the total rejection penalties of the rejected jobs. We present a
fully polynomial-time approximation scheme for the problem. We also show that the
special case without non-availability interval can be solved using the same method
with a lower order.
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Rejection · Non-availability interval
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1 Introduction

Scheduling problems have been extensively studied in various machine environments
and performance measures. In most classical scheduling problems, the machine is
available all the time. Actually, however, a machine may be unavailable in some
parts of the scheduling period due to preventive maintenance or tool change and so
on. Due to its strong background in industrial applications, machine scheduling with
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availability constraints has received increasing attention. Two cases, resumable and
non-resumable, were defined in the literature (Lee [9]). A job is called resumable if
it cannot finish before the unavailable period of a machine and can continue after the
machine is available again. On the other hand, a job is called non-resumable if it has
to restart, rather than continue. Li and Fan [11] studied the non-resumable version of
the scheduling problem on a single machine subject to availability constraints. The
objective is to minimize the total weighted completion time. They proposed a pseudo-
polynomial-time algorithm and a FPTAS for the problemwith a single non-availability
interval. Ma et al. [18] provided a survey of different problems with machine availabil-
ity constraints. Zhao et al. [29] considered two parallel machines scheduling problem
where one machine is not available in a fixed time period, they gave a FPTAS for the
problem. Shen et al. [21] and Wang et al. [22] focused on parallel-machine schedul-
ing with non-simultaneous machine available time. Zhao and Tang [28] considered
a parallel-machine scheduling problem. Each machine is not available in a specified
time period. They presented a pseudo-polynomial dynamic programming algorithm.

Furthermore, recent empirical studies have verified that the job processing times
are increasing functions of their starting times, such as cleaning tasks, scheduling
maintenance and so on, where any delay in starting to process a job increases the
job’s processing time. The phenomenon is “deteriorating jobs”. Hsu et al. [5] analyzed
linear deteriorating jobs schedulingwith due-date assignment andmaintenance activity
on a single machine. The objective is to minimize the total of earliness, tardiness
and due-date cost. They showed that the problem can be solved in polynomial time.
Wang et al. [22] studied single-machine scheduling problems with a time-dependent
deterioration, where the job processing time is defined by an increasing function of
the total normal processing time of jobs in front of it in a sequence. They constructed
a mixed integer programming formulation for the problem. Wang and Wang [23]
considered scheduling problem with convex resource dependent processing times and
deteriorating jobs, in which the job processing time is a function of its starting time and
its convex resource allocation. Liu et al. [15] stressed a single-machine common due-
window assignment scheduling problem with deteriorating jobs. The job processing
times are functions of their starting times and job-dependent deterioration rates that
are related to jobs and are not all equal. Cheng et al. [1] made a concise survey of
scheduling with time-dependent processing time.

Additionally, in many cases jobs rejection may be considered. For example, to
obtain the maximum profits, the manufacturer often rejects some jobs which have the
larger processing times and bring the relatively smaller profits. In such a case, we
reject a job by paying a rejection penalty. Zhang and Luo [27] addressed two parallel-
machine scheduling with deteriorating jobs, rejection and a fixed non-availability
interval. They presented a FPTAS for the problem. Li and Yuan [12] studied parallel-
machine scheduling with deteriorating jobs and rejection, the objective is to minimize
the scheduling cost of the accepted jobs plus the total penalty of the rejected jobs.Gerstl
and Mosheiov [2] solved a parallel identical machine scheduling problem with job-
rejection and position-dependent processing times. They considered two scheduling
measures: total flow-time and total load. Both problems are shown to be solved in poly-
nomial time. Hsu and Chang [4] aimed to investigate the unrelated parallel-machine
scheduling with deteriorating jobs and rejection. The objective is to minimize the sum
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of cost including the weighted of total load, total completion time, total absolute devi-
ation of completion time, and the total penalty of the rejected jobs. Luo [17] presented
a FPTAS for the uniform parallel-machine scheduling problemwith deteriorating jobs
and rejection, where the objective is to minimize the sum of the total load of the
accepted jobs on all machines and the total penalties of the rejected jobs. Shabtay et
al. [20] provided a detailed review of scheduling problems with rejection. Shabtay
[19] studied a single machine serial batch scheduling problem with rejection. The
objective is to minimize total completion time and total rejection cost. Zhao et al. [30]
considered the due date assignment problem with rejection and position-dependent
processing times on a single machine.

Moreover, jobs may be not ready for processing at the beginning and they arrive
over time due to the limitation of supplying or storage ability. Motivated by this phe-
nomenon, scheduling with release dates has attracted increasing attention. Liu et al.
[16] considered scheduling deteriorating jobs on a single machine with release times
and rejection, the objective is to minimize the makespan plus the total penalty incurred
by rejecting jobs. They presented two dynamic programming algorithms and designed
a FPTAS for the considered problem. Li et al. [10] studied a single machine schedul-
ing problem with resource dependent release dates. The objective is to minimize total
resource-consumption. Li et al. [13] considered parallel-batch scheduling of deteri-
orating jobs with release dates. The goal is to minimize the makespan. Yuan et al.
[25] addressed two-agent single-machine scheduling problem with release dates and
preemption. The objective is to minimize the maximum lateness. Zhang et al. [26]
assessed single machine scheduling with release dates and rejection, the objective is
tominimize the sum ofmakespan of the accepted jobs and the total rejection penalty of
the rejected jobs. Liu and Luo [14] extended the study of Zhang et al. [26] to deal with
single machine scheduling problem with release dates, rejection and an unavailable
interval.

However, both Zhang et al. [26] and Liu and Luo [14] considered scheduling prob-
lem in which the processing times of jobs are constants. In this paper, we extend the
study of Liu and Luo [14] to the case with deteriorating jobs. We consider deteriorat-
ing jobs scheduling on a single machine with simultaneous considerations of release
dates, rejection and a fixed non-availability interval. The processing time of a job is a
linear increasing function of its starting time. We present a FPTAS for the problem,
and show that the special case without non-availability interval can be solved using
the same method with a lower order.

The remainder of this paper is organized as follows: In Sect. 2 we introduce the
notation and formulate the problem; In Sect. 3 we present some properties which
are useful for solving the problem; In Sect. 4 we provide a FPTAS for the considered
problem; InSect. 5we consider a special casewithout non-availability interval. Finally,
conclusions are given in the last Section.

2 Problem formulation

The considered problem can be formulated as follows. There are a set of n jobs
J = {J1, . . . , Jn} and a single machine with a fixed non-availability interval [T1, T2],
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the machine can process at most one job at a time. The actual processing time of job
J j is an increasing function of its starting time t , that is, pA

j = p j (a + bt), where

a ≥ 0, b > 0, p j > 0 is the normal processing time of job J j , pA
j represents the

actual processing time of job J j . Each job has a release date r j and a rejection penalty
w j > 0.

Without loss of generality, we assume that all p j , r j and w j ( j = 1, 2, . . . , n) are
integers, and

∑n
j=1 p

A
j > T1 which implies that not all jobs can be completed before

T1, otherwise the interval [T1, T2] is unnecessary. Denote by A and R = J \A the
set of accepted jobs and the set of rejected jobs, respectively. Let Pj (π) denote the
completion time of the accepted job J j in a feasible scheduleπ . By using the three-field
notation of Graham et al. [3], the problem under consideration is denoted by

1, h|r j , p j (a + bt), rej |Cmax
J j∈A

+
∑

J j∈R

w j

(where h denotes a fixed non-availability interval of the machine), which is NP-
hard since the study of Zhang et al. [26] showed that problem 1|r j , rej |Cmax

J j∈A
+

∑

J j∈R
w j is NP-hard.

We present a FPTAS for the problem and then give a special case without non-
availability interval denoted by 1|r j , p j (a + bt), rej |Cmax

J j∈A
+ ∑

J j∈R
w j , which can be

solved using the same method with a lower order.

3 Preliminary results

In this section, we provide some lemmas which are useful for the following results.

Lemma 1 For the problem 1 |p j (a + bt)|Cmax, if t0 is the starting time of the first
job, then

Cmax =
(
t0 + a

b

) ∏n

j=1

(
1 + bp j

) − a

b
.

Proof See Kononov and Gawiejnowicz [6]. ��
Lemma 2 The problem 1 |r j , p j (a + bt)|Cmax is solved by sequencing the jobs in
non-decreasing order of r j .

Proof It can be proved by a pairwise interchange of jobs. Suppose that there exists an
optimal schedule S = (π1, J j , Ji , π2)with r j > ri , whereπ1 andπ2 denote the partial
sequences of S. Let S′ be the schedule with jobs Ji and J j of S mutually exchanged,
that is, S′ = (π1, Ji , J j , π2). In addition, we assume that the completion time of the
last job in π1 is B, and let Cl(S) and Cl(S′) denote the completion times of job Jl
in S and S′. We will show that the interchange of jobs Ji and J j does not increase
the objective value. The repeated implementation of this argument will lead to the
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optimality of the non-decreasing order of r j for the problem 1 |r j , p j (a + bt)|Cmax.
Specifically, it suffices to show that C j (S′) ≤ Ci (S). Then we have

C j (S) = max{B, r j } + p j (a + bmax{B, r j })
=

(
max{B, r j } + a

b

)
(1 + bp j ) − a

b
Ci (S) = max(C j (S), ri ) + pi (a + bmax(C j (S), ri ))

=
(
max{C j (S), ri } + a

b

)
(1 + bpi ) − a

b

=
(
max

{(
max{B, r j } +a

b

)
(1 + bp j ), ri + a

b

})
(1 + bpi ) − a

b

=
(
max

{(
max{B, r j }+a

b

)
(1 + bp j )(1 + bpi ),

(
ri + a

b

)
(1 + bpi )

})
− a

b
Ci (S

′) = max{B, ri } + pi (a + bmax{B, ri })
=

(
max{B, ri } + a

b

)
(1 + bpi ) − a

b
C j (S

′) = max(Ci (S
′), r j ) + p j (a + bmax(Ci (S

′), r j ))

=
(
max{Ci (S

′), r j } + a

b

)
(1 + bp j ) − a

b

=
(
max

{(
max{B, ri } +a

b

)
(1 + bpi ), r j + a

b

})
(1 + bp j ) − a

b

=
(
max

{(
max{B, ri }+a

b

)
(1 + bpi )(1 + bp j ),

(
r j + a

b

)
(1 + bp j )

})
− a

b

Since r j > ri , we have

(
max

{
B, r j

} + a

b

) (
1 + bp j

)
(1 + bpi ) ≥

(
max {B, ri } + a

b

)
(1 + bpi )

(
1 + bp j

)

(1)
and obviously that

(
max

{
B, r j

} + a

b

) (
1 + bp j

)
(1 + bpi ) ≥

(
r j + a

b

) (
1 + bp j

)
(2)

Then we obtain C j (S′) ≤ Ci (S) from (1) and (2). This completes the proof of the
Lemma. ��

Using the similar method, we can obtain the following two Lemmas.

Lemma 3 For the problem 1|r j , p j (a + bt), rej |Cmax
J j∈A

+ ∑

J j∈R
w j , there exists an

optimal job sequence such that the accepted jobs are sequenced in non-decreasing
order of r j .

Lemma 4 For the problem 1, h|r j , p j (a + bt), rej |Cmax
J j∈A

+ ∑

J j∈R
w j , there exists an

optimal job sequence such that (i) the accepted jobs scheduled before T1 are sequenced
in non-decreasing order of r j ; (i i) the accepted jobs scheduled after T2 are sequenced
in non-decreasing order of r j .
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4 A FPTAS

Let the jobs be indexed according to r1 ≤ r2 ≤ · · · ≤ rn , We introduce variables
x j , j = 1, 2, . . . , n, where

x j =
⎧
⎨

⎩

0 Job J j is rejected.
1 Job J j is scheduled before T1.

2 Job J j is scheduled after T2.

Let X be the set of all the vectors x = (x1, x2, . . . , xn) with x j = k, k = 0, 1, 2. The
first j components of each vector x ∈ X correspond to a feasible schedule of jobs
J1, J2, . . . , J j . Let f j (x) be the objective value. P1

j (x) denotes the completion time

of the last job processed before T1. P2
j (x) represents the completion time of the last

job processed after T2. Wj (x) is the total rejection penalties of jobs J1, J2, . . . , J j .
Furthermore, if P2

j (x) = T2, then it implies that there is no job processed after T2, thus

for the first j jobs, the makespan is P1
j (x). Consequently, f j (x) = P1

j (x) + Wj (x).

While if P2
j (x) > T2, then it implies that there is at least one job processed after T2,

thus the makespan is P2
j (x), and f j (x) = P2

j (x) + Wj (x).
Then we define the following initial and recursive functions on X :

P1
0 (x) = 0, P2

0 (x) = T2, W0(x) = 0, f0(x) = 0.

Pk
j (x) = max{Pk

j−1(x), r j } + p j (a + bmax{Pk
j−1(x), r j }), for x j = k, k = 1, 2.

Pi
j (x) = Pi

j−1(x), for x j = k, i �= k, i = 1, 2, k = 0, 1, 2.

Wj (x) = Wj−1(x) + w j , for x j = 0.

Wj (x) = Wj−1(x), for x j = k, k = 1, 2.

f j (x) = P1
j (x) + Wj (x), for P2

j (x) = T2.

f j (x) = P2
j (x) + Wj (x), for P2

j (x) > T2.

Consequently, the problem 1, h|r j , p j (a+bt), rej |Cmax
J j∈A

+ ∑

J j∈R
w j reduces to the

following problem:

Minimize fn(x)

Subject to P1
n (x) ≤ T1, x ∈ X.

We first introduce procedure Partition (A, u, δ) proposed by Kovalyov and Kubiak
[7,8],where A ⊆ X, u is a nonnegative integer function on X , and 0 < δ ≤ 1. This pro-
cedure partitions A into disjoint subsets Au

1, A
u
2, . . . , A

u
ku

such that
∣
∣u(x) − u(x ′)

∣
∣ ≤

δmin{u(x), u(x ′)} for any x, x ′ from the same subset Au
j , j = 1, 2, . . . , ku . The

following description provides the details of partition (A, u, δ).

Procedure Partition (A, u, δ)

Step 1 Arrange vectors x ∈ X in the order x (1), x (2), . . . , x (|A|) such that 0 ≤
u(x (1)) ≤ u(x (2)) ≤ · · · ≤ u(x (|A|)).
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Deteriorating jobs scheduling on a single machine 591

Step 2 Assign vectors x (1), x (2), . . . , x (i1) to set Au
1 until i1 is found such that

u(x (i1)) ≤ (1 + δ)u(x (1)) and u(x (i1+1)) > (1 + δ)u(x (1)). If such i1
does not exist, then take Au

ku
= Au

1 = A, and stop. Assign vectors

x (i1+1), x (i1+2), . . . , x (i2) to set Au
2 until i2 is found such that u(x (i2)) ≤

(1 + δ)u(x (i1+1)) and u(x (i2+1)) > (1 + δ)u(x (i1+1)). If such i2 does
not exist, then take Au

ku
= Au

2 = A − Au
1, and stop. Continue the above

construction until x (|A|) is included in Au
ku

for some ku .

Procedure Partition requires O (|A| log |A|) operations to arrange the vectors of A
in nondecreasing order of u(x) and O (|A|) operations to provide a partition. Themain
properties of Partition (A, u, δ) were given in Kovalyov and Kubiak [7,8].

Property 1
∣
∣u(x) − u(x ′)

∣
∣ ≤ δmin

{
u(x), u(x ′)

}
for any x, x ′ ∈ Au

j , j =
1, 2, . . . , ku .

Property 2 ku ≤ log u(x |A|)/δ + 2 for 0 < δ ≤ 1 and u(x |A|) ≥ 1.

A formal description of the FPTAS Aε for problem 1, h|r j , p j (a + bt), rej |
Cmax
J j∈A

+ ∑

J j∈R
w j is given below.

Algorithm 1 Aε

Step 1 (Initialization) Number the jobs so that r1 ≤ r2 ≤ · · · ≤ rn . Set Y0 =
{(0, 0, . . . , 0)} and j = 1.

Step 2 (Generation of Y1,Y2, . . . ,Yn) For set Y j−1, generate set Y ′
j by adding k in

position j of each vector from Y j−1, k = 0, 1, 2. Calculate the following
for any x ∈ Y ′

j , assuming x j = k.

Pk
j (x) = max{Pk

j−1(x), r j } + p j (a + bmax{Pk
j−1(x), r j }),

for x j =k, k=1, 2.

Pi
j (x) = Pi

j−1(x), for x j = k, i �= k, i = 1, 2, k = 0, 1, 2.

If P1
j (x) > T1, delete x from Y ′

j , otherwise, go on the following compu-
tations.

Wj (x) = Wj−1(x) + w j , for k = 0,

Wj (x) = Wj−1(x), for k = 1, 2.

f j (x) = P1
j (x) + Wj (x), for P2

j (x) = T2,

f j (x) = P2
j (x) + Wj (x), for P2

j (x) > T2.

If j = n, then set Yn = Y ′
n , and go to Step 3.

If j < n, then set δ = ε/(2(n + 1)), and perform the following computa-
tions.
Call Partition (Y ′

j , P
i
j , δ) (i = 1, 2) to partition set Y ′

j into disjoint subsets

Y Pi

1 , Y Pi

2 , . . . ,Y Pi

kPi
.
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Call Partition (Y ′
j ,Wj , δ) to partition set Y ′

j into disjoint subsets Y
W
1 ,YW

2 ,

. . . ,YW
kW

.

Call Partition (Y ′
j , f j , δ) to partition set Y ′

j into disjoint subsets Y f
1 ,Y f

2 ,

. . . ,Y f
k f
.

Divide set Y ′
j into disjoint subsets Ya1a2bc = Y P1

a1 ∩ Y P2

a2 ∩ YW
b ∩ Y f

c ,
a1 = 1, 2, . . . ,

kP1; a2 = 1, 2, . . . , kP2 ; b = 1, 2, . . . , kW ; c = 1, 2, . . . , k f .

For each nonempty subset Ya1a2bc, choose a vector x
(a1a2bc) such that

P1
j (x

(a1a2bc)) = min{P1
j (x)

∣
∣x ∈ Ya1a2bc }

Set Y j = {x (a1a2bc)
∣
∣a1 = 1, 2, . . . , kP1 ; a2 = 1, 2, . . . , kP2 ; b =

1, 2, . . . , kW ; c = 1, 2, . . . , k f andYa1a2bc = Y P1

a1 ∩Y P2

a2 ∩YW
b ∩Y f

c �= φ},
and j = j + 1. Repeat Step 2.

Step 3 (Solution) Select vector x0 ∈ Yn such that fn(x0) = min{ fn(x) |x ∈ Yn }.
For theproblem1, h|r j , p j (a+bt), rej |Cmax

J j∈A
+ ∑

J j∈R
w j , let x∗ = (x∗

1 , x
∗
2 , . . . , x

∗
n )

be an optimal solution and set L = logmax{n, 1/ε, 1+ bpmax, rmax + a
b , T2 + a

b ,W },
where pmax = maxnj=1{p j }, rmax = maxnj=1{r j }, W = ∑n

j=1 w j . Then we have the
following theorem.

Theorem 1 For the problem 1, h|r j , p j (a + bt), rej |Cmax
J j∈A

+ ∑

J j∈R
w j , AlgorithmAε

finds x0 ∈ X such that P1
n (x0) ≤ T1 and fn(x0) ≤ (1 + ε) fn(x∗) in O(n6L5/ε4).

Proof Suppose that (x∗
1 , . . . , x

∗
j , 0, . . . , 0) ∈ Ya1a2bc ⊆ Y ′

j for some j and a1, a2, b, c.
By the definition of Aε, such j always exists, for instance j = 1. Algorithm Aε

may not choose (x∗
1 , . . . , x

∗
j , 0, . . . , 0) for further construction. However, a vector

x (a1a2bc) such that P1
j (x

(a1a2bc)) = min{P1
j (x)

∣
∣x ∈ Ya1a2bc } is chosen instead of

(x∗
1 , . . . , x

∗
j , 0, . . . , 0), then we have

P1
j (x

(a1a2bc)) ≤ P1
j (x

∗) ≤ T1.

Since Ya1a2bc = Y P1

a1 ∩Y P2

a2 ∩YW
b ∩Y f

c and x (a1a2bc), (x∗
1 , . . . , x

∗
j , 0, . . . , 0) ∈ Ya1a2bc,

then we have

x (a1a2bc),
(
x∗
1 , . . . , x

∗
j , 0, . . . , 0

)
∈ Y P1

a1 , x (a1a2bc),
(
x∗
1 , . . . , x

∗
j , 0, . . . , 0

)
∈ Y P2

a2

x (a1a2bc),
(
x∗
1 , . . . , x

∗
j , 0, . . . , 0

)
∈ YW

b , x (a1a2bc),
(
x∗
1 , . . . , x

∗
j , 0, . . . , 0

)
∈ Y f

c .

��
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Deteriorating jobs scheduling on a single machine 593

Then according to Property 1, we have

∣
∣
∣Wj (x

∗) − Wj

(
x (a1a2bc)

)∣
∣
∣ ≤ δmin

{
Wj (x

∗),Wj

(
x (a1a2bc)

)}
≤ δWj (x

∗)
∣
∣
∣P1

j (x
∗) − P1

j

(
x (a1a2bc)

)∣
∣
∣ ≤ δmin

{
P1
j (x

∗), P1
j

(
x (a1a2bc)

)}
≤ δP1

j (x
∗)

∣
∣
∣P2

j (x
∗) − P2

j

(
x (a1a2bc)

)∣
∣
∣ ≤ δmin

{
P2
j (x

∗), P2
j

(
x (a1a2bc)

)}
≤ δP2

j (x
∗)

∣
∣
∣ f j (x

∗) − f j
(
x (a1a2bc)

)∣
∣
∣ ≤ δmin

{
f j (x

∗), f j
(
x (a1a2bc)

)}
≤ δ f j (x

∗)

Consequently, we have

∣
∣
∣Wj (x

∗) − Wj

(
x (a1a2bc)

)∣
∣
∣ ≤ δWj (x

∗),
∣
∣
∣Pi

j (x
∗) − Pi

j

(
x (a1a2bc)

)∣
∣
∣ ≤ δPi

j (x
∗), i = 1, 2.

∣
∣
∣ f j (x

∗) − f j
(
x (a1a2bc)

)∣
∣
∣ ≤ δ f j (x

∗).

Set δ = δ1. We consider vector (x∗
1 , . . . , x

∗
j , x

∗
j+1, 0, . . . , 0) and x̃ (a1a2bc) =

(x (a1a2bc)
1 , . . . , x (a1a2bc)

j , x∗
j+1, 0, . . . , 0). Without loss of generality, we assume

x∗
j+1 = k, then

P1
j+1

(
x̃ (a1a2bc)

)
≤ P1

j+1(x
∗) ≤ T1

If k = 0, then

∣
∣
∣Wj+1(x

∗) − Wj+1

(
x̃ (a1a2bc)

)∣
∣
∣ =

∣
∣
∣Wj (x

∗) + w j+1 − Wj

(
x (a1a2bc)

)
− w j+1

∣
∣
∣ .

≤ δWj (x
∗) ≤ δ1Wj+1(x

∗)
∣
∣
∣Pi

j+1(x
∗) − Pi

j+1

(
x̃ (a1a2bc)

)∣
∣
∣ =

∣
∣
∣Pi

j (x
∗) − Pi

j

(
x (a1a2bc)

)∣
∣
∣

≤ δPi
j (x

∗) = δ1P
i
j+1(x

∗), for i = 1, 2.
∣
∣
∣ f j+1(x

∗) − f j+1

(
x̃ (a1a2bc)

)∣
∣
∣ =

∣
∣
∣ f j (x

∗) + w j+1 − f j
(
x (a1a2bc)

)
− w j+1

∣
∣
∣

≤ δ f j (x
∗) ≤ δ1 f j+1(x

∗)

If k = 1, then

∣
∣
∣Wj+1(x

∗) − Wj+1

(
x̃ (a1a2bc)

)∣
∣
∣ =

∣
∣
∣Wj (x

∗) − Wj

(
x (a1a2bc)

)∣
∣
∣

≤ δWj (x
∗) = δ1Wj+1(x

∗)
∣
∣
∣P1

j+1(x
∗) − P1

j+1

(
x̃ (a1a2bc)

)∣
∣
∣ ≤ δ1P

1
j+1(x

∗) (3)
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(The proof of (3) is given in the Appendix).

∣
∣
∣P2

j+1(x
∗) − P2

j+1

(
x̃ (a1a2bc)

)∣
∣
∣ =

∣
∣
∣P2

j (x
∗) − P2

j

(
x (a1a2bc)

)∣
∣
∣

≤ δP2
j (x

∗) = δ1P
2
j+1(x

∗)
∣
∣
∣ f j+1(x

∗) − f j+1

(
x̃ (a1a2bc)

)∣
∣
∣ ≤ δ1 f j+1(x

∗) (4)

(The proof of (4) is given in the Appendix).
If k = 2, then

∣
∣
∣Wj+1(x

∗) − Wj+1

(
x̃ (a1a2bc)

)∣
∣
∣ =

∣
∣
∣Wj (x

∗) − Wj

(
x (a1a2bc)

)∣
∣
∣

≤ δWj (x
∗) = δ1Wj+1(x

∗)
∣
∣
∣P1

j+1(x
∗) − P1

j+1

(
x̃ (a1a2bc)

)∣
∣
∣ =

∣
∣
∣P1

j (x
∗) − P1

j

(
x (a1a2bc)

)∣
∣
∣

≤ δP1
j (x

∗) = δ1P
1
j+1(x

∗)
∣
∣
∣P2

j+1(x
∗) − P2

j+1

(
x̃ (a1a2bc)

)∣
∣
∣ ≤ δ1P

2
j+1(x

∗) (5)

(The proof of (5) is given in the Appendix).

∣
∣
∣ f j+1(x

∗) − f j+1

(
x̃ (a1a2bc)

)∣
∣
∣ =

∣
∣
∣P2

j+1(x
∗) + Wj+1(x

∗) − P2
j+1

(
x̃ (a1a2bc)

)

−Wj+1

(
x̃ (a1a2bc)

)∣
∣
∣

≤
∣
∣
∣P2

j+1(x
∗) − P2

j+1

(
x̃ (a1a2bc)

)∣
∣
∣

+
∣
∣
∣Wj+1(x

∗) − Wj+1

(
x̃ (a1a2bc)

)∣
∣
∣

≤ δ1P
2
j+1(x

∗) + δ1Wj+1(x
∗)

= δ1 f j+1(x
∗)

Therefore, for x∗
j+1 = k, k = 0, 1, 2, we have

∣
∣
∣Wj+1(x

∗) − Wj+1

(
x̃ (a1a2bc)

)∣
∣
∣ ≤ δ1Wj+1(x

∗),
∣
∣
∣Pi

j+1(x
∗) − Pi

j+1

(
x̃ (a1a2bc)

)∣
∣
∣ ≤ δ1P

i
j+1(x

∗), i = 1, 2.
∣
∣
∣ f j+1(x

∗) − f j+1

(
x̃ (a1a2bc)

)∣
∣
∣ ≤ δ1 f j+1(x

∗). (6)

Consequently,

Wj+1

(
x̃ (a1a2bc)

)
≤ (1 + δ1)Wj+1(x

∗),

Pi
j+1

(
x̃ (a1a2bc)

)
≤ (1 + δ1)P

i
j+1(x

∗), i = 1, 2.
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f j+1

(
x̃ (a1a2bc)

)
≤ (1 + δ1) f j+1(x

∗).

Assume that x̃ (a1a2bc) ∈ Yc1c2de ⊆ Y ′
j+1 and algorithmAε chooses x (c1c2de) ∈ Yc1c2de

instead of x̃ (a1a2bc) in the ( j + 1) st iteration. It is derived that

P1
j+1

(
x (c1c2de)

)
≤ P1

j+1

(
x̃ (a1a2bc)

)
≤ P1

j+1(x
∗) ≤ T1

∣
∣
∣Wj+1

(
x̃ (a1a2bc)

)
− Wj+1

(
x (c1c2de)

)∣
∣
∣ ≤ δWj+1

(
x̃ (a1a2bc)

)
≤ δ(1 + δ1)Wj+1(x

∗)
∣
∣
∣Pi

j+1

(
x̃ (a1a2bc)

)
− Pi

j+1(x
(c1c2de))

∣
∣
∣ ≤ δPi

j+1

(
x̃ (a1a2bc)

)
≤ δ(1 + δ1)P

i
j+1(x

∗)
∣
∣
∣ f j+1

(
x̃ (a1a2bc)

)
− f j+1

(
x (c1c2de)

)∣
∣
∣ ≤ δ f j+1

(
x̃ (a1a2bc)

)
≤ δ(1 + δ1) f j+1(x

∗) (7)

From (6) and (7), we obtain

∣
∣
∣Pi

j+1(x
∗) − Pi

j+1

(
x (c1c2de)

)∣
∣
∣

≤
∣
∣
∣Pi

j+1(x
∗) − Pi

j+1

(
x̃ (a1a2bc)

)∣
∣
∣ +

∣
∣
∣Pi

j+1

(
x̃ (a1a2bc)

)
− Pi

j+1(x
(c1c2de))

∣
∣
∣

≤ δ1P
i
j+1(x

∗) + δ(1 + δ1)P
i
j+1(x

∗)

= [δ + (1 + δ)δ1] P
i
j+1(x

∗) (8)

Similarly,

∣
∣
∣Wj+1(x

∗) − Wj+1

(
x (c1c2de)

)∣
∣
∣ ≤ [δ + (1 + δ)δ1]Wj+1(x

∗) (9)
∣
∣
∣ f j+1(x

∗) − f j+1

(
x (c1c2de)

)∣
∣
∣ ≤ [δ + (1 + δ)δ1] f j+1(x

∗) (10)

Set δl = δ + (1 + δ)δl−1, l = 2, 3, . . . , n − j + 1. From (8), (9) and (10), it follows

∣
∣
∣Wj+1(x

∗) − Wj+1

(
x (c1c2de)

)∣
∣
∣ ≤ δ2Wj+1(x

∗),
∣
∣
∣Pi

j+1(x
∗) − Pi

j+1

(
x (c1c2de)

)∣
∣
∣ ≤ δ2P

i
j+1(x

∗), i = 1, 2.
∣
∣
∣ f j+1(x

∗) − f j+1

(
x (c1c2de)

)∣
∣
∣ ≤ δ2 f j+1(x

∗).

By repeating the above argument for j + 2, . . . , n, we show that there exists x ′ ∈ Yn
such that

P1
n (x) ≤ P1

n (x∗) ≤ T1
∣
∣Wn(x

∗) − Wn(x
′)
∣
∣ ≤ δn− j+1Wn(x

∗),
∣
∣
∣Pi

n(x
∗) − Pi

n(x
′)
∣
∣
∣ ≤ δn− j+1P

i
n(x

∗), i = 1, 2.
∣
∣ fn(x

∗) − fn(x
′)
∣
∣ ≤ δn− j+1 fn(x

∗) (11)
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Since

δn− j+1 ≤ δ

n∑

j=0

(1 + δ) j = (1 + δ)n+1 − 1

=
n+1∑

k=1

(n + 1)n · · · (n − k + 2)

k! δk

=
n+1∑

k=1

(n + 1) n · · · (n − k + 2)

k! (n + 1)k

(ε

2

)k

≤
n+1∑

k=1

1

k!
(ε

2

)k

≤
n+1∑

k=1

(ε

2

)k

≤ ε

Therefore,

∣
∣Wn(x

∗) − Wn(x
′)
∣
∣ ≤ εWn(x

∗),
∣
∣
∣Pi

n(x
∗) − Pi

n(x
′)
∣
∣
∣ ≤ εPi

n(x
∗), i = 1, 2.

∣
∣ fn(x

∗) − fn(x
′)
∣
∣ ≤ ε fn(x

∗).

Then in Step 3, a vector x0 will be chosen such that

P1
n (x0) ≤ P1

n (x ′) ≤ P1
n (x∗) ≤ T1

and

fn(x
0) ≤ fn(x

′) ≤ (1 + ε) fn(x
∗).

The time complexity of Algorithm Aε can be established by noting that the most
time-consuming operation of iteration j of Step 2 is a call of procedure Partition, which

requires O(

∣
∣
∣Y ′

j

∣
∣
∣ log

∣
∣
∣Y ′

j

∣
∣
∣) time to complete. To estimate

∣
∣
∣Y ′

j

∣
∣
∣, recall that

∣
∣
∣Y ′

j+1

∣
∣
∣ ≤

3
∣
∣Y j

∣
∣ ≤ 3kP1 · kP2 · kW · k f . By Property 2, we have

kP1 ≤ 2 (n + 1) log T1
/
ε + 2 = O(nL

/
ε),

kW ≤ 2 (n + 1) log (W )
/
ε + 2 = O

(
nL

/
ε
)
.

And by Lemma 1, we can obtain P2
n (x) ≤ [

max {T2, rmax} + a
b

]∏n
j=1

(
1 + bp j

)− a
b .

Then we have
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kP2 ≤ 2(n + 1)log
{[

max {T2, rmax} + a

b

]∏n

j=1

(
1 + bp j

) − a

b

}/

ε + 2 = O
(
n2L/ε

)
,

k f ≤ 2(n + 1)log
{[

max {T2, rmax} + a

b

]∏n

j=1

(
1 + bp j

) − a

b
+ W

}/

ε + 2 = O
(
n2L/ε

)
.

Thus
∣
∣
∣Y ′

j

∣
∣
∣ = O(n6L4/ε4) andO(

∣
∣
∣Y ′

j

∣
∣
∣ log

∣
∣
∣Y ′

j

∣
∣
∣) = O(n6L5/ε4). Therefore,Algorithm

Aε runs in O(n6L5/ε4).

5 A special case

In this section,we give the special casewithout non-availability interval (T1 = T2 = 0)
denoted by 1|r j , p j (a+bt), rej |Cmax

J j∈A
+ ∑

J j∈R
w j , which can be solved using the same

method with a lower order.
Similar to the problem 1, h|r j , p j (a+bt), rej |Cmax

J j∈A
+ ∑

J j∈R
w j , we introduce vari-

ables x j , j = 1, 2, . . . , n, where

x j =
{
0 Job Jj is rejected.
1 Job Jj is accepted.

Let X be the set of all the vectors x = (x1, x2, . . . , xn) with x j = k, k = 0, 1. We
define the following initial and recursive functions on X:

P0(x) = 0, W0(x) = 0, f0(x) = 0.

Pj (x) = Pj−1(x), for x j = 0.

Pj (x) = max{Pj−1(x), r j } + p j (a + bmax{Pj−1(x), r j }), for x j = 1.

Wj (x) = Wj−1(x) + w j , for x j = 0.

Wj (x) = Wj−1(x), for x j = 1.

f j (x) = Pj (x) + Wj (x).

The problem 1|r j , p j (a+bt), rej |Cmax
J j∈A

+ ∑

J j∈R
w j reduces to the following problem:

Minimize fn(x)

Subject to x ∈ X.

Before giving the following algorithm A′
ε, we first point out three major changes

in this problem.
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• P1
j (x) and P2

j (x) denoted in Sect. 4 are no longer necessary since the machine
is available all the time in this problem. In this section, we just need define one
function Pj (x) as the makespan of the accepted jobs.

• In algorithm Aε we need four Partitions (Y ′
j , P

i
j , δ) (i = 1, 2), (Y ′

j ,Wj , δ) and
(Y ′

j , f j , δ). While in the proof of theorem 2 we will see that Partition (Y ′
j , f j , δ)

is unnecessary, then in algorithmA′
ε we only need two Partitions (Y ′

j , Pj , δ) and
(Y ′

j ,Wj , δ).

• The constraint P1
n (x) ≤ T1 is useless in this section, which means that Pj (x) has

no constraint. Note that in algorithm Aε, in order to guarantee the constraint
P1
n (x) ≤ T1, we must choose the vector x (a1a2bc) such that P1

j (x
(a1a2bc)) =

min{P1
j (x)

∣
∣x ∈ Ya1a2bc } rather than a vector x (a1a2bc) such that f j (x (a1a2bc)) =

min{ f j (x)
∣
∣x ∈ Ya1a2bc }.

Algorithm 2 A′
ε

Step 1 (Initialization) Number the jobs so that r1 ≤ r2 ≤ · · · ≤ rn . Set Y0 =
{(0, 0, . . . , 0)} and j = 1.

Step 2 (Generation of Y1,Y2, . . . ,Yn) For set Y j−1, generate set Y ′
j by adding k

in position j of each vector from Y j−1, k = 0, 1. Calculate the following
for any x ∈ Y ′

j ,

Pj (x) = Pj−1(x), for x j = 0.

Pj (x) = max
{
Pj−1(x), r j

} + p j
(
a + bmax

{
Pj−1(x), r j

})
,

for x j = 1.

Wj (x) = Wj−1(x) + w j , for x j = 0.

Wj (x) = Wj−1(x), for x j = 1.

f j (x) = Pj (x) + Wj (x)

If j = n, then set Yn = Y ′
n , and go to Step 3.

If j < n, then set δ = ε/(2(n + 1)), and perform the following computa-
tions.
Call Partition (Y ′

j , Pj , δ) to partition set Y ′
j into disjoint subsets Y P

1 ,Y P
2 ,

. . . ,Y P
kP
.

Call Partition (Y ′
j ,Wj , δ) to partition set Y ′

j into disjoint subsets Y
W
1 ,YW

2 ,

. . . ,YW
kW

.

Divide set Y ′
j into disjoint subsets Yab = Y P

a ∩YW
b , a = 1, 2, . . . , kP ; b =

1, 2, . . . , kW .
For each nonempty subset Yab, choose a vector x (ab) such that

f j (x
(ab)) = min{ f j (x) |x ∈ Yab }

Set Y j = {x (ab) |a = 1, 2, . . . , kP ; b = 1, 2, . . . , kW and Yab = Y P
a ∩

YW
b �= φ}, and j = j + 1. Repeat Step 2.

Step 3 (Solution) Select vector x0 ∈ Yn such that fn(x0) = min{ fn(x) |x ∈ Yn }.
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Theorem 2 For the problem 1|r j , p j (a + bt), rej |Cmax
J j∈A

+ ∑

J j∈R
w j , Algorithm A′

ε

finds x0 ∈ X such that fn(x0) ≤ (1 + ε) fn(x∗) in O(n3L3/ε2).

Proof The proof is similar to that of Theorem 1, and simpler than it. We can obtain
the following results from the proof of Theorem 1.

∣
∣Wn(x

∗) − Wn(x
′)
∣
∣ ≤ εWn(x

∗),
∣
∣Pn(x

∗) − Pn(x
′)
∣
∣ ≤ εPn(x

∗).

Since f j (x) = Pj (x) + Wj (x), then

∣
∣ fn(x

∗) − fn(x
′)
∣
∣ = ∣

∣Pn(x
∗) + Wn(x

∗) − Pn(x
′) − Wn(x

′)
∣
∣

≤ ∣
∣Pn(x

∗) − Pn(x
′)
∣
∣ + ∣

∣Wn(x
∗) − Wn(x

′)
∣
∣

= εPn(x
∗) + εWn(x

∗)
= ε fn(x

∗)

So, it is derived that fn(x0) ≤ fn(x ′) ≤ (1 + ε) fn(x∗).
Similar as the time complexity of Algorithm Aε, to estimate

∣
∣
∣Y ′

j

∣
∣
∣, recall that

∣
∣
∣Y ′

j+1

∣
∣
∣ ≤ 2

∣
∣Y j

∣
∣ ≤ 2kP · kW , by Property 2, we have

kP ≤ 2 (n + 1) log
[(
rmax + a

b

) ∏n

j=1

(
1 + bp j

) − a

b

]/

ε + 2 = O(n2L
/
ε)

kW ≤ 2 (n + 1) log (W )
/
ε + 2 = O(nL

/
ε).

Thus
∣
∣
∣Y ′

j

∣
∣
∣ = O(n3L2/ε2) andO(

∣
∣
∣Y ′

j

∣
∣
∣ log

∣
∣
∣Y ′

j

∣
∣
∣) = O(n3L3/ε2). Therefore,Algorithm

A′
ε runs in O(n3L3/ε2). ��

6 Conclusions

In this paper, we mainly considered single machine scheduling with release dates and
rejection, where the processing time of a job is a linear function of its starting time
and a job can be rejected by paying a certain penalty. The machine is not available in a
specified time period, and the unavailable time period is fixed and known in advance.
The goal is to minimize the sum of the makespan of the accepted jobs and the total
rejection penalties of the rejected jobs. We presented a FPTAS for the problem and
showed the algorithm can run in O(n6L5/ε4), and for the special case without non-
availability, we showed that can be solved in O(n3L3/ε2) by using the same method.

Acknowledgments We are very grateful to thank the referees for careful reading and valuable comments
which led to improvements of our original manuscript.
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Appendix

This appendix proves two important results which corresponding to (3) (5) and (4) in
the proof of Theorem 1, respectively.

Result 1
∣
∣
∣Pk

j+1(x
∗) − Pk

j+1(x̃
(a1a2bc))

∣
∣
∣ ≤ δ1Pk

j+1(x
∗) for x j+1 = k, k = 1, 2.

∣
∣
∣Pk

j+1(x
∗) − Pk

j+1

(
x̃ (a1a2bc)

)∣
∣
∣

=
∣
∣
∣(1 + bp j+1)max

{
Pk
j (x

∗), r j+1

}
+ ap j+1

−(1 + bp j+1)max
{
Pk
j

(
x (a1a2bc)

)
, r j+1

}
− ap j+1

∣
∣
∣

=
∣
∣
∣(1 + bp j+1)

(
max

{
Pk
j (x

∗), r j+1

}
−max

{
Pk
j

(
x (a1a2bc)

)
, r j+1

})∣
∣
∣

= (1 + bp j+1)

∣
∣
∣max

{
Pk
j (x

∗), r j+1

}
− max

{
Pk
j

(
x (a1a2bc)

)
, r j+1

}∣
∣
∣

It can be divided into the following four cases, and we show that Result 1 holds for
each of them.

Case 1.1 r j+1 ≥ Pk
j (x

∗) and r j+1 ≥ Pk
j (x

(a1a2bc))

∣
∣
∣Pk

j+1(x
∗) − Pk

j+1

(
x̃ (a1a2bc)

)∣
∣
∣ = (1 + bp j+1)

∣
∣r j+1 − r j+1

∣
∣ ≤ δPk

j+1(x
∗)

= δ1P
k
j+1(x

∗).

Case 1.2 Pk
j (x

(a1a2bc)) > r j+1 ≥ Pk
j (x

∗)

∣
∣
∣Pk

j+1(x
∗) − Pk

j+1

(
x̃ (a1a2bc)

)∣
∣
∣ = (1 + bp j+1)

∣
∣
∣r j+1 − Pk

j

(
x (a1a2bc)

)∣
∣
∣

= (1 + bp j+1)(P
k
j

(
x (a1a2bc)

)
− r j+1)

≤ (1 + bp j+1)(P
k
j

(
x (a1a2bc)

)
− Pk

j (x
∗))

= (1 + bp j+1)

∣
∣
∣Pk

j

(
x (a1a2bc)

)
− Pk

j (x
∗)

∣
∣
∣

≤ (1 + bp j+1)δP
k
j (x

∗)

≤ δ(1 + bp j+1)max
{
Pk
j (x

∗), r j+1

}

≤ δ1P
k
j+1(x

∗)

Case 1.3 Pk
j (x

∗) > r j+1 ≥ Pk
j (x

(a1a2bc))

∣
∣
∣Pk

j+1(x
∗) − Pk

j+1

(
x̃ (a1a2bc)

)∣
∣
∣ = (1 + bp j+1)

∣
∣
∣Pk

j (x
∗) − r j+1

∣
∣
∣

= (1 + bp j+1)
(
Pk
j (x

∗) − r j+1

)
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≤ (1 + bp j+1)
(
Pk
j (x

∗) − Pk
j

(
x (a1a2bc)

))

= (1 + bp j+1)

∣
∣
∣Pk

j (x
∗) − Pk

j

(
x (a1a2bc)

)∣
∣
∣

≤ (1 + bp j+1)δP
k
j (x

∗)

= δ(1 + bp j+1)max
{
Pk
j (x

∗), r j+1

}

≤ δ1P
k
j+1(x

∗)

Case 1.4 r j+1 < Pk
j (x

∗) and r j+1 < Pk
j (x

(a1a2bc))

∣
∣
∣Pk

j+1(x
∗) − Pk

j+1

(
x̃ (a1a2bc)

)∣
∣
∣ ≤ (1 + bp j+1)

∣
∣
∣Pk

j (x
∗) − Pk

j (x
(a1a2bc))

∣
∣
∣

≤ (1 + bp j+1)δP
k
j (x

∗)

= δ(1 + bp j+1)max
{
Pk
j (x

∗), r j+1

}

≤ δ1P
k
j+1(x

∗)

Based on the above analysis, obviously we have

∣
∣
∣Pk

j+1(x
∗) − Pk

j+1

(
x̃ (a1a2bc)

)∣
∣
∣ ≤ δ1P

k
j+1(x

∗), for k = 1, 2.

This completes the proof of Result 1.
Result 2

∣
∣ f j+1(x∗) − f j+1(x̃ (a1a2bc))

∣
∣ ≤ δ1 f j+1(x∗), for x j+1 = 1.

Since
∣
∣ f j (x∗) − f j (x (a1a2bc))

∣
∣ ≤ δ f j (x∗), then it implies the following four cases:

Case 2.1 P2
j (x

∗) = T2, P2
j (x

(a1a2bc)) = T2

∣
∣
∣ f j (x

∗) − f j
(
x (a1a2bc)

)∣
∣
∣ =

∣
∣
∣P1

j (x
∗) + Wj (x

∗) − P1
j

(
x (a1a2bc)

)

−Wj (x
(a1a2bc))

∣
∣
∣ ≤ δ f j (x

∗)

Case 2.2 P2
j (x

∗) > T2, P2
j (x

(a1a2bc)) > T2

∣
∣
∣ f j (x

∗) − f j
(
x (a1a2bc)

)∣
∣
∣ =

∣
∣
∣P2

j (x
∗) + Wj (x

∗) − P2
j

(
x (a1a2bc)

)

−Wj (x
(a1a2bc))

∣
∣
∣ ≤ δ f j (x

∗)

Case 2.3 P2
j (x

∗) > T2, P2
j (x

(a1a2bc)) = T2

∣
∣
∣ f j (x

∗) − f j
(
x (a1a2bc)

)∣
∣
∣ =

∣
∣
∣P2

j (x
∗) + Wj (x

∗) − P1
j

(
x (a1a2bc)

)

−Wj (x
(a1a2bc))

∣
∣
∣ ≤ δ f j (x

∗)
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Case 2.4 P2
j (x

∗) = T2, P2
j (x

(a1a2bc)) > T2

∣
∣
∣ f j (x

∗) − f j
(
x (a1a2bc)

)∣
∣
∣ =

∣
∣
∣P1

j (x
∗) + Wj (x

∗) − P2
j

(
x (a1a2bc)

)

−Wj (x
(a1a2bc))

∣
∣
∣ ≤ δ f j (x

∗)

In the following we show that Result 2 holds for each of the above four cases. We only
consider Case 2.1 and Case 2.3 since Case 2.2 and Case 2.4 can be similarly proved.
For Case 2.1,

∣
∣
∣ f j+1(x

∗) − f j+1

(
x̃ (a1a2bc)

)∣
∣
∣ =

∣
∣
∣P1

j+1(x
∗) + Wj+1(x

∗) − P1
j+1

(
x̃ (a1a2bc)

)

−Wj+1

(
x̃ (a1a2bc)

)∣
∣
∣

≤ δ1P
1
j+1(x

∗) + δ1Wj+1(x
∗)

= δ1 f j+1(x
∗)

For Case 2.3,

∣
∣
∣ f j (x

∗) − f j
(
x (a1a2bc)

)∣
∣
∣ =

∣
∣
∣P2

j (x
∗) + Wj (x

∗) − P1
j

(
x (a1a2bc)

)
− Wj (x

(a1a2bc))

∣
∣
∣

If P2
j (x

∗) + Wj (x∗) − P1
j (x

(a1a2bc)) − Wj (x (a1a2bc)) ≥ 0, then

∣
∣
∣ f j (x

∗) − f j
(
x (a1a2bc)

)∣
∣
∣ = P2

j (x
∗) − P1

j (x
(a1a2bc)) + Wj (x

∗)

−Wj

(
x (a1a2bc)

)
≤ δ f j (x

∗) (12)

Otherwise,

∣
∣
∣ f j (x

∗) − f j
(
x (a1a2bc)

)∣
∣
∣ = P1

j (x
(a1a2bc)) − P2

j (x
∗) + Wj

(
x (a1a2bc)

)

−Wj (x
∗) ≤ δ f j (x

∗) (13)

Either (12) or (13) is hold. Hence, we consider (12) and (13) in the following, respec-
tively.

• If (12) is established, then we have

∣
∣
∣ f j+1(x

∗) − f j+1

(
x̃ (a1a2bc)

)∣
∣
∣ = P2

j+1(x
∗) − P1

j+1

(
x̃ (a1a2bc)

)
+ Wj+1(x

∗)

−Wj+1

(
x̃ (a1a2bc)

)
(14)
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or

∣
∣
∣ f j+1(x

∗) − f j+1

(
x̃ (a1a2bc)

)∣
∣
∣ = P1

j+1

(
x̃ (a1a2bc)

)
− P2

j+1(x
∗)

+Wj+1

(
x̃ (a1a2bc)

)
− Wj+1(x

∗) (15)

Consider (14), we have

∣
∣
∣ f j+1(x

∗) − f j+1

(
x̃ (a1a2bc)

)∣
∣
∣ = P2

j+1(x
∗) − P1

j+1

(
x̃ (a1a2bc)

)
+ Wj+1(x

∗)

−Wj+1

(
x̃ (a1a2bc)

)

= P2
j (x

∗) − P1
j+1

(
x̃ (a1a2bc)

)
+ Wj (x

∗)

−Wj

(
x (a1a2bc)

)

≤ P2
j (x

∗) − P1
j

(
x (a1a2bc)

)
+ Wj (x

∗)

−Wj

(
x (a1a2bc)

)

≤ δ f j (x
∗) ≤ δ1 f j+1(x

∗) (obtained from (12)).

Consider (15), we have

∣
∣
∣ f j+1(x

∗) − f j+1

(
x̃ (a1a2bc)

)∣
∣
∣ = P1

j+1

(
x̃ (a1a2bc)

)
− P2

j+1(x
∗) + Wj+1

(
x̃ (a1a2bc)

)

−Wj+1(x
∗)

≤ P1
j+1

(
x̃ (a1a2bc)

)
− P1

j+1(x
∗) + Wj+1

(
x̃ (a1a2bc)

)

−Wj+1(x
∗)

≤ δ1P
1
j+1(x

∗) + δ1Wj+1(x
∗)

≤ δ1P
2
j+1(x

∗) + δ1Wj+1(x
∗)

= δ1 f j+1(x
∗) (16)

• While if (13) is established, then (15) must follow, and (14) is impossible.

Consider (15), we have

∣
∣
∣ f j+1(x

∗) − f j+1(x̃
(a1a2bc))

∣
∣
∣ ≤ δ1 f j+1(x

∗) (obtained from (16)).

Consequently, for both (12) and (13) in Case 2.3, we can obtain

∣
∣
∣ f j+1(x

∗) − f j+1(x̃
(a1a2bc))

∣
∣
∣ ≤ δ1 f j+1(x

∗), for x j+1 = 1.
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Based on the analysis above, for each of the four cases we have

∣
∣
∣ f j+1(x

∗) − f j+1(x̃
(a1a2bc))

∣
∣
∣ ≤ δ1 f j+1(x

∗), for x j+1 = 1.

This completes the proof of Result 2.
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