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Abstract We consider group scheduling problem on a single machine with mul-
tiple due windows assignment. Jobs are divided into groups in advance according
to their processing similarities, and all jobs of the same group are required to be
processed contiguously on the machine in order to achieve production efficiency and
save time/money resource. A sequence-independent setup time precedes the process-
ing of each group. The goal is to determine the optimal sequence for both groups and
jobs, together with an optimal combination of the due windows assignment strategy
so as to minimize the total of earliness, tardiness and due windows related costs. We
give an O(n log n) time algorithm for the problem.

Keywords Single machine scheduling · Group technology · Due windows

Mathematics Subject Classification 90B35

1 Introduction

Scheduling problems with due date assignment have attracted attention in recent years
due to the just-in-time (JIT) production management. In a JIT system, jobs should be
completed as close as possible to their due dates. Completing a job early means having
to bear the costs of holding unnecessary inventories, while finishing a job late results
in a contractual penalty and a loss of customer goodwill. Kuo and Yang [12] stressed

W.-X. Li (B) · C.-L. Zhao
School of Mathematics and System Science, Shenyang Normal University, No. 253 Huanghe North
Street, Huanggu District, Shenyang 110034, Liaoning, China
e-mail: liweixuancz@126.com

C.-L. Zhao
e-mail: zhaochuanli@synu.edu.cn

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12190-014-0814-1&domain=pdf


478 W.-X. Li, C.-L. Zhao

a single machine scheduling problem with a common due-date and deteriorating jobs,
in which the job processing time is an increasing function of its starting time. They
made a concise analysis of the problem and provided a polynomial time algorithm to
solve it. Li et al. [13] studied the problem of scheduling deteriorating jobs and due date
assignment on a single machine. They presented some polynomial time algorithms to
solve the problem with two due date assignment methods: CON and SLK. Moreover,
Chand and Chhajed [1] introduced the problem of simultaneous determination of
optimal due dates and optimal schedule for the single machine problem with multiple
due dates, they provided an efficient optimal algorithm to solve it. For further research
on this topic, the reader may refer to Wang and Wang [23], Yang et al. [27], Yang et
al. [28], Fan and Zhao [6] and Zhao et al. [33].

Furthermore, job completions can be accepted without penalty within an interval
in time in the JIT system. This time interval is often called the due window. A job
completedwithin the duewindow is considered to be on time andwill not be penalized.
However, a job completed prior to or after the due windowwill be penalized according
to their earliness/tardiness. Sidney [19] was among the pioneers, who stressed a single
machine scheduling problemwith due windows assignment. He assumed that each job
has its due window and no job’s due window is allowed to contain the due window of
another job. The goal was to find a schedule that minimizes the total costs of earliness
and tardiness. Recently, Janiak et al. [9] considered various models of due window
assignment scheduling problems on a single machine such that the objective function
including themaximumor total earliness and tardiness and the duewindowparameters
is minimized. They constructed polynomial algorithms for the considered problems.
Wang and Wang [22] explored a single machine common due window scheduling
problem simultaneously with the learning effect and deteriorating jobs considerations.
Cheng et al. [4] investigated a common due window assignment scheduling with
linear time-dependent deteriorating jobs and a deteriorating maintenance on a single
machine setting. They showed that the proposed model is polynomial solvable. Yang
et al. [25] first proposed the multiple due windows assignment scheduling problem
with controllable processing times, in which n jobs may have distinctm due windows,
where 1 ≤ m ≤ n. The objective is to determine the optimal due window positions and
sizes, the set of jobs assigned to each due window, the optimal job compressions, and
the optimal schedule to minimize a total cost function, which consists of the earliness,
the tardiness, the processing time compressions, and the due windows related costs.
For the detailed research results on scheduling with due window, the reader may refer
to Mor and Mosheiov [16], Yin et al. [30], Chen et al. [3], Ji et al. [11], and Yin et al.
[31].

Additionally, an important issue of scheduling problems is characterized by the
group technology (GT) assumption. The GT method groups products with similar
characteristics into families and sets aside groups of machines for their production.
Families may be based on size, shape, geometry, manufacturing requirements and so
on. Through decades of application, people have found many advantages of GT. For
instance, jobs in the same group tend to move through production in a direct route,
reducing the manufacturing lead time; changeover among different jobs in the same
group is simplified, reducing the costs or time involved (Ji et al. [10], Li et al. [14]).
As a realistic example of GT, Conway et al. [5] stressed paint production on a single
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machine. Customer orders vary in colors, but they can be divided into several major
color groups, such as red, blue, and green. Within a color group, red, for example,
colors may range from very light to dark red. The setup time of the machine to produce
paint in colors of the same group is small and can be neglected, since it is natural to
produce paint from lighter to darker colors. While the time to switch the machine
from the production of paint of one color group to another color group is substantial,
which may include the time to clean the machine and change the tools, and the setup
time is color-independent in general. Another example can be found in the metal or
wood cutting process, the process need to cut various sizes and shapes of product, the
products with similar shape or manufacturing requirements are grouping as a product
family and the cutting tools used to process the individual product family are grouping
as a machine family. Thus, it is clear that dividing the orders into groups according to
their processing similarities can significantly increase the production efficiency. Chen
et al. [2] considered single machine scheduling with common due date assignment in
a group technology environment. The objective is to find an optimal common due date
and an optimal sequence of jobs to minimize the sum of the cost of tardy jobs and the
cost related to the common due date. Ng et al. [17] explored group scheduling with
controllable setup and processing times, the objective is tominimize the total weighted
completion time.Wang et al. [20] studied singlemachine scheduling problemswithGT
and deteriorating jobs. The job processing time is a decreasing function of its starting
time. The objectives are to minimize the makespan and the total completion time.
They provided polynomial time algorithms to solve these problems. Shabtay et al. [18]
argued that single machine scheduling with optimal due date assignment and resource
allocation in a group technology environment. They gave a polynomial algorithm
for the considered problem in which each job has a constant processing time, and
when jobs have controllable processing times, the complexity of this problem remains
an open question. Ji et al. [10] assessed a single-machine group scheduling and job-
dependent duewindowassignment problem inwhich each job is assigned an individual
due window based on a common flow allowance. The goal is to find the optimal
sequence for both groups and jobs, together with the optimal due window assignment,
to minimize the total cost that comprises the earliness and tardiness penalties, the due
window starting time and due window size costs. Apart from above, the reader may
refer to the following literatures for a detailed comprehension of group scheduling
problem: Ham et al. [7], Li et al. [14], Yang [26], Yang and Yang [29], Zhu et al. [34],
Wang et al. [21], Low and Lin [15], Zhang [32], and Xu et al. [24].

Although the due date and due window assignment in JIT scheduling have been
extensively investigated in the literature, there are only a few researches on JIT schedul-
ing problem with multiple due dates, especially multiple due windows assignment.
Moreover, the multiple due dates and multiple due windows assignment scheduling
problems under a GT restriction have never been explored. The group scheduling
problems with due date assignment that jobs within the same group are assigned to
a common due date and each job within the same group is assigned to a different
due date with no restrictions have been studied by Li et al. [14]. Actually, however,
jobs within the same group may have not only one due date because of the different
needs of customers or other special reasons. Then to consider the case that jobs within
the same group Gi have zi distinct due dates can meet the actual needs better, where
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1 ≤ zi ≤ ni , and ni is the number of jobs in group Gi . If zi = 1, it means that all jobs
in the same group have one common due date; if zi = ni , it indicates that each job
within the same group is assigned to a different due date. Obviously it is an extension
of Li et al. [14]. This paper will further expand the due date problem into the due
window problem. That is, jobs within the same group Gi have zi distinct due win-
dows, 1 ≤ zi ≤ ni . The extension allows for greater flexibility in modeling real-life
problems. For example, in an order picking operation process, the number of orders
to be completed may be too great to realistically justify measurement from a single
due window for a single customer. By viewing the order picking operation process
as being composed of several discrete segments, each team of orders could be made
uniform around its own due window. The orders should be ready at their due window
in order to avoid staging delays. Moreover, a higher cost in the form of transship fee
generally accompanies a later due window (Yang et al. [25]).

In this paper, we consider scheduling problem on a single machine with multiple
due windows assignment in a group technology. We seek to determine the optimal
group sequence, the optimal job sequence, and the optimal due windows assignment
to minimize the total of earliness, tardiness and the due windows related costs.

The remainder of this paper is organized as follows: In Sect. 2 we introduce the
notation and formulate the problem. In Sect. 3 we study the group scheduling problem
with multiple due windows assignment. Finally, conclusions are given in the last
Section.

2 Problem formulation

The following notations will be used throughout the paper and we will introduce
additional notations when needed.

n : the total number of jobs;
m : the total number of groups, 1 ≤ m ≤ n;
ni : the number of jobs in group Gi , i = 1, 2, . . . ,m, and

∑m
i=1ni = n;

si : the setup time of group Gi ;
pi j : the processing time of job J j of group Gi ;

pi[ j] : the processing time of job in the j th position of groupGi , i = 1, 2, . . . ,m, j =
1, 2, . . . , ni ;

zi : the number of due windows assigned to the ni jobs of group Gi , 1 ≤ zi ≤ ni ;
Iik : the set of jobs assigned to the kth duewindow in groupGi , k = 1, 2, . . . , zi , i =

1, 2, . . . ,m;
nik : the number of jobs assigned to the kth due window in groupGi , i.e., |Iik | = nik

and
∑zi

k=1nik = ni ;
Nik : the total number of jobs assigned to the first k due windows in group Gi , i.e.,∑k

j=1ni j = Nik for k = 1, 2, . . . , zi , i = 1, 2, . . . ,m, and Ni0 = 0.

The problem under consideration is formulated as follows.We are given n indepen-
dent and non-preemptive jobs that are classified intom groups G1,G2, . . . ,Gm . Each
group Gi , for i = 1, 2, . . . ,m, has ni jobs {Ji1, Ji2, . . . , Jini }, where

∑m
i=1ni = n.

Jobs of the same group are required to be processed contiguously. A sequence-
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independent machine setup time si precedes the processing of the first job of group
Gi . All jobs are simultaneously available for processing at time zero.

Let dik(≥ 0) and wik(≥ dik) denote the starting time and finishing time of the k th
due window in group Gi , respectively. Sik = wik − dik denotes the size of the k th
due window in group Gi for k = 1, 2, . . . , zi , i = 1, 2, . . . ,m. We assume that the
number of distinct due windows zi assigned to group Gi (i = 1, 2, . . . ,m) is given in
advance, and nik , for k = 1, 2, . . . , zi , is known. If zi = 1, it means that all the jobs
in group Gi have one common due window; If zi = ni , it indicates that there exists
ni distinct due windows for ni jobs in group Gi . The earliness and tardiness of job
Ji j ∈ Iik are Ei j = max{0, dik − Ci j } and Ti j = max{0,Ci j − wik}, respectively.
The objective is to find the optimal group sequence, the optimal job sequence, and the
optimal due window assignment to minimize the following total cost function

g(π) =
∑m

i=1

∑ni

l=1

(
αi Eil + βi Til + γi dil + δi Sil

)
(1)

where αi , βi , γi , δi are non-negative parameters representing the unit time costs of
earliness, tardiness, due window starting time and due window size, respectively.

Using the three-field notation, the considered problem can be described as

1 |GT, MDW |
∑m

i=1

∑ni

l=1

(
αi Eil + βi Til + γi dil + δi Sil

)
,

where MDW means the multiple due windows.

3 Group scheduling with multiple due windows

In this section, we study the scheduling problem with multiple due windows assign-
ment under a GT restriction, i.e., 1 |GT, MDW | ∑m

i=1
∑ni

l=1(αi Eil + βi Til + γi dil
+ δi Sil)

3.1 Preliminary results

Some useful lemmas are given in this subsection to solve the group scheduling problem
with multiple due windows.

Lemma 1 In an optimal schedule, there exists no idle time between consecutive jobs
on the machine and the first job starts at time zero.

Proof The proof is obvious and omitted. ��

Lemma 2 Given two sequences of non-negative numbers xi and yi , the sum of the
products of the corresponding elements

∑n
i=1xi yi is minimized if the sequences are

monotonic in the opposite way.
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Proof See Hardy et al. [8]. ��
The following Lemma 3 indicates that for an optimal sequence, the jobs assigned

to different due windows are mutually disjoint, that is, there is an optimal solution
such that nik consecutive jobs (in positions Ni(k−1) + 1 to Nik) in a sequence π are
assigned to the k th due window in group Gi .

Lemma 3 Foranygivendi = {di1, di2, . . . , dizi },wi = {wi1, wi2, . . . , wi zi } in group
Gi , i = 1, 2, . . . ,m, and a schedule π , there exists an optimal Ii such that Iik =
{Ji[Ni(k−1)+1], Ji[Ni(k−1)+2], . . . , Ji[Nik ]} for k = 1, 2, . . . , zi , where Ji[r ] is the job
scheduled in position r in group Gi .

Proof For any given di , wi and π , i = 1, 2, . . . ,m, without loss of generality, we
assume that in a schedule S1 = (π1, Jk, J j , π2) job Jk immediately precedes job
J j , while in another schedule S2 = (π1, J j , Jk, π2) jobs Jk and J j are mutually
replaced,whereπ1 andπ2 denote partial sequences and jobs Jk and J j are, respectively,
scheduled in the h th and (h+1) th position in groupGi in the schedule S1. In addition,
we assume that for both schedules S1 and S2, Jk is early for the (r +1) th due window
in group Gi , and J j is tardy for the r th due window in group Gi , where Jk ∈ Ii(r+1)
and J j ∈ Iir .

Let Cil(S1) and Cil(S2) be the completion times of job Jl in group Gi in schedule
S1 and S2, respectively. And Si (π) denotes the starting time of group Gi . By the
definition, the completion times of jobs Jk and J j in S1 are

Cik(S1) = Si (π) + si +
∑h−1

l=1
pi[l] + pk (2)

and
Ci j (S1) = Si (π) + si +

∑h−1

l=1
pi[l] + pk + p j (3)

Similarly, the completion times of jobs Jk and J j in S2 are

Ci j (S2) = Si (π) + si +
∑h−1

l=1
pi[l] + p j (4)

and
Cik(S2) = Si (π) + si +

∑h−1

l=1
pi[l] + p j + pk (5)

Then,

g(S1) − g(S2) = {
αi

[
di(r+1) − Cik(S1)

] + βi
[
Ci j (S1) − wir

]}

− {
αi

[
di(r+1) − Cik(S2)

] + βi
[
Ci j (S2) − wir

]}

= αi p j + βi pk
> 0

Obviously,

g(S1) > g(S2).
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Similarly, the total cost decreases as repeating this interchange argument for the
jobs which assigned to the same due window are not sequenced consecutively. This
completes the proof. ��
Lemma 4 For a given schedule π , if the due window starting time dik and finishing
time wik are within the starting and ending times of group Gi , then the optimal
values of dik and wik coincide with some jobs’ completion times of group Gi for
k = 1, 2, . . . , zi , i = 1, 2, . . . ,m.

Proof Assume that dik = Si (π) + si + ∑bik
l=1 pi[l], wik = Si (π) + si + ∑bik+hik

l=1 pi[l],
k = 1, 2, . . . , zi , i = 1, 2, . . . ,m, where bik and bik + hik mean the bik th and
(bik + hik) th positions of group Gi , respectively. We only address Gi here as an
example to demonstrate that the result is correct. Consider that there exists an optimal
schedule without the stated property, without loss of generality, suppose that there
exists k = r, 1 ≤ r ≤ zi such that

dir = Si (π) + si +
∑bir

l=1
pi[l] + �1, 0 ≤ �1 ≤ pi[bir+1],

and

wir = Si (π) + si +
∑bir+hir

l=1
pi[l] + �2, 0 ≤ �2 ≤ pi[bir+hir+1].

Note that moving dir and wir � units of time only change the cost of jobs assigned
to the r th due window in group Gi .

The total cost of jobs assigned to the r th due window in group Gi as a function of
�1 and �2 is given by

gir (�1,�2) = αi

∑Nir

l=Ni(r−1)+1
Ei[l] + βi

∑Nir

l=Ni(r−1)+1
Ti[l] + γi

∑Nir

l=Ni(r−1)+1
di[l]

+δi
∑Nir

l=Ni(r−1)+1
Si[l]

We consider each cost component separately as follows:

(a)

αi

∑Nir

l=Ni(r−1)+1
Ei[l] = αi

∑bir

l=Ni(r−1)+1
Ei[l] = αi

∑bir

l=Ni(r−1)+1
(dir − Ci[l])

= αi

{[(

Si (π) + si +
∑bir

l=1
pi[l] + �1

)

−
(

Si (π) + si +
∑Ni(r−1)+1

l=1
pi[l]

)]

+
[(

Si (π) + si +
∑bir

l=1
pi[l] + �1

)

−
(

Si (π) + si +
∑Ni(r−1)+2

l=1
pi[l]

)]

+ · · ·
+

[(

Si (π) + si +
∑bir

l=1
pi[l] + �1

)

−
(

Si (π) + si +
∑bir

l=1
pi[l]

)]}

= αi

∑bir

l=Ni(r−1)+1
(l − Ni(r−1) − 1)pi[l] + αi (bir − Ni(r−1))�1
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(b)

βi

∑Nir

l=Ni(r−1)+1
Ti[l] = βi

∑Nir

l=bir+hir+1
Ti[l] = βi

∑Nir

l=bir+hir+1
(Ci[l] − wir )

= βi

{[(

Si (π) + si +
∑bir+hir+1

l=1
pi[l]

)

−
(

Si (π) + si +
∑bir+hir

l=1
pi[l]+�2

)]

+
[(

Si (π) + si +
∑bir+hir+2

l=1
pi[l]

)

−
(

Si (π) + si +
∑bir+hir

l=1
pi[l] + �2

)]

+ · · ·
+

[(

Si (π) + si +
∑Nir

l=1
pi[l]

)

−
(

Si (π) + si +
∑bir+hir

l=1
pi[l] + �2

)]}

= βi

∑Nir

l=bir+hir+1
(Nir − l + 1)pi[l] − βi (Nir − bir − hir )�2

(c)

γi
∑Nir

l=Ni(r−1)+1
di[l] = γi

∑Nir
l=Ni(r−1)+1

dir

= γi nir

(

Si (π) + si +
∑bir

l=1
pi[l] + �1

)

= γi nir
∑bir

l=1
pi[l] + γi nir (Si (π) + si ) + γi nir�1

(d)

δi
∑Nir

l=Ni(r−1)+1
Si[l] = δi

∑Nir

l=Ni(r−1)+1

(
di[l] − wi[l]

) = δi
∑Nir

l=Ni(r−1)+1

(
dir − wir

)

= δi nir

[(

Si (π)+si +
∑bir+hir

l=1
pi[l]+�2

)

−
(

Si (π) + si +
∑bir

l=1
pi[l]+�1

)]

= δi nir
∑bir+hir

l=bir+1
pi[l] + δi nir (�2 − �1)

Therefore the total cost can be expressed as

gir (�1,�2) = A�1 + B�2 + C,

Where A = αi (bir − Ni(r−1)) + γi nir − δi nir , B = δi nir − βi (Nir − bir − hir ), and

C =
∑Ni(r−1)

l=1
γi nir pi[l] +

∑bir

l=Ni(r−1)+1

[
γi nir + αi (l − Ni(r−1) − 1)

]
pi[l]

+
∑bir+hir

l=bir+1
δi nir pi[l]+

∑Nir

l=bir+hir+1
βi (Nir − l + 1)pi[l] + γi nir (Si (π) + si )

Clearly, A, B and C are independent of �1 and �2. We can see that fir (�1,�2)

is a linear function of �1 and �2. Thus we can either decrease �1 and �2 to zero, or
increase them to pi[bir+1] and pi[bir+hir1], respectively, to obtain a lower cost. In any
case, we can see that dik and wik coincide with some jobs’ completion times of group
Gi . ��
Lemma 5 For any given I = {I11, . . . , I1z1 , I21, . . . , I2z2 , . . . , Im1, . . . , Imzm } and a
schedule π , if the values of dik and wik are within the starting time and ending times
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of group Gi , k = 1, 2, . . . , zi , i = 1, 2, . . . ,m, then there exists optimal due windows
such that dik = Ci[bik ] and wik = Ci[bik+hik ], where

bik = Ni(k−1) +
⌈
nik(δi − γi )

αi

⌉

and bik + hik = Ni(k−1) +
⌈
nik(βi − δi )

βi

⌉

.

Proof This lemma can be easily proved by the standard technique of small perturba-
tions. Without loss of generality, we only consider group Gi here as an example to
demonstrate that the result is correct. Suppose that k = r, 1 ≤ r ≤ zi , dir = Ci[bir ]
and wir = Ci[bir+hir ]. The effect of moving dik � units of time to the left is

− αi
(
bir − Ni(r−1) − 1

)
� − γi nir� + δi nir� (6)

The effect of moving dik � units of time to the right is

αi
(
bir − Ni(r−1)

)
� + γi nir� − δi nir� (7)

Both (6) and (7) are non-negative due to the optimality of the original schedule. Then
from −αi (bir − Ni(r−1) − 1)� − γi nir� + δi nir� ≥ 0 and αi (bir − Ni(r−1))� +
γi nir� − δi nir� ≥ 0, we have bik ≤ Ni(k−1) + nik(δi − γi )/αi + 1 and bik ≥
Ni(k−1) + nik(δi − γi )/αi . By Lemma 4, we know that bik is an integer, therefore,
bik is the smallest integer greater than or equal to Ni(k−1) + �nik(δi − γi )/αi�, i.e.,
bik = Ni(k−1) + �nik(δi − γi )/αi�. Using the same method, we obtain bik + hik =
Ni(k−1) + �nik(βi − δi )/βi�. ��
Remarks For any given I = {I11, . . . , I1z1 , I21, . . . , I2z2 , . . . , Im1, . . . , Imzm } and a
schedule π , if 0 < �nik(δi − γi )/αi� < �nik(βi − δi )/βi�, we can determine the
optimal due window assignments for a group by Lemmas 4 and 5. But the ratios
may not meet the above inequality, e.g., for the given parameters, there may exist
inequality �nik(βi − δi )/βi� ≤ �nik(δi − γi )/αi�, thenwe need further analysis. Note
that �nik(βi − δi )/βi� ≤ �nik(δi − γi )/αi�means nik(βi − δi )/βi≤ nik(δi − γi )/αi .

Similar to the analysis of Ji et al. [10], we have the following discussion.

(i) With a shift of dik (without changingwik) by� units of time to the right, resulting
in a change of total costs of �g = αi (bik − Ni(k−1))� + γi nik� − δi nik� . With
a shift of wik (without changing dik) by � units of time to the right, resulting in a
change of total costs of �g = δi nik� − βi (Nik − bik − hik)�.

If bik + hik < Ni(k−1) + nik(βi − δi )/βi , a shift of wik by � units of time to the
right till bik + hik = Ni(k−1) + �nik(βi − δi )/βi� can only reduce the total cost. If
bik < Ni(k−1) + nik(βi − δi )/βi , then bik < Ni(k−1) + nik(βi − δi )/βi ≤ Ni(k−1) +
nik(δi − γi )/αi , so a shift of dik by � units of time to the right till bik = Ni(k−1) +
�nik(βi − δi )/βi� can only reduce the total cost.

(ii) With a shift of dik (without changing wik) by � units of time to the left, resulting
in a change of total costs of �g = −αi (bik − Ni(k−1) − 1)� − γi nik� + δi nik�.
With a shift of wik (without changing dik) by � units of time to the left, resulting
in a change of total costs of �g = βi (Nik − bik − hik + 1)� − δi nik�.
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If bik > Ni(k−1) + nik(δi − γi )/αi + 1, a shift of dik by � units of time to the left
till bik = Ni(k−1) + �nik(δi − γi )/αi� can only reduce the total cost. If bik + hik >

Ni(k−1) + nik(δi − γi )/αi + 1, then bik + hik > Ni(k−1) + nik(δi − γi )/αi + 1 ≥
Ni(k−1) + nik(βi − δi )/βi +1, so a shift of wik by � units of time to the left till
bik + hik = Ni(k−1) + �nik(δi − γi )/αi� can only reduce the total cost.

Form (i) and (ii), we can see that

Ni(k−1) + �nik(βi − δi )/βi� ≤ bik ≤ bik + hik ≤ Ni(k−1) + �nik(δi − γi )/αi� ,

if bik < bik + hik , a further shift of dik to the right and a further shift of wik to
the left till bik = bik + hik can only reduce the total cost, which means that dik =
wik ,k = 1, 2, . . . , zi . And the multiple due windows assignment problem reduces to
the multiple due dates assignment problem. Then we have the following Lemma 6.

Lemma 6 If �nik(βi − δi )/βi� ≤ �nik(δi − γi )/αi� for i ∈ {1, 2, . . . ,m}, then
the multiple due windows assignment problem reduces to the multiple due dates
assignment problem. The optimal due date assignment is given as follows. For any
k = 1, 2, . . . , zi ,

Dik =
{
Ci[bik ] where bik = Ni(k−1) +

⌈
nik(βi−γi )

αi+βi

⌉
if βi > γi ,

0 otherwise.
(8)

Where Dik represents the due date of job Jik .

Proof When all jobs belong to a single group and setup time equals to zero, Chand and
Chhajed [1] showed that there exists anoptimal schedule for 1 |MD| ∑m

i=1
∑

J j∈Ii (αE j

+ βTj + γ Di ) in which the due date can be assigned according to (8), where MD
means the multiple due dates. Because their proof is independent of the job distri-
bution on the time axis, the result can immediately be generalized to the problem
1 |GT, MD| ∑m

i=1
∑ni

l=1(αi Eil + βi Til + γi Dil). Then the above lemma holds.
FromLemma6,without loss of generality,we only consider the case �nik(δi − γi ) /

αi� < �nik(βi − δi )/βi� in the following Lemmas 7 and 8. ��
Lemma 7 If �nik(δi − γi )/αi� ≤ 0 < �nik(βi − δi )/βi�, the problem becomes a spe-
cial due window assignment problem, with dik = 0,wik = Si (π)+si +∑bik+hik

l=1 pi[l],
and bik + hik = Ni(k−1) +

⌈
nik(βi−δi )

βi

⌉
.

Proof If �nik(δi − γi )/αi� ≤ 0, meaning δi ≤ γi , then a shift of dik by� units of time
to the left will result in a change of the total cost � f ≤ 0, so result dik can be shifted
to the left until it equals time zero. Using the same analytical method of Lemmas 4
and 5, we can get the result about wik . ��
Lemma 8 If �nik(δi − γi )/αi� < �nik(βi − δi )/βi� ≤ 0 for i ∈ {1, 2, . . . ,m}, then
the multiple due windows assignment problem also reduces to the multiple due dates
assignment problem. And for any k = 1, 2, . . . , zi , the due date Dik = 0.
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Proof If �nik(δi − γi )/αi� < �nik(βi − δi )/βi� ≤ 0, which means βi ≤ δi ≤ γi ,
then a shift of wik by � units of time to the left until dik will result in a change of
the total cost � f ≤ 0, so wik can be shifted to dik , and the multiple due windows
assignment problem reduces to the multiple due dates assignment problem. Since
βi ≤ γi , according to (8), we can get the result that Dik = 0, for k = 1, 2, . . . , zi .

FromLemmas4–8, according to the ratios of �nik(δi −γi )/αi� and �nik(βi −δi )/βi�,
there exist three cases:

Case 1.1: 0 < �nik(δi − γi )/αi� < �nik(βi − δi )/βi�. This will be the normal
multiple duewindows assignment problem,which can be determined byLemmas 4
and 5.
Case 1.2: �nik(δi − γi )/αi� ≤ 0 < �nik(βi − δi )/βi�. This is a special multiple
due windows assignment problem, which can be determined by Lemma 7.
Case 1.3: �nik(βi − δi )/βi� ≤ �nik(δi − γi )/αi� or �nik(δi − γi )/αi� <

�nik(βi − δi )/βi� ≤ 0. The problem reduces to the multiple due dates assign-
ment problem, which can be determined by Lemmas 6 and 8.

��
Lemma 9 For any given sequence π , the cost function of all jobs within group Gi

under the optimal due windows assignment strategy of Case 1.1, denoted by d∗
i (π) =

{d∗
i1, d

∗
i2, . . . , d

∗
i zi

} and w∗
i (π) = {w∗

i1, w
∗
i2, . . . , w

∗
i zi

}, can be expressed as follows:

gi
(
π, d∗

i (π),w∗
i (π)

) =
∑ni

l=1
wil pi[l] + niγi

(
Si (π) + si

)
(9)

Where

wil =
⎧
⎨

⎩

αi (l − Ni(k−1) − 1) + γi (ni − Ni(k−1)), Ni(k−1) + 1 ≤ l ≤ bik
nikδi + γi (ni − Nik), bik + 1 ≤ l ≤ bik + hik
βi (Nik − l + 1) + γi (ni − Nik), bik + hik + 1 ≤ l ≤ Nik

(10)

Proof Let π be a given job sequence, and group Gi with Case 1.1, the optimal d∗
ik

and w∗
ik for k = 1, 2, . . . , zi , can be determined by Lemma 5. Then for any k ∈

{1, 2, . . . , zi }, we have

Ei[l] =
∑bik

j=l+1
pi[ j] for Ni(k−1) + 1 ≤ l ≤ bik − 1, Ei[l] = 0 for bik ≤ l ≤ Nik .

Ti[l] = 0 for Ni(k−1) + 1 ≤ l ≤ bik + hik, Ti[l] =
∑l

j=bik+hik+1
pi[ j] for bik

+hik + 1 ≤ l ≤ Nik .

di[l] = dik = Ci[bik ] = Si (π) + si +
∑bik

l=1
pi[l] for Ni(k−1) + 1 ≤ l ≤ Nik .

wi[l] = wik = Ci[bik+hik ] = Si (π) + si +
∑bik+hik

l=1
pi[l] for Ni(k−1) + 1 ≤ l ≤ Nik .

Si[l] = wi[l] − di[l] = wik − dik =
∑bik+hik

l=bik+1
pi[l] for Ni(k−1) + 1 ≤ l ≤ Nik .
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Then the cost function of all the cost function of all jobs within group Gi can be
written as follows:

gi
(
π, d∗

i (π), w∗
i (π)

) =
∑zi

k=1

∑Nik
l=Ni(k−1)+1

(
αi Ei[l] + βi Ti[l] + γi di[l] + δi Si[l]

)

=
∑zi

k=1

[∑bik
l=Ni(k−1)+1

(

αi
∑bik

j=l+1
pi[ j]

)

+
∑Nik

l=bik+hik+1

(

βi
∑l

j=bik+hik+1
pi[ j]

)

+nikγi

(

Si (π) + si +
∑Ni(k−1)

l=1
pi[l] +

∑bik
l=Ni(k−1)+1

pi[l]
)

+ nikδi
∑bik+hik

l=bik+1
pi[l]

]

=
∑zi

k=1

[∑bik
l=Ni(k−1)+1

αi (l − Ni(k−1) − 1)pi[l] +
∑Nik

l=bik+hik+1
βi (Nik − l + 1)pi[l]

+nikγi

(

Si (π) + si +
∑Ni(k−1)

l=1
pi[l]

)

+ nikγi
∑bik

l=Ni(k−1)+1
pi[l] + nikδi

∑bik+hik
l=bik+1

pi[l]
]

=
∑zi

k=1

{∑bik
l=Ni(k−1)+1

[
αi (l − Ni(k−1) − 1) + γi (ni − Ni(k−1))

]
pi[l]

+
∑bik+hik

l=bik+1

[
nikδi +γi (ni −Nik )

]
pi[l] +

∑Nik
l=bik+hik+1

[
βi (Nik − l + 1)+γi (ni −Nik )

]
pi[l]

}

+niγi (Si (π) + si )

Therefore, the result holds. ��
Lemma 10 For any given sequence π , the cost function of all jobs within group Gi

under the optimal due windows assignment strategy of Case 1.2, denoted by d∗
i (π) =

{0, 0, . . . , 0} and w∗
i (π) = {w∗

i1, w
∗
i2, . . . , w

∗
i zi

}, can be expressed as follows:

gi
(
π, d∗

i (π),w∗
i (π)

) =
∑ni

l=1
wil pi[l] + niδi

(
Si (π) + si

)
(11)

Where,

wil =
{
nikδi , Ni(k−1) + 1 ≤ l ≤ bik + hik
βi (Nik − l + 1), bik + hik + 1 ≤ l ≤ Nik

. (12)

Proof Let π be a given job sequence, and group Gi with Case 1.2, the optimal d∗
ik

and w∗
ik for k = 1, 2, . . . , zi , can be determined by Lemma 7. Then for any k ∈

{1, 2, . . . , zi }, we have

Ei[l] = 0 for Ni(k−1) + 1 ≤ l ≤ Nik .

Ti[l] = 0 for Ni(k−1) + 1 ≤ l ≤ bik + hik,

Ti[l] =
∑l

j=bik+hik+1
pi[ j] for bik + hik + 1 ≤ l ≤ Nik .

di[l] = dik = 0 for Ni(k−1) + 1 ≤ l ≤ Nik .

wi[l] = wik = Ci[bik+hik ] = Si (π) + si +
∑bik+hik

l=1
pi[l] for Ni(k−1)+1≤ l≤Nik .

Si[l] = wi[l] − di[l] = wik = Si (π) + si +
∑bik+hik

l=1
pi[l] for Ni(k−1)+1≤ l≤Nik .

Then the cost function of all jobs within group Gi can be written as follows:

gi
(
π, d∗

i (π),w∗
i (π)

) =
∑zi

k=1

∑Nik

l=Ni(k−1)+1

(
αi Ei[l] + βi Ti[l] + γi di[l] + δi Si[l]

)

123



Single machine scheduling problem 489

=
∑zi

k=1

[∑Nik

l=bik+hik+1

(

βi

∑l

j=bik+hik+1
pi[ j]

)

+nikδi

(

Si (π)+si +
∑bik+hik

l=1
pi[l]

)]

=
∑zi

k=1

[∑Nik

l=bik+hik+1
βi

(
Nik − l +1

)
pi[l] + nikδi

∑bik+hik

l=1
pi[l] + nikδi (Si (π) + si )]

=
∑zi

k=1

[∑bik+hik

l=1
nikδi pi[l] +

∑Nik

l=bik+hik+1
βi

(
Nik − l + 1

)
pi[l]

]

+ ni δi (Si (π) + si )

Therefore, the result holds.
If group Gi is under the optimal due windows assignment strategy of Case

1.3, then the multiple due windows assignment problem of group Gi reduces to
the multiple due dates assignment problem, i.e., {d∗

i1, d
∗
i2, . . . , d

∗
i zi

} = d∗
i (π) =

D∗
i (π) = w∗

i (π) = {w∗
i1, w

∗
i2, . . . , w

∗
i zi

}. The corresponding objective function

g(π, d(π),w(π)) = ∑m
i=1

∑ni
l=1(αi Eil + βi Til + γi dil + δi Sil) is translated into

f (π, D(π)) = ∑m
i=1

∑ni
l=1(αi Eil + βi Til + γi Dil). Then we contain the following

lemma. ��
Lemma 11 For any given sequence π , the cost function of all jobs within group Gi

under the optimal due windows assignment strategy of Case 1.3, denoted by d∗
i (π) =

w∗
i (π) = D∗

i (π) = {D∗
i1, D

∗
i2, . . . , D

∗
i zi

}, can be expressed as follows:

fi
(
π, D∗

i (π)
) =

∑ni

l=1
wil pi[l] + ni�i

(
Si (π) + si

)
(13)

where

�i = min{βi , γi }, (14)

wil =
{

αi (l − Ni(k−1) − 1) + γi (ni − Ni(k−1)), Ni(k−1) + 1 ≤ l ≤ bik
βi (Nik − l + 1) + γi (ni − Nik), bik + 1 ≤ l ≤ Nik

forβi > γi ,

(15)

and
wil = βi (ni − l + 1), 1 ≤ l ≤ ni for βi ≤ γi , (16)

Proof Let π be a given job sequence. By Lemma 6, the optimal due date D∗
ik for

k = 1, 2, . . . , zi , i = 1, 2, . . . ,m can be determined according to (8). We split the
proof into two cases with respect to the relation of βi and γi .

Case 2.1: βi > γi . For any k ∈ {1, 2, . . . , zi } in this case, we have

Ei[l] =
∑bik

j=l+1
pi[ j] for Ni(k−1) + 1 ≤ l ≤ bik − 1 and Ei[l] = 0 for bik ≤ l ≤ Nik .

Ti[l] = 0 for Ni(k−1) + 1 ≤ l ≤ bik and Ti[l] =
∑l

j=bik+1
pi[ j] for bik + 1 ≤ l ≤ Nik .

Di[l] = Dik = Ci[bik ] = Si (π) + si +
∑bik

l=1
pi[l] for Ni(k−1) + 1 ≤ l ≤ Nik (17)

Then the cost function of all jobs within group Gi can be written as follows:

fi
(
π, D∗

i (π)
) =

∑ni

l=1

(
αi Eil + βi Til + γi Dil

)
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=
∑zi

k=1

∑Nik

l=Ni(k−1)+1

(
αi Ei[l] + βi Ti[l] + γi Di[l]

)

=
∑zi

k=1

[∑bik

l=Ni(k−1)+1

(

αi
∑bik

j=l+1
pi[ j]

)

+
∑Nik

l=bik+1

(

βi
∑l

j=bik+1
pi[ j]

)

+nikγi

(

Si (π) + si +
∑Ni(k−1)

l=1
pi[l] +

∑bik

l=Ni(k−1)+1
pi[l]

)]

=
∑zi

k=1

[∑bik

l=Ni(k−1)+1
αi

(
l − Ni(k−1) − 1

)
pi[l] +

∑Nik

l=bik+1
βi

(
Nik − l + 1

)
pi[l]

+nikγi

(

Si (π) + si +
∑Ni(k−1)

l=1
pi[l]

)

+ nikγi
∑bik

l=Ni(k−1)+1
pi[l]

]

=
∑zi

k=1

{∑bik

l=Ni(k−1)+1

[
αi

(
l − Ni(k−1) − 1

) + γi
(
ni − Ni(k−1)

)]
pi[l]

+
∑Nik

l=bik+1

[
βi

(
Nik − l + 1

) + γi
(
ni − Nik

)]
pi[l]

}

+ niγi (Si (π) + si )

Therefore, the result retains in this case.
Case 2.2: βi ≤ γi . For any k ∈ {1, 2, . . . , zi } in this case, we have

Ei[l] = 0 for Ni(k−1) + 1 ≤ l ≤ Nik .

Ti[l] = Ci[l] = Si (π) + si +
∑Ni(k−1)

j=1
pi[ j]

+
∑l

j=Ni(k−1)+1
pi[ j] for Ni(k−1) + 1 ≤ l ≤ Nik .

Di[l] = Dik = 0 for Ni(k−1) + 1 ≤ l ≤ Nik (18)

Then the cost function of all jobs within group Gi can be written as follows:

fi (π, D∗
i (π)) =

∑ni

l=1

(
αi Eil + βi Til + γi Dil

)

=
∑zi

k=1

∑Nik

l=Ni(k−1)+1
(αi Ei[l] + βi Ti[l] + γi Di[l])

=
∑zi

k=1

∑Nik

l=Ni(k−1)+1
βi

(

Si (π) + si +
∑Ni(k−1)

j=1
pi[ j] +

∑l

j=Ni(k−1)+1
pi[ j]

)

=
∑zi

k=1

∑Nik

l=Ni(k−1)+1
βi

(
ni −Nik

)
pi[ j]+

∑zi

k=1

∑Nik

j=Ni(k−1)+1
βi

(
Nik−l+1

)
pi[ j]

+
∑zi

k=1

∑Nik

l=Ni(k−1)+1
βi (Si (π) + si )

=
∑zi

k=1

∑Nik

l=Ni(k−1)+1
βi

(
ni − l + 1

)
pi[ j] + niβi (Si (π) + si )

Therefore, the result also holds for the second case. ��

3.2 A unified optimization algorithm

In this subsection, we will present an O(n log n) time unified optimization algorithm
for the problem 1 |GT, MDW | ∑m

i=1
∑ni

l=1(αi Eil + βi Til + γi dil + δi Sil).
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In view of Lemmas 9–11, for any given job sequence π , the unified cost func-
tion under the optimal due windows assignment strategy, denoted by d∗(π) =
{d∗

11, . . . , d
∗
1z1

, . . . , d∗
m1, . . . , d

∗
mzm } and w∗(π) = {w∗

11, . . . , w
∗
1z1

, . . . , w∗
m1, . . . ,

w∗
mzm }, can be formulated as follows:

g
(
π, d∗(π),w∗(π)

) =
∑m

i=1

∑ni

l=1
wil pi[l] +

∑m

i=1
niψi

(
Si (π) + si

)
(19)

where,

ψi =
⎧
⎨

⎩

γi , if group Gi is Case 1.1
δi , if group Gi is Case 1.2
�i , if group Gi is Case 1.3

,�i = min{βi , γi },

and wil(1 ≤ i ≤ m, 1 ≤ l ≤ ni ) is defined by (10) for Case 1.1, by (12) for Case 1.2,
and by (15) and (16) for Case 1.3.

From (19) we can observe that under an optimal due window assignment policy,
the total cost is the sum of m + 1 separable terms. The first m terms,

∑ni
l=1wil pi[l]

for i = 1, 2, . . . ,m, is dependent only on the internal job sequence within group
Gi , while the last term,

∑m
i=1niψi (Si (π) + si ), is only concerned with the starting

time of the group and is independent of the internal job sequence of each group. As
a result of this separable characteristic of the objective function, our problem reduces
to m + 1 subproblems. The first m subproblems are to find an optimal job sequence
which minimize

∑ni
l=1wil pi[l] for i = 1, 2, . . . ,m, while the last subproblem is to

find an optimal group sequence which minimizes
∑m

i=1niψi (Si (π) + si ). Then the
following two lemmas are immediately obtained.

Lemma 12 The optimal job sequence within group Gi can be obtained by matching
the smallest wil value to the largest pil value, the second smallest wil value to the
second largest pil value, and so on.

Proof It can be easily proved by Lemma 2. ��
Lemma 13 In an optimal schedule, the groups are ordered in non-decreasing order
of (si + ∑ni

l=1 pil)
/
niψi .

Proof we prove the result by contradiction. Let π be an optimal schedule that does not
satisfy the property of the lemma. Then π must contain at least two adjacent groups,
say G j followed by Gk , such that (sk + ∑ni

l=1 pkl)
/
nkψk < (s j + ∑ni

l=1 p jl)
/
n jψ j .

Swapping G j and Gk , while leaving the other groups in their original order, we obtain
a new schedule π ′. Then we have

Sk(π) = S j (π) + s j +
∑n j

l=1
p jl , (20)

Sk(π
′) = S j (π), (21)

S j (π
′) = S j (π) + sk +

∑nk

l=1
pkl . (22)

Because the completion times of jobs processed before (after) G j and Gk are the
same under schedule π and π ′, the cost function for groups processed before (after)
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G j and Gk are not changed. As a consequence, by submitting (20–22) into (19), the
difference between the objective values of the two schedules is

g
(
π, d∗(π),w∗(π)

) − g
(
π ′, d∗(π ′), w∗(π ′)

)

= nkψk

(
s j +

∑n j

l=1
p jl

)
− n jψ j

(
sk +

∑nk

l=1
pkl

)

= nkn jψkψ j

(
s j + ∑n j

l=1 p jl

n jψ j
− sk + ∑nk

l=1 pkl
nkψk

)

> 0.

This contradicts the optimality of π , and completes the proof of the lemma.
Based on the above analysis, now we present the following algorithm to solve the

1 |GT, MDW | ∑m
i=1

∑ni
l=1(αi Eil + βi Til + γi dil + δi Sil) problem. ��

Algorithm

Step 1 Calculate the ratios of �nik(δi − γi )/αi� and �nik(βi − δi )/βi�, and according
to Lemmas 4–8, determine which case each group is.

Step 2 For the groups ofCase 1.1, calculatewil according to (10), and bik and bik+hik
according to Lemma 5. For the groups of Case 1.2, calculate wil according to
(12), and bik+hik according to Lemma 7. For the groups of Case 1.3, calculate
wil according to (15) and (16), and bik according to Lemma 6 or 8.

Step 3 Sequence the jobs within each group by Lemma 12 and arrange the groups in
non-decreasing order of (si + ∑ni

l=1 pil)
/
niψi by Lemma 13.

Step 4 For the groups of Case 1.1, assign the due windows according to Lemma 5.
For the groups of Case 1.2, assign the due windows according to Lemma 7.
For the groups of Case 1.3, assign the due windows according to Lemma 6
or 8.

To determine the computational complexity of the algorithm, note that Step 1, Step
2 and Step 4 can be performed in linear time; Step 3 requires O(

∑m
i=1ni log ni +

m logm) time. Since
∑m

i=1ni = n and m ≤ n, the time complexity of the algorithm
is O(n log n).

Theorem 1 The 1 |GT, MDW | ∑m
i=1

∑ni
l=1(αi Eil + βi Til + γi dil + δi Sil) problem

can be solved by the above algorithm in O(n log n) time.

4 Conclusions

Weconsidered the problemof the simultaneous determinationofmultiple duewindows
assignment and job scheduling on a single machine under a GT restriction, where the
objective is to determine an optimal combination of the job schedule and due windows
assignment strategy to minimize the total related cost that comprises the earliness,
tardiness and the due windows. We presented an O(n log n) time algorithm for the
problem. It would be an interesting and valuable topic to investigate the case where the
job processing times are time-dependent or resource-dependent in the future research.
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