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Abstract In this article, an H'-Galerkin mixed finite element (MFE) method for
solving time fractional reaction—diffusion equation is presented. The optimal time
convergence order O(Ar>~%) and the optimal spatial rate of convergence in H' and
L2%-norms for variable u and its gradient o are derived. Moreover, some numerical
results are shown to support our theoretical analysis.
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1 Introduction

In this article, we consider the time fractional reaction—diffusion equation
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u(x, 1)  9%u(x, 1)
e 9x2
ulxp,t) =u(xg,1)=0,1€ J,

u(x,0) =uplx),x € 2.

+ pu(x,t) = f(x,t), (x,1) € 2 x J,
(D

In Eq. (1), £2 = [x1,xg], J = (0, T] is the time interval with 0 < T < 00. up(x)
and f(x,t) are given functions, p is a non-negative constant and % is Caputo

fractional-order derivative operator defined by

%u(x, 1) 1 /8u(x, ) dt @)
e I'(l—a) it (t—1)%
0

where 0 <« < 1.

Generally, the fractional partial differential equations (PDEs) can be grouped into
three categories: time fractional PDEs [1-3], space fractional PDEs [4-6] and space—
time fractional PDEs [7]. Recently, more and more efficient numerical methods, such
as finite difference methods [4,8-21], finite element methods [1-3,22,23], spectral
methods [24] and LDG methods [25,26], have been found and studied for fractional
PDEs. From the current literatures, we can find that a lot of numerical methods have
been studied and developed for fractional PDEs. However mixed finite element meth-
ods for solving fractional PDEs have not been reported.

Over the past few decades, more and more mathematical scholars have studied
some mixed finite element methods for partial differential equations. Pani (in 1998)
[27] proposed an H ! -Galerkin MFE method for solving the linear parabolic equations.
Compared to classical mixed methods, this method has several distinct characteristics:
First, it is free of the LBB consistency condition; Second, the polynomial degrees of
the finite element spaces V, and W), may be different; Third, the optimal H'-error
estimates for both the scalar unknown u and its gradient o are obtained. In view of
the method’s attractive features, the one has been used to seek the numerical solutions
of some integer order partial differential equations [28—39]. However the numerical
analysis of H'-Galerkin MFE method of fractional PDEs has not been studied and
discussed.

In this article, our aim is to propose the H ! -Galerkin MFE method for time fractional
reaction—diffusion equation. We discretize the time fractional derivative by a high
order difference method and approximate the spatial direction by the H'-Galerkin
MFE method. We derive some optimal a priori error estimates for the scalar unknown
u and the gradient term o in the L> and H '-norms. We provided a numerical example
to illustrate the effectiveness of the studied method.

The layout of the paper is as follows. In Sect. 2, we formulate an H ' -Galerkin mixed
scheme for time fractional reaction diffusion equation (1) and give two important
lemmas for a priori error analysis. In Sect. 3, we introduce a high order difference
method for time fractional order derivative. In Sect. 4, we derive the detailed proof
of the a priori error estimates for fully discrete scheme. In Sect. 5, we obtain some
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An H!-Galerkin MFE method for time fractional reaction—diffusion equation 105

numerical results to confirm our theoretical analysis. In Sect. 6, we give some remarks
and extensions about the H'-Galerkin MFE method for fractional PDEs.

Throughout this paper, the notations and definitions of Sobolev spaces as in Ref.
[40] are used.

2 An Hl-Galerkin MFE formulation

In order to get the H'-Galerkin mixed formulation, we first split Eq. (1) into the
following lower-order system of two equations by introducing an auxiliary variable

_ du@xn
o = “Tox
@ 9 u(x 1) 80;)6,1?) + pu(x,1) = f(x,1),
x 3)
B o - au(x,t) _
ox

Now we multiply the first equation in (3) by —%—’;), w € H' and integrate with respect
to space from xy, to xg to arrive at

G )t Gra) el =-(e5) @

where (¢, z) = fo q(x) - z(x)dx.

By the application of integration by parts with a“(“ L a”(gf D) = 0, we can
obtain
%u Jw ow
(G )
ar¥  odx dax
t
( 1 / du(x,t) drt Bw) ( 8w)
= - s & ) T u, —
rd—a) ar G—ne ox/) P\
/82u(x 1) dt du
w)+p (5 w)
1"(1 — o) adtox (t—1)“ ax
n 1 /8u(x,r) - xg dt
-wi(x, R —
I'l—ow ot xp (t —1T)¥
0
1 t do(x,t) d
o(x,t T
- (F(l —a)/ 9t (r—r)a’w) +plo.w)
0
0% (x, 1)
= (BT + po, w). 5
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106 Y. Liu et al.

Substitute (5) into (4) to get

G )+ (o 3) oo ==(750) ®

Multiply the second equation in (3) by g)"c ,V € Hy I"and integrate with respect to space
from x; to xg to obtain

(g_Z’g_z) = (a, g—z),VveHol. (N

Combining (6) with (7), the mixed weak formulation can be described as

(a) (Bu Bv) = (U, a—v),‘v’v € Hé,

dx 0x 0x (8)
o do Jdw ow 1
®) (W’w)+(8x 8x)+p(o w) = (f,a),VweH ’

Choosing the finite dimensional subspaces V;, and W), of HO1 and H!, respectively,
with the following approximation properties: for | < p < coandk, r positive integers
[27]

inf {lv = vyllr +hllv = vallyrr} < CH ollyeern, v € Hg OWELL,
VhEV)

ingv {”w —_ wh”LP +h||w — U)h”Wl,p} S Chr+1”wl|wr+l,p, w e WV—FI,p.
whreWp

Then the semidiscrete H '-Galerkin mixed finite element scheme is described by

oup vy, vy,
) = PR V V 5
(@) ( ax ' ox ) (‘7’1 ox ) Uk € Vi

%oy, dop, Jwp
)+ (G

9)
) ( ’ ax = 0x

s

) + p(on, wp) = (f, aau;h) Ywy, € W

For a priori error estimates for fully discrete scheme, we introduce two projection
operators [27,41] in Lemma 1 and Lemma 2.

Lemma 1 We define an elliptic projection Pyu € V), for the variable u by
(uy — Ppuy, vpy) =0,v, € Vj. (10)
Then the following estimates hold, for j = 0, 1
lu — Prullj < Coh* 17 a1 (1n
Lemma 2 Further, we also define an elliptic projection Ryo € Wy, of o as the solution

of
B(o — Ryo,wp) =0,w, € Wy, (12)
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An H!-Galerkin MFE method for time fractional reaction—diffusion equation 107

where B (o, w) = (o, wy) + (A + p)(o, w). Here A > 0 is chosen to satisfy
B(w, w) > pollwlli, w € H', uo > 0.
Then the following estimates are found: for j =0, 1
lo = Ryo llj < Cxh™ o llrs, llor — Raoyllj < Ch"™ o llrgr. (13)

Remark 1 When the reaction term coefficient p > 0, we can also choose the parameter
% = 0 and ensure that the B(w, w) is H!-coercive.

3 Discretization of time-fractional derivative

For the discretization of time-fractional derivative, let 0 = 9 < t; < th < --- <
tyy = T be a given partition of the time interval [0, 7] with step length At = T/M
and nodes t, = nAt (n =0, 1, ---, M), for some positive integer M. For a smooth

function ¢ on [0, T'], define ¢" = ¢ (1,,).

ao
Lemma 1 [23,24] The time fractional order derivative % att = t, isdiscretized

by, for0 <a < 1

o (x,ty) AT L [ L 0k — ok
= —k+1D)""—(m—k “]— E},
o1 r2-a ]; (kA D= ar R
(14
where
17 2
1 ! f+ o\ 0o 1)
n o__ _ 2 _ 2
Fo = F(l—a)z/ (-5 ) r o —ny?
k=1,",
+0(At2)] de (15)
(tn - T)a'
Proof Using Taylor expansion at time ¢ = 1, we can arrive at
do (x,t,_1) k_ k-1
2 7% L ownd. (16)

ot At
By (16), Taylor expansion and some simple calculations of definite integral, we have

0% (x, 1)
ar%

_ 1 nof do(x, 1) dt
T rd-oa) Z/ 9T (ta — 7)Y

k=1,7
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108 Y. Liu et al.

1
1 “ ok —o* 1 Bo(x,r) 904 1) dr
= R 0(A?
ri-a ;/ T T C]
k-1

1 1ok — gkl i dt
T Tl-w /; At / (tn — 1)
- tk—1

1 2
1 z f+ -1 O 1) dr
+7F(1—(¥)§/ [(r - 25— + o~ )+ 0|

k lfk |
_ Atlfoz n e - Uk _akfl ;
_F(z_a)];[(n—k-i-l) —(n—k) ]7& +EL (17)
So, the conclusion of Lemma 1 can be obtained by the above calculations. O

Lemma 2 [23,24] The truncation error Eg is bounded by

|El| < CoAr*™. (18)

4 Error estimates for fully discrete scheme

In the following analysis, for deriving the convenience of theoretical process, we now
denote
ok — gk=1

B ,=(m—k+1D"—(n—k'"*and D;o* = "

Based on the discrete formula (14) of time-fractional derivative, we obtain the time
semi-discrete scheme of (8)

0 <8;; )= o ) e

Al k do" dw "
e ZB Dot )+ (T o) et (19)

(f” )—i—(EO,w) Ywe H'.

Now, we look for the solution (u},0}') € Vi x Wy, (n =0,1,---, M — 1) by the
fully discrete procedure

duy Jvy a 0Un
] = [ R} v V )
(@) ( dx  0x ) (gh ax ) vh & Y

Al dof dwy,
) Fa—a 2 (Diofown) + (T ) + pjwn) 20)
Jwp
0x

=—(fn, ) Ywy € Wy.
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An H!-Galerkin MFE method for time fractional reaction—diffusion equation 109

For the convenience of the analysis, we now decompose the errors as

u(ty) — up = (u(ty) — Ppu) + (Ppu” —u)) = ¢" +9";
o (ty) — o3 = (0(ty) — Rpo™) + (Rpo" —o7) = 0" +8".

Subtracting (20) from (19) and using two projections (10) and (12), we get the error
equations

( v vy, vy vy,
D% By _ (o0 D) (0 Yy,
(@) (ax Bx) ( ox e dx vh h
All —a n ‘
) Fa—ay 2o B P ) £ B )

n

A[l o

T re-a ZB 1 (Di0", wp) + 10", wi) + (EG, wp), Ywy, € Wi

L

2y
In the following discussion, we will derive the proof for the fully discrete a priori error
estimates.

Theorem 1 Supposing that u2 = Pyu(0) and 0’}? = R,0(0), then there exists a
positive constant Cy free of space—time mesh h and At such that

lo™ — o' < Co(o, T, ) (A*™™ + (h + 1 + At )R,
(22)
lu" — ulll; < Co(u, o, T, @) (A" + O+ 1 + A=) 4 pFH170) =0, 1.

Proof Notingthat 3°7_, BY , D;8* = 3"}Z) B¢ D,8" ¥, then Eq (21b) may be rewrit-
ten as

n—1

All o '
ZBk(D,(S" L wp) + B(E", wy)

rQ2- Ol)

l‘l o n
ZB (D0, wp) + A" w) + (Ef, wy).  (23)

O
We take wy, = §" in (23) and multiply by I" (2 — o) At® to arrive at
n—1
DUBYE T =8 + T2 — ) Ar*B(8", 8
k=0
e
- _ ZB;(J((Qn—k _ Qn—k—l, 5")
+AL (2 — ) At* (0", wp) + I'(2 — a) A% (Ej, 8"). (24)

@ Springer
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By the simple calculation, we get the following equalities

n—1

Z B]g (8}171{ _ 81171{71 811)
k=0

n—1 n
= (Z By > By ;8"F, 5")
k=0 k=1
n—1
= 8" + (Z(B;j — B 5"k, 5”) + B (30, 5") , (25)
k=1

and
n—1
ng(gn—k _ Qn—k—l 5")
k=0

n—1
= (0", 8" + (Z(Bz‘ - B{_ o', 6”) + B8 (6)

k=1

Substitute (25) and (26) into (24) to arrive at
18717 + I'(2 — ) A1* B (8", 8")
n—1 n—1
— _(Qn7 5)1) _ (Z(Bl? . Bg_l)gn—k’ 5") _ (Z(BI? . Bg_l)(sn—k’ (Sn)
k=1 k=1
—BY (@ +8°,8") + AT (2 — ) At* (0", 8") + ' 2 — a) At°(EL, 8"). (27)
For (27), we take advantage of Cauchy—Schwarz inequality to have
8711 + ' (2 — a) At*B (8", ")
n—1 n—1
< (o™ + > By = B e 41+ > | BE = By 15"
k=1 k=1
+BI_ (I0°l + 18°1) + A2 = ) At [lg" | + "2 = ) A | EG ) 15" (28)

Noting that 0 < By < B_; < l and o™ ¥ < lloll oo (z2) in (28), we get

I8™1> + I'(2 — a) Ar*B (8", 8")

n—1
= (X2[Bi - BE|I I+ @+ Ar@ = A = B Dlelsq
k=1
+BI_ (1N + 18°) + M@ = ) A EG) 16”]. (29)
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An H!-Galerkin MFE method for time fractional reaction—diffusion equation 111

Noting that 8° = 0in (29) and I"(2 — &) At*B(8", 8") > I'(2 —a) At% pol|8" 13 > O,
we have

n—1
6" = ([ Bic — BE|18" I + @+ Ar@ — A = B Dlell e
k=1
+BI_ "1+ [ = ) A Eg ). (30)

Using the Lemma in [24], we have

Q2 —a)At®

1871 < —g—llell L2y + I El
Ba Bffq
Q4 A2 — @) Aty
< (mAn* A B llellzoe(r2)

I'2—a)n *mAr)”
+ o
anl

IEG I (3D

Noting that (nAf)* < T“ ﬁ, we have

T« rQ-—ar®

8" < RAt™ + A (2 — Ot))1 s lellzee 2y + T IEGI.  (32)
By (13) and Lemma 1, we have
Col’'Q—a)T”
18" < CLQAr™ + AT (2 - a)) h’“ lollr+1 + %Arz-a. (33)

Taking vy, = ¢" in (21) and using Cauchy—Schwarz inequality, Poincare inequality,
(33) and (13), we get

av"
9" < C1’ = Cidig" I+ le" b

0(
< QCQRAT +AT 2 —a)— h’*‘ o141

+C1C()F(2 —a)T”
l -«

AT C o g1 (34)

Combining (11), (13), (33) and (34) with triangle inequality, we have the estimates
for lo" — oy, lu" — ujp|l and [lu" — wup 1.

Remark 2 (i) It is not hard to see from the proof of Theorem 1 that if we choose the
reaction term coefficient p = 0, the conclusions will have not any change based on
the projection (12) with the chosen parameter A > 0.

(i1) When the reaction term coefficient p > 0, we can also get the results of Theorem
1 with the vanished parameter A.
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112 Y. Liu et al.

Theorem 2 With the same condition to Theorem 1, one have the following a priori
error estimate for 0 < Ca, C(A) € R free of space-time mesh h and At

lo" =o'y < Colu, 0, T, ) (AP + A= T W 4 1) + COY A h . (35)

Proof Take wy = A== 370 B D;8" in (23) to arrive at

o n—l1 Atlanl

1
Hr(t—szD"sn kH +%( "TQ-a) ) & D’(Sn_k)

n

Apl—o tl o n—l1 .
- = o o n—
= Fa—w: ZBn_k D, o, 3 %Bk D8

—
—k
<l‘ﬂi3a DQkH iR v caeni?
Sl TR oy & Onk 4770
—1
tl o B 2
A
=0
O

Multiply by I"(2 — a) At* and use the similar calculation to (25) to get

%(8",5")
n—1 —k 0 osn
98" % 98" a8v 96
< - B% — BY ’ )_ o (7’7)
- (;( kB 0x ox N ax ax
n—1
—GAp) [ DBy B e TR 8| — G+ p)BY_ (6%, 8") + C(Vlle" I
k=1
Q2 —a)At® , TQR—-war® ) Arl=e P
— Y ||E} B%Y D H
7 IEGI® + 5 F(Z—a),g; Do
—1
1 15 dsn—k I'Q—a)A®
< 6" 8+ > |87 — B [T hie] + TEEREA g2
2 2 & 4
F(Z—a)At“H At & kHz )
B D ce™”. 37
+ F(Z—Ol)]; “ Dk |+ Cle" 37

Now, we estimate the last term on the right hand side of (37). Using the similar result
to (26), we have
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I'Q—a)At* ) Al i L2
B, Do H

2 rQ—o) &

At~ - 2
=2 A>T B, D kH

22 —a H Z n—k 210

At~ _ 2

=sro=a e +Z<Bk B 0" + B0

n—1
—k 2 2 02
54r(z (” "I +Z|Bk B Ple" 12 + (B lle ||). (38)

Substitute (38) into (37) to get
B(8", ")

Si
k=
1

+= F(Z—a)At IEGI* + C)le"II?

98" —k

o = ot [ |55 |+ 1o

tre—a

Noting that BY /By | < 1 and 2aja; + 2ajaz + -+ + 2ap_1a, + > i, ai2

n Z;’:l al.z <n(ay+ay+---+ an)z, Va; € RT, we easily get

|5

e[S o - )2 4]

+ 18"l

1
5V IQ2- ) At Egll + vV C M) lle"

3AI nl
PR n o o o ()
+ 22 —a) (”Q I+ ]; (Bk—l - Bk)”Q”LOO(Lz) + B, 1°I

Using mathematical induction, we have

Bﬂl

n—1

—Ol

VCO) + llell o2

2F(2 )

3A’_a a 2 n—kp2 o \2; 052
llo™|I* +Z|Bk By 171" F I  + (By_D e’ 17 ). (39)

<

) . (40)

Cr(nAH)* At~ %n=¢
|25 e < 2 V= 0Ar Byl
o
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Table 1 The convergence results of time for u with fixed 7 = 1/800 and different o

Norm  « Aty = 1/25 Aty = 1/50 Aty = 1/100  Rate (ﬁ—g) Rate (ﬁ—g)
L2 0.5  6.1167e—005  2.1595¢e—005  7.6072e—006  1.5020 15053

0.7  17214e—004  6.9626e—005  2.8086e—005  1.3059 13008

0.9  44798—004  2.0798e—004  9.6291e—005  1.1070 11110
H! 0.5  4.8934e—002  1.7276e—002  6.0858e—003  1.5020 15053

0.7  13772e—001  55701e—002  2.2469e—002  1.3059 13008

0.9 35838001  1.6638—001  7.7033e—002  1.1070 11110

Noting that (nAf)® < T* and % — 11 again, we get

H 06"
0x

CoyT*At™
18" = =———[ VT @ =@y | B}

3Ar@
C(x — o0
HVED + 575 =5 | lelman]

o
- C, T

3 o
(Veamare + )At—%)h’“nonrﬂ

2I'2 — «

CZTa 27370(
+ o Te—war ¥, (42)
—

Combining (13), (42) with triangle inequality, we get the conclusion of theorem.

5 Some numerical results

Now we consider a numerical example [24] to test our theoretical analysis of a priori
error estimates. In (1), we take space-time interval [0, 1] x [0, 1], the source term
1) = pagyt® sin@mx) + 4w%% sin(27x), the coefficient p = 0 of the
convection term and the initial value u(x, 0) = 0. We easily find that the exact solution
is 2 sin(2m x).

In Tables 1 and 2, for a fixed spatial step 7 = 1/800 and some different time meshes
At = 1/25, Aty = 1/50, Atz = 1/100, we can see that the orders of convergence
for u and o are close to 1.5, 1.3 and 1.1 with different « = 0.5, 0.7, 0.9, respectively.
The convergence results are consistent with the results O (At*~%) of the theoretical
analysis.

In Tables 3 and 4, we obtain the optimal second-order convergence rate for # and o
in L2-norm and the optimal first-order H'-norm error results for the changed spatial
meshes h; = 1/25,hy, = 1/50, h3 = 1/100 and the fixed time step At = 1/800.
These numerical results of optimal a priori error estimates confirm the conclusions for
the H'-Galerkin MFE method.
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Table 2 The convergence results of time for o with fixed 2 = 1/800 and different o

Norm  « Aty = 1/25 Aty = 1/50 Aty = 1/100  Rate (ﬁ—g) Rate (ﬁ—g)
L2 0.5  3.9952e—004  1.4277e—004  5.0675¢—005  1.4846 1.4943

0.7  1.0968¢—003  4.4371e—004  1.7901e—004 13057 13096

0.9  2.8230e—003  1.3106e—003  6.0690e—004  1.1070 1.1107
H! 0.5  3.1962e—001  1.1422e—001  4.0540e—002  1.4846 1.4943

0.7  87748e—001  3.5497e—001  1.4321e—001 13057 13096

0.9  22584e+000  1.0485e+000  4.8552e—001  1.1070 1.1107

Table 3 Spatial convergence results for u with fixed Az = 1/800 and different o

Norm  « hy = 1/25 hy =1/50 hy = 1/100 Rate (’,%) Rate (%)

L2 05  3.5897e—003  8.9636e—004  2.2390e—004  2.0017 2.0012
07  3.5702e—003  89102e—004 22215004  2.0025 2.0039
09  3.5497¢—003  8.8437e—004  2.1898e—004  2.0050 2.0138

H! 05  89815e—002  4.4827e—002  2.2391e—002  1.0026 1.0014
07  89326e—002  4.4560e—002  2.2216e—002  1.0033 1.0042
09  2.8951e—002  4.4227e—002  2.1899e—002  1.0058 1.0141

Table 4 Spatial convergence results for o with fixed Ar = 1/800 and different o

Norm  « hy =1/25 hy = 1/50 hy = 1/100 Rate (%) Rate (%)

L2 05  89432e—004  22071e—004  5.5485¢—005  2.0186 1.9920
07  1.0228e—003  2.5500e—004  6.6646e—005  2.0040 1.9359
09  1.1571e—003  2.9763e—004  8.6722e—005  1.9590 1.7791

H! 05  22376e—002  1.1038e—002  5.5488e—003  1.0195 1.0195
07  2.5591e—002 12753002  6.6649e—003  1.0049 0.9361
09  2.8951e—002  1.4885¢—002  8.6726e—003  0.9598 0.7793

6 Some concluding remarks and extensions

As far as we know, MFE methods for solving fractional PDEs have not been seen in
the current literatures. In this article, our aim is to study an H I_Galerkin MFE method
for solving time fractional order reaction diffusion equation. We obtain some optimal a
priori error estimates for the scalar unknown u and its gradient o in L2 and H '-norms.
For verifying the effectiveness of our method, we provide some numerical results by
using Matlab procedure.

In the near future, we will study the H ! -Galerkin MFE method to solve the fractional
telegraph equation [7], the variable-order fractional advection diffusion equation [10]
and so on. At the same time, we are trying to find some new discrete methods for
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approximating fractional derivatives and study some other MFE procedures [37,42]
based on moving finite element method [1] for solving the fractional PDEs.
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