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Abstract In this paper, we present an efficient numerical algorithm for solving a
general class of nonlinear singular boundary value problems. This present algorithm
is based on the Adomian decomposition method (ADM) and Green’s function. The
method depends on constructing Green’s function before establishing the recursive
scheme. In contrast to the existing recursive schemes based on ADM, the proposed
numerical algorithm avoids solving a sequence of transcendental equations for the
undetermined coefficients. The approximate series solution is calculated in the form
of series with easily computable components. Moreover, the convergence analysis
and error estimation of the proposed method is given. Furthermore, the numerical
examples are included to demonstrate the accuracy, applicability, and generality of
the proposed scheme. The numerical results reveal that the proposed method is very
effective.

Keywords Nonlinear singular boundary value problems · Adomian decomposition
method · Green’s function · Approximations of solution · Adomian’s polynomials
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1 Introduction

Two-point singular boundary value problems for ordinary differential equations arise
very frequently in many branches of applied mathematics and physics such as chem-
ical reactions, atomic calculations, gas dynamics, nuclear physics, atomic structures,
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in the theory of shallow membrane caps, and study of positive radial solutions of
nonlinear elliptic equations and physiological studies. In most of the cases, singular
boundary value problems in general cannot be solved analytically. So these problems
must be handled by various numerical techniques. However, the numerical treatment
of the singular boundary value problems has always been far from trivial due to the
singularity.

The objective of this paper is to propose an effective technique to solve a gen-
eral nonlinear derivative-dependent singular boundary value problems (SBVPs). The
proposed technique is based on the work of Singh et al. [1], where we transform
the original nonlinear weakly singular boundary value problem with Dirichlet and
Robin boundary conditions into an equivalent nonlinear Fredholm integral equation
before establishing the recursive scheme for the solution. In this paper we consider
the following class of derivative-dependent nonlinear singular boundary value [2–5]

(
p(x)y′(x)

)′ = q(x)f
(
x, y(x),p(x)y′(x)

)
, 0 < x ≤ 1,

lim
x→0+p(x)y′(x) = 0, ay(1) + by′(1) = c,

⎫
⎬

⎭
(1.1)

where a > 0, b and c are any finite real constants. The condition p(0) = 0 says that
the problem (1.1) is singular and if q is allowed to be discontinuous at x = 0 then
the problem (1.1) is called doubly singular [2]. Throughout the paper we assume the
following conditions on p, q and f (x, y,py′):

(E1) p ∈ C[0,1] ∩ C1(0,1] with p > 0 in (0,1];
(E2) q > 0 in (0,1], q ∈ L1(0,1] and q is not identically zero;
(E3)

∫ 1
0

1
p(x)

∫ x

0 q(s)dsdx < ∞;
(F1) let f (x, y,py′) is continuous on D1 = {[0,1] × R × R} and is not identically

zero;
(F2) let f (x, y,py′) satisfies the Lipschitz condition

∣∣f
(
x, y1,py′

1

) − f
(
x, y2,py′

2

)∣∣ ≤ l1|y1 − y2| + l2
∣∣p

(
y′

1 − y′
2

)∣∣, (1.2)

where l1 and l2 are Lipschitz constants.

Past couple of decades, there has been much interest in the study of singular two-
point boundary value problems, [1–4, 6–18] and many of the references therein. The
main difficulty of (1.1) is that the singular behavior occurs at x = 0. In [2, 3, 6], au-
thors have discussed the existence and uniqueness of solution of the problem (1.1).
A lot of numerical techniques have been applied to tackle the particular case of sin-
gular boundary value problem (1.1). For instant, the cubic spline and finite difference
methods were carried out in [7–9]. Although, these numerical techniques have lot of
advantages, but a huge amount of computational work is involved which combines
some root-finding methods for obtaining accurate numerical solution especially for
nonlinear singular boundary value problems.

Recently, some newly developed numerical-approximate methods have also been
applied to handle some particular cases of (1.1). Such as, the ADM and MADM
have been used in [10, 12]. The homotopy analysis method (HAM) was introduced
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in [13]. To solve equation (1.1) using ADM, MADM, and HAM is always a compu-
tationally involved task as it requires the computation of undetermined coefficients
in a sequence of nonlinear algebraic or more difficult transcendental equations which
increases the computational work (see [10, 12, 13]). Moreover, the undetermined co-
efficients may not be uniquely determined and this may be the main disadvantage of
these methods for solving nonlinear two-point BVPs.

The variational iteration method (VIM) and its modified version for solving the
particular cases of SBVP (1.1) have been employed in [15, 17, 19]. The VIM gives
good approximations only when the problem is linear or nonlinear BVPs with non-
linearity of the form yn, yy′, y′n . . . etc., but the method suffers when the nonlinear
function is of the form ey, ln(y), siny, sinhy . . . etc., this may be one of the major
disadvantage of VIM for solving difficult nonlinear problems (see [17]).

1.1 Review of ADM

In this subsection, we shall briefly describe ADM for nonlinear second order differ-
ential equations.

In the recent past, a lot of researchers [1, 10–12, 14, 16, 17, 20–33] have expressed
their interest in the study of ADM for various scientific models. Adomian [22] as-
serted that the ADM provides an efficient and computationally worthy method for
generating approximate series solution for a large class of differential equations.

According to the ADM, the operator form of (1.1) can be written as

Ly = Ry + Ny, (1.3)

where L ≡ d2

dx2 is linear second-order differential operator, Ry = (−p′/p)y′ and
Ny = (q/p)f (x, y,py′) represents the nonlinear term.
The inverse operator of L can be defined as

L−1[·] =
∫ x

0

∫ x

0
[·]dxdx. (1.4)

Operating the inverse operator L−1[·] on both sides of (1.3), we have

y = y(0) + y′(0)x + L−1[Ry + Ny]. (1.5)

Then the solution y and the nonlinear function Ny are decomposed by infinite series

y =
∞∑

n=0

yn, Ny =
∞∑

n=0

An, (1.6)

where An are Adomian’s polynomials that can be constructed for various classes of
nonlinear functions with the formula given by Adomian and Rach [23]

An = 1

n!
dn

dλn

[

N

( ∞∑

k=0

ykλ
k

)]

λ=0

, n = 0,1,2, . . . . (1.7)
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New efficient algorithms and subroutines in ‘MATHEMATICA’ for rapid computer-
generation of the Adomian polynomials to high orders are provided in [34–36]. In
[36, 37], authors proposed a new modification of the ADM (MADM) based on a new
formula for Adomian’s polynomials by rearranging Taylor series components of the
analytic function N(y). By defining the series ψn = ∑n

j=0 yj , and according to new
MADM, Ak’s are obtained as following:

Ak = N(ψk) −
k−1∑

j=0

Aj . (1.8)

This formula enforces many additional terms to the calculation processes in (1.7),
which implying faster convergence [36, 37].

Substituting the series (1.6) into (1.5), we obtain

∞∑

n=0

yn = y(0) + y′(0)x + L−1[Ry] + L−1

[ ∞∑

n=0

An

]

. (1.9)

On comparing both sides of (1.9), the ADM admits the following recursive scheme

y0 = y(0) + y′(0)x, yn+1 = L−1[Ry] + L−1[An], n ≥ 0, (1.10)

that will lead to the complete determination of components yn, and the series solution
of y follows immediately with the undetermined coefficient y(0), and the unknown
constant y(0) will be determined later imposing the boundary conditions at x = 1
(see [12, 17, 24, 25]). Then the n-term truncated approximate series solution is given
by ψn(x) = ∑n

m=0 ym(x).
In [11, 12, 16, 21, 24, 25], the researchers have used the ADM or MADM for solv-

ing nonlinear boundary value problems for ordinary differential equations. To solve
two-point boundary value problems using ADM or MADM is always a computation-
ally involved task as it requires the computation of undetermined coefficients in a
sequence of nonlinear algebraic equations which increases the computational work,
(see [10, 12, 16, 17, 21, 24, 25]). In other words, major disadvantage of the ADM
for solving nonlinear boundary value problems is to solve a sequence of growingly
higher order polynomials or more difficult transcendental equations for undetermined
coefficients [21]. In order to avoid solving a sequence of difficult transcendental equa-
tions for a two-point boundary value problems. In [36, 38], authors proposed a new
modified ADM for solving second order as well as higher order non-singular bound-
ary value problems with Dirichlet as well as Robin boundary conditions, where they
transformed the original nonlinear boundary value problem into an equivalent non-
linear Fredholm-Volterra integral equation for the solution before designing the re-
cursion scheme. Later, in [1, 14, 20, 32], authors proposed some new modification
of ADM for solving second-order singular boundary value problems with Dirichlet,
Dirichlet and Robin, Neumann and Robin boundary conditions.

In this paper, we propose an efficient numerical algorithm to overcome the dif-
ficulties occur in ADM or MADM for solving nonlinear singular boundary value
problems. To establish this algorithm, we first construct Green’s function to establish
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the recursion scheme for solution components. The proposed method provides a di-
rect scheme for obtaining approximations for the solution of the singular boundary
value problem without solving a sequence of difficult transcendental equations for
unknown constant. In addition, the convergence analysis and error estimation of the
proposed method is established. Finally, some numerical examples are included to
demonstrate the accuracy of the proposed method.

2 Adomian decomposition method with Green’s function

In this section, we propose an efficient numerical algorithm, which is based on
Green’s function and Adomian’s polynomial for solving a general nonlinear singular
two-point boundary value problems of the form (1.1). To do this, we first consider the
corresponding homogeneous problem of (1.1)

(
p(x)y′(x)

)′ = 0, 0 < x ≤ 1,

lim
x→0+p(x)y′(x) = 0, ay(1) + by′(1) = c.

⎫
⎬

⎭
(2.1)

The unique solution of (2.1) can easily be found and given by

ŷ(x) = c

a
. (2.2)

Now we again consider the SBVP (1.1) with homogeneous boundary conditions
(
p(x)y′(x)

)′ = q(x)f
(
x, y(x),p(x)y′(x)

)
, 0 < x ≤ 1,

lim
x→0

p(x)y′(x) = 0, ay(1) + by′(1) = 0.

⎫
⎬

⎭
(2.3)

The Green’s function of (2.3) can easily be constructed as

G(x, ξ) =
⎧
⎨

⎩

∫ 1
ξ

dx
p(x)

+ b
ap(1)

, 0 < x ≤ ξ ≤ 1,

∫ 1
ξ

dx
p(x)

− ∫ x

ξ
dx

p(x)
+ b

ap(1)
, 0 < ξ ≤ x ≤ 1.

(2.4)

The derivation of Green’s function is provided in the appendix.
Now, using (2.2) and (2.4), the SBVP (1.1) can be converted into following integral
equation as

y(x) = c

a
+

∫ 1

0
G(x, ξ)q(ξ)f

(
ξ, y(ξ),p(ξ)y′(ξ)

)
dξ. (2.5)

In other words, the integral equation (2.5) is equivalent to SBVP (1.1). It should
also be noted that the right hand side of (2.5) does not involve any undetermined
coefficients.

We next decompose the solution y by an infinite series as:

y =
∞∑

n=0

yn, (2.6)
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and the nonlinear function f (x, y,py′) by an infinite series

f
(
x, y,py′) =

∞∑

n=0

An, (2.7)

where An are Adomian’s polynomials [23].
Substituting the series (2.6) and (2.7) in (2.5), we obtain

∞∑

n=0

yn = c

a
+

∫ 1

0
G(x, ξ)q(ξ)

∞∑

n=0

Andξ. (2.8)

Upon comparing both sides of (2.8), we obtain the following scheme as follows:

y0 = c

a
,

yn+1 =
∫ 1

0
G(x, ξ)q(ξ)Andξ, n ≥ 0.

⎫
⎪⎪⎬

⎪⎪⎭
(2.9)

The solution components yn can be calculated using the scheme (2.9) and hence, the
n-term approximate series solution is obtained as

ψn(x) =
n∑

j=0

yj . (2.10)

Unlike existing ADM or MADM, the proposed scheme (2.9) avoids solving a se-
quence of nonlinear algebraic or transcendental equations for the undetermined coef-
ficients.

3 Convergence analysis

In this section, we shall suggest an alternative approach for proving the convergence
analysis of proposed recursive scheme for singular boundary value problem (1.1).
We remark that many authors [37, 39–42] have also established the convergence of
ADM for differential and integral equations. To do this, let X = C[0,1] ∩C1(0,1] be
a Banach space with the norm

‖y‖ = max
{‖y‖0,‖y‖1

}
, y ∈ X, (3.1)

where,

‖y‖0 = max
0<x≤1

∣∣y(x)
∣∣ and ‖y‖1 = max

0<x≤1

∣∣p(x)y′(x)
∣∣.

It is well known that X is Banach space with the norm (3.1) (see, pp. 45, [2]).
Note that Eq. (2.5) can be written in the operator equation form as

y = N y, (3.2)
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where N y is given by

N y = c

a
+

∫ 1

0
G(x, ξ)q(ξ)f

(
ξ, y(ξ),p(ξ)y′(ξ)

)
dξ. (3.3)

We next discuss the existence of the unique solution of Eq. (3.2). To do this, we first
prove the following Lemma.

Lemma 3.1 Let the assumptions (E1)–(E3) hold and the Green’s function of (2.3)
is given by G(x, ξ), then

(i) m1 := max0<x≤1 | ∫ 1
0 G(x, ξ)q(ξ)dξ | < ∞,

(ii) m2 := max0<x≤1 | ∫ 1
0 p(x)Gx(x, ξ)q(ξ)dξ | < ∞, where Gx(x, ξ) = ∂G(x,ξ)

∂x
.

Proof (i) This is trivial, it follows from the assumptions (E1)–(E3) and from the
Green’s function (2.4).

(ii) From (6.4), we see that

p(x)Gx(x, ξ) =
{

0, 0 < x ≤ ξ ≤ 1,

−1, 0 < ξ ≤ x ≤ 1.
(3.4)

Hence, we obtain c2 = max0<x,ξ≤1 |p(x)Gx(x, ξ)| < ∞.
Now again using the assumption (E2), we have

∣∣∣∣

∫ 1

0
p(x)Gx(x, ξ)q(ξ)dξ

∣∣∣∣

≤ max
0<x, ξ≤1

∣
∣p(x)Gx(x, ξ)

∣
∣
∫ 1

0

∣
∣q(ξ)

∣
∣dξ = c2

∫ 1

0

∣
∣q(ξ)

∣
∣dξ < ∞. (3.5)

Hence it follows that m2 = max0<x≤1 | ∫ 1
0 p(x)Gx(x, ξ)q(ξ)dξ | < ∞. �

Theorem 3.1 Let X be Banach space with norm given by (3.1). Also assume
that the nonlinear function f (x, y,py′) satisfies the Lipschitz condition (F2). Let
m = max{m1,m2} and l = max{l1, l2}, where the constants m1 and m2 given as in
Lemma 3.1 and l1 and l2 are Lipschitz constants. If δ = 2lm < 1, then Eq. (3.2) has
a unique solution in X.

Proof Using the Lemma 3.1, we have for any y1, y2 ∈ X,

∣∣N y1(x) − N y2(x)
∣∣ =

∣∣∣∣

∫ 1

0
G(x, ξ)q(ξ)

[
f

(
ξ, y1,py′

1

) − f
(
ξ, y2,py′

2

)]
dξ

∣∣∣∣

≤ max
0<ξ≤1

∣∣f
(
ξ, y1,py′

1

) − f
(
ξ, y2,py′

2

)∣∣

× max
0<x≤1

∣∣
∣∣

∫ 1

0
G(x, ξ)q(ξ)dξ

∣∣
∣∣

= m1 max
0<ξ≤1

∣∣f
(
ξ, y1,py′

1

) − f
(
ξ, y2,py′

2

)∣∣.
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Now using the Lipschitz continuity of f , we have

max
0<x≤1

∣∣N y1(x) − N y2(x)
∣∣ ≤ m1 max

0<ξ≤1

[
l1|y1 − y2| + l2

∣∣p
(
y′

1 − y′
2

)∣∣]

≤ 2lm1 max
{‖y1 − y2‖0,‖y1 − y2‖1

}

where l = max{l1, l2}. Thus, we have
∥∥N y1 − N y2

∥∥
0 ≤ 2lm1‖y1 − y2‖. (3.6)

Similarly, we have

∣∣p(x)(N y1 − N y2)
′(x)

∣∣ =
∣
∣∣∣p(x)

∫ 1

0
Gx(x, ξ)q(ξ)

× [
f

(
ξ, y1,py′

1

) − f
(
ξ, y2,py′

2

)]
dξ

∣∣∣
∣

≤ max
0<ξ≤1

∣∣f
(
ξ, y1,py′

1

) − f
(
ξ, y2,py′

2

)∣∣

× max
0<x≤1

∣∣∣∣

∫ 1

0
p(x)Gx(x, ξ)q(ξ)dξ

∣∣∣∣,

= m2 max
0<ξ≤1

∣∣f
(
ξ, y1,py′

1

) − f
(
ξ, y2,py′

2

)∣∣.

Using the Lipschitz continuity of f , we obtain

max
0<x≤1

∣∣p(x)(N y1 − N y2)
′(x)

∣∣ ≤ 2lm2 max
{‖y1 − y2‖0,‖y1 − y2‖1

}
.

Hence

‖N y1 − N y2‖1 ≤ 2lm2‖y1 − y2‖. (3.7)

Combining the estimates (3.6) and (3.7), we obtain

‖N y1 − N y2‖ = max
{‖N y1 − N y2‖0,‖N y1 − N y2‖1

}

≤ max
{
2lm1‖y1 − y2‖,2lm2‖y1 − y2‖

} = δ‖y1 − y2‖.
Thus, we have

‖N y1 − N y2‖ ≤ δ‖y1 − y2‖, (3.8)

where δ = 2lm and m = max{m1,m2}. If δ < 1, then N : X → X is contraction map-
ping and hence by the Banach contraction mapping theorem, Eq. (3.2) has a unique
solution in X. �

In order to establish the convergence of proposed scheme (2.9), we write the
scheme (2.9) in operator form as follows. For that, we define the sequence {ψn} such
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that ψn = y0 + y1 + · · · + yn, is a sequence of partial sums of the series solution∑∞
j=0 yj . Since

f

( ∞∑

j=0

yj

)

=
∞∑

j=0

Aj ,

or as an approximation, we have

f (ψn) =
n∑

j=0

Aj . (3.9)

Now, by using (2.8) and (3.9), we have

n+1∑

j=0

yj = c

a
+

∫ 1

0
G(x, ξ)q(ξ)

n∑

n=0

Ajdξ,

ψn+1 = c

a
+

∫ 1

0
G(x, ξ)q(ξ)f (ψn)dξ.

Thus the operator form of the scheme can be written as

ψn+1 = N ψn. (3.10)

Note that the formulation (3.10) is used to prove the Theorems 3.2 and 3.3. Next, we
give the convergence of the sequence {ψn} to the exact solution y of (3.2).

Theorem 3.2 Let N y be the nonlinear operator defined by (3.3) which satisfies the
Lipschitz condition with Lipschitz constant δ < 1. If ‖y0‖ < ∞, then there holds
‖yk+1‖ ≤ δ‖yk‖, k = 0,1,2, . . . and the sequence {ψn} defined by (3.10) converges
to the exact solution y.

Proof Since

ψ1 = y0 + y1, ψ2 = y0 + y1 + y2, . . . , ψn = y0 + y1 + y2 + · · · + yn, . . . ,

we see that yk+1 = ψk+1 − ψk , k = 1,2, . . . .
Now we show that the sequence {ψn} is convergent sequence.
Using the estimate (3.8) and (3.10), we have

‖yn+1‖ = ‖ψn+1 − ψn‖ = ‖N ψn − N ψn−1‖ ≤ δ‖ψn − ψn−1‖ = δ‖yn‖.
Hence, we obtain

‖ψn+1 − ψn‖ = ‖yn+1‖ ≤ δ‖yn‖ ≤ δ2‖yn−1‖ · · · ≤ δn+1‖y0‖.
Now for all n,m ∈ N, with n ≥ m, we have

‖ψn − ψm‖ = ∥∥(ψn − ψn−1) + (ψn−1 − ψn−2) + · · · + (ψm+1 − ψm)
∥∥



406 R. Singh, J. Kumar

≤ ‖ψn − ψn−1‖ + ‖ψn−1 − ψn−2‖ + · · · + ‖ψm+1 − ψm‖
≤ δn‖y0‖ + δn−1‖y0‖ + · · · + δm+1‖y0‖
≤ δm+1(1 + δ + δ2 + · · · + δn−m−1)‖y0‖

≤ δm+1(1 − δn−m)

1 − δ
‖y0‖.

Since 0 ≤ δ < 1, implies (1 − δn−m) ≤ 1 and since ‖y0‖ < ∞, it follows that

‖ψn − ψm‖ ≤ δm+1

1 − δ
‖y0‖, (3.11)

which converges to zero, that is, ‖ψn −ψm‖ → 0, as m → ∞. Hence {ψn} is Cauchy
sequence in X. Since X is Banach space, the sequence {ψn} must be convergent in X.
Hence there exits ψ in X such that limn→∞ ψn = ψ . But, we have y = ∑∞

n=0 yn =
limn→∞ ψn, that is, y = ψ which is exact solution of Eq. (3.2). �

Theorem 3.3 Let y be the exact solution of (3.2). Let ψm be the sequence of approx-
imate series solution obtained by (3.10). Then there holds

max
0≤x≤1

∣∣∣∣
∣
y −

m∑

j=0

yj

∣∣∣∣
∣
≤ δm+1

1 − δ
‖y0‖.

Proof Using the inequality (3.11) for n ≥ m, n, m ∈ N, we have

‖ψn − ψm‖ ≤ δm+1

1 − δ
‖y0‖.

Since limn→∞ ψn = y, fixing m and letting n → ∞ in above estimate, we obtain

‖y − ψm‖ ≤ δm+1

1 − δ
‖y0‖,

which completes the proof using ψm = ∑m
j=0 yj . �

4 Numerical illustrations

In this section, the proposed scheme (2.9) is applied to solve singular two point
boundary value problems. In order to check the accuracy of the proposed method, we
have consider three nonlinear singular examples. All the numerical results obtained
by proposed method are compared with known results.

Example 4.1 Consider the following nonlinear SBVP

(
x3y′(x)

)′ = x3
(

1

8y2(x)
− a0

y(x)
− b0x

2γ−4
)

, 0 < x ≤ 1,

lim
x→0+x3y′(x) = 0, y(1) = 1,

⎫
⎪⎬

⎪⎭
(4.1)
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where a0 ≥ 0, b0 > 0 and γ > 1 are any real constants, arises in the theory of shallow
membrane caps [3, 5, 15].

According to proposed scheme (2.9), we have p(x) = q(x) = x3, a = 1, b = 0 and
c = 1. Consequently:

y0 = 1,

yn+1 =
∫ 1

0
G(x, ξ)ξ3An(y0, y1, . . . , yn)dξ, n ≥ 0,

⎫
⎪⎬

⎪⎭
(4.2)

where the Green’s function is

G(x, ξ) =
⎧
⎨

⎩

1−ξ−2

−2 + b
a
, 0 < x ≤ ξ ≤ 1,

1−x−2

−2 + b
a
, 0 < ξ ≤ x ≤ 1.

(4.3)

The Adomian’s polynomials for f (y) = 1
8y2(x)

− a0
y(x)

− b0x
2γ−4 about y0, are given

as:

A0 =
(

1

8y2
0

− a0

y0
− b0x

2γ−4
)

,

A1 =
(

−0.25

y3
0

+ a0

y2
0

)
y1,

A2 =
(

−0.25

y3
0

+ a0

y2
0

)
y2 +

(
0.75

y4
0

− 2a0

y3
0

)
y2

1

2! ,

...

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.4)

Using (4.2), (4.3) and (4.4), for a0 = 0, b0 = 0.5 and γ = 2, we obtain components
as

y0 = 1,

y1 = −0.046875 + 0.046875x2,

y2 = 0.000976563 − 0.00146484x2 + 0.000488281x4,

y3 = 0.000033696 − 0.000072479x2 + 0.000053405x4 − 0.000014623x6,

...

In similar manner, for a0 = 0.5, b0 = 1 and γ = 1.5, using (4.2), (4.7) and (4.4), we
have

y0 = 1,

y1 = −0.380208 + 0.333333x + 0.046875x2,

y2 = −0.005837 + 0.011881x2 − 0.005555x3 − 0.000488x4,
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Table 1 Numerical solution and residual error for Example 4.1, when a0 = 0, b0 = 0.5, γ = 2

x ψ6 In [15] R2 R4 R6

0.0 0.95413530 0.95214843 5.9714E-04 1.1665E-06 1.7063E-09

0.2 0.95594964 0.95408104 5.4431E-04 1.0645E-06 1.0287E-09

0.4 0.96140303 0.95986967 4.0091E-04 7.8006E-07 1.7401E-10

0.6 0.97052624 0.96948658 2.1125E-04 3.9735E-07 5.8980E-10

0.8 0.98336934 0.98288524 4.6368E-05 8.4986E-08 2.2468E-10

1.0 1.00000000 1.00000000 0.0000E-00 0.0000E-00 0.0000E-00

Table 2 Numerical solution
and residual error for
Example 4.1, when a0 = 0.5,
b0 = 1, γ = 1.5

x ψ6 R2 R4 R6

0.0 0.61323147 1.2722E-02 7.3558E-03 6.9297E-04

0.2 0.68227253 1.1209E-02 2.6714E-03 4.4977E-04

0.4 0.75583421 7.7281E-03 7.3862E-04 1.4598E-04

0.6 0.83355517 4.0198E-03 1.2127E-04 1.5719E-05

0.8 0.91506470 1.2110E-03 3.6880E-06 8.0259E-07

1.0 1.00000000 0.0000E-00 0.0000E-00 0.0000E-00

y3 = −0.000757 + 0.002441x2 − 0.002112x3 + 0.000269x4 + 0.000151x5

+ 8.265177 × 10−5x6,

...

The comparison of approximate solution obtained by proposed recursive scheme and
VIM used in [15] is presented in Table 1. From these results, we see that proposed
recursive scheme provides good approximations which is comparable with those
in [15].

Furthermore, since the exact solution of (4.1) is not known, we instead investigate
the absolute residual error function, which is a measure of how well the approxima-
tion satisfies the original nonlinear differential equation as

Rn(x) =
∣∣∣∣
(
x3ψ ′

n(x)
)′ − x3

(
1

8ψ2
n(x)

− a0

ψn(x)
− b0x

2γ−4
)∣∣∣∣, 0 < x ≤ 1

where ψn(x) is a sequence of approximate solution. Finally, the residual error
Rn, n = 2,4,6 is presented in Tables 1 and 2 for various values of the parameters
a0, b0 and γ . Also, in Figs. 1 and 2, we plot absolute residual error function Rn, and
observe that as the number of iterations increases the residual error decreases.

Example 4.2 Consider nonlinear derivative-dependent singular two-point boundary
value problem

(
xαy′)′ = xα+β−2βey

(−xy′ − α − β + 1
)
, 0 < x ≤ 1,

lim
x→0+xαy′(x) = 0, y(1) = − ln(5),

⎫
⎬

⎭
(4.5)
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Fig. 1 Residual error functions
R8(x) (dashed line), R10(x)

(dotted line) and R12(x) (solid
line) of Example 4.1, when
a0 = 0, b0 = 0.5, γ = 2

Fig. 2 Residual error functions
R8(x) (dashed line), R10(x)

(dotted line) and R12(x) (solid
line) of Example 4.1, when
a0 = 0.5, b0 = 1, γ = 1.5

with exact solution y(x) = − ln(4 + xβ), where α ≥ 0 and β > 0 are any constants.

Comparing with the proposed recursive scheme (2.9), we have p(x) = xα , q(x) =
xα+β−2 and a = 1, b = 0, and c = − ln(5). Consequently, we have following scheme

y0 = − ln(5),

yn+1 =
∫ 1

0
G(x, ξ)ξα+β−2An(y0, y1, . . . , yn)dξ, n ≥ 1,

⎫
⎬

⎭
(4.6)

where the Green’s function is

G(x, ξ) =
⎧
⎨

⎩

1−ξ1−α

1−α
+ b

a
, 0 < x ≤ ξ ≤ 1,

1−x1−α

1−α
+ b

a
, 0 < ξ ≤ x ≤ 1.

(4.7)
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We now calculate the Adomian’s polynomials for nonlinear term f = −β(xeyy′ +
ey(α + β − 1)) about y0 using the formula (1.7) as:

A0 = −β
(
xy′

0 + (α + β − 1)
)
ey0,

A1 = −β
(
xy′

1 + y1(α + β − 1)
)
ey0,

A2 = −β

(
x
(
y′

2 + y1y
′
1

) +
(

y2 + y2
1

2

)
(α − β + 1)

)
ey0 ,

...

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(4.8)

For the demonstration purpose, we pick some specific values of α and β .
For α = 2, β = 1, using (4.6), (4.7) and (4.8), we obtain the components yn as

y0 = −1.60944,

y1 = 0.20000 − 0.20000x,

y2 = 0.02 − 0.04x + 0.02x2,

y3 = 0.00266667 − 0.008x + 0.008x2 − 0.00266667x3,

...

For α = 2, β = 3, making use of (4.6), (4.7) and (4.8), we have:

y0 = −1.60944,

y1 = 0.2000 − 0.2000x3,

y2 = 0.02000 − 0.0400x3 + 0.0200x6,

y3 = 0.002666 − 0.0080x3 + 0.00800x6 − 0.00266667x9,

...

We now define error function as En(x) = |ψn(x) − y(x)| and the maximum absolute
errors by

En = max
0<x≤1

En(x) (4.9)

where y(x) is exact solution, and ψn(x) is n-term approximate series solution.
In order to verify the efficiency of proposed recursive scheme, the maximum ab-

solute error E(n), for n = 3,4, . . . ,10 are listed in Tables 3, 4, 5 and 6 for various
values of α and β .
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Table 3 Maximum absolute
error of Example 4.2, when
β = 1

α E(3) E(4) E(5) E(6)

2 2.2509E-03 3.0693E-04 4.4498E-05 6.7073E-06

3 1.5533E-03 1.5533E-04 4.4497E-05 3.2422E-06

5 2.3143E-02 0.0031E-03 4.7688E-04 7.6884E-05

Table 4 Maximum absolute
error of Example 4.2, when
β = 1

α E(7) E(8) E(9) E(10)

2 1.0386E-06 1.6405E-07 2.6310E-08 4.2703E-09

3 4.4608E-07 6.2609E-08 8.9224E-09 1.2869E-09

5 3.2422E-06 4.4608E-07 6.2609E-08 8.9224E-09

Table 5 Maximum absolute
error of Example 4.2, when
β = 3

α E(3) E(4) E(5) E(6)

2 9.5756E-04 1.8818E-04 1.5094E-05 3.0380E-06

3 9.2274E-04 2.1914E-04 1.5820E-05 3.5052E-06

5 7.4929E-04 2.3771E-04 2.8953E-05 3.7577E-06

Table 6 Maximum absolute
error of Example 4.2, when
β = 3

α E(7) E(8) E(9) E(10)

2 3.1337E-07 4.7824E-08 6.4671E-09 1.1272E-09

3 3.2712E-07 6.5307E-08 6.9580E-09 1.3277E-09

5 6.2457E-07 6.9262E-08 1.2991E-08 1.3861E-09

Example 4.3 Consider the following singular derivative-dependent two point bound-
ary value problem

(
xαy′)′ = xα+β−2β

(
xy′ + y(α + β − 1)

)
, 0 < x ≤ 1,

lim
x→0+xαy′(x) = 0, y(1) = e,

⎫
⎬

⎭
(4.10)

with exact solution y(x) = exβ
.

According to proposed scheme (2.9), we have p(x) = xα, q(x) = xα+β−2, a =
1, b = 0, and c = e. Consequently

y0 = e,

yn+1 =
∫ 1

0
G(x, ξ)ξα+β−2An(y0, y1, . . . , yn)dξ, n ≥ 1,

⎫
⎪⎬

⎪⎭
(4.11)

where,

An = β
(
xy′

n + yn(α + β − 1)
)
, (4.12)
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Table 7 Maximum absolute
error of Example 4.3, when
β = 1

α E(2) E(4) E(6) E(8)

2 1.6213E-01 6.5357E-03 1.0272E-04 9.3045E-07

3 1.9210E-01 7.4353E-03 1.0471E-04 9.5041E-07

5 1.3160E-01 3.4038E-03 4.0813E-05 2.8239E-07

Table 8 Maximum absolute
error of Example 4.3, when
β = 1

α E(10) E(12) E(14) E(16)

2 5.4823E-09 2.2696E-11 6.9500E-14 2.2204E-16

3 5.5821E-09 2.3697E-11 6.9499E-14 2.2204E-16

5 1.2720E-09 4.0272E-12 8.8817E-15 2.2204E-16

and the Green’s function is

G(x, ξ) =
⎧
⎨

⎩

1−ξ1−α

1−α
+ b

a
, 0 < x ≤ ξ ≤ 1,

1−x1−α

1−α
+ b

a
, 0 < ξ ≤ x ≤ 1.

(4.13)

For α = 2, β = 1, we use (4.11), (4.13) and (4.12), to obtain the components yn:

y0 = 2.71828,

y1 = −2.71828 + 2.71828x,

y2 = 1.35914 − 2.71828x + 1.35914x2,

y3 = −0.453047 + 1.35914x − 1.35914x2 + 0.453047x3,

...

The maximum absolute error E(n), for n = 2,4,6,8,10,12,14,16 is listed in Ta-
bles 7, 8, 9 and 10 for various values of α and β . From these numerical results, we
see that our approximate series solution converges to exact solution as the number of
iterations increase.

For α = 2, β = 4, using (4.11), the components yn are obtained as:

y0 = 2.71828,

y1 = −2.71828 + 2.71828x4,

y2 = 1.35914 − 2.71828x4 + 1.35914x8,

y3 = −0.453047 + 1.35914x4 − 1.35914x8 + 0.453047x12,

...
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Table 9 Maximum absolute
error of Example 4.3, when
β = 4

α E(2) E(4) E(6) E(8)

2 3.5904E-01 1.9346E-02 4.7839E-04 6.7985E-06

3 3.5754E-01 1.9205E-02 4.7347E-04 6.7082E-06

5 3.5109E-01 1.8606E-02 4.5265E-04 6.3290E-06

Table 10 Maximum absolute
error of Example 4.3, when
β = 4

α E(10) E(12) E(14) E(16)

2 6.2762E-08 4.0677E-10 1.9531E-12 7.3274E-15

3 6.1741E-08 3.9895E-10 1.9098E-12 7.1054E-15

5 5.7490E-08 3.6663E-10 1.7321E-12 6.2172E-15

5 Conclusion

In this work, we have shown the application of the proposed recursive scheme for
solving nonlinear derivative-dependent singular boundary value problems. The accu-
racy of the computed numerical results measured using the maximum absolute error
or absolute residual error shows that the proposed method is suitable for such singular
boundary value problems. It provides a direct recursive scheme to obtain a sequence
of approximate solutions whose limiting value is the exact solution of the problem.
Unlike the existing methods such as ADM or MDAM, the proposed method does not
require the computation of undermined coefficients. In addition, the proposed scheme
does not require any linearization or discretization of variables. The proposed method
is capable for solving a variety of nonlinear boundary value problems whereas the
other methods like VIM suffers. The proposed method requires less computational
work as compared to other existing methods for solving such equations. The approx-
imate solution of the examples are presented and only a few terms are required to
obtain accurate approximations for solutions. The convergence and error estimation
of the proposed recursive scheme are also discussed. Finally, it is pointed out that the
procedure described in this paper can be extended for higher order boundary value
problems.
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Appendix

We construct the Green’s function for singular boundary value problem whenever the
assumptions (E1)–(E3) hold. To construct Green’s function we consider following
the problem as:

(
p(x)y(x)′

)′ = q(x)F (x), (6.1)
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lim
x→0+p(x)y′(x) = 0, ay(1) + by′(1) = 0, (6.2)

where F is continuous. Integrating above Eq. (6.1) from 0 to x and using
limx→0+ p(x)y′(x) = 0, we have

y′(x) = 1

p(x)

∫ x

0
q(ξ)F (ξ)dξ. (6.3)

Again integrating from x to 1, then changing the order of integration, and applying
the boundary conditions, we obtain

y(x) = b

ap(1)

∫ 1

0
q(ξ)F (ξ)dξ +

∫ 1

0

(∫ 1

ξ

dx

p(x)

)
q(ξ)F (ξ)dξ

−
∫ x

0

(∫ x

ξ

dx

p(x)

)
q(s)F (s)dξ, ξ > 0,

y(x) = b

ap(1)

∫ x

0
q(ξ)F (ξ)dξ + b

ap(1)

∫ 1

x

q(ξ)F (ξ)dξ

+
∫ x

0

(∫ 1

ξ

dx

p(x)

)
q(ξ)F (ξ)dξ

+
∫ 1

x

(∫ 1

ξ

dx

p(x)

)
q(ξ)F (ξ)dξ −

∫ x

0

(∫ x

ξ

dx

p(x)

)
q(ξ)F (ξ)dξ, ξ > 0,

y(x) =
∫ x

0

(∫ 1

ξ

dx

p(x)
−

∫ x

ξ

dx

p(x)
+ b

ap(1)

)
q(ξ)F (ξ)dξ

+
∫ 1

x

(∫ 1

ξ

dx

p(x)
+ b

ap(1)

)
q(ξ)F (ξ)dξ, ξ > 0.

Finally, we obtain

y(x) =
∫ 1

0
q(ξ)G(x, ξ)F (ξ)dξ,

where the Green’s function G(x, ξ) is given by

G(x, ξ) =
⎧
⎨

⎩

∫ 1
ξ

dx
p(x)

+ b
ap(1)

, 0 < x ≤ ξ ≤ 1,

∫ 1
ξ

dx
p(x)

− ∫ x

ξ
dx

p(x)
+ b

ap(1)
, 0 < ξ ≤ x ≤ 1.

Gx(x, ξ) =
⎧
⎨

⎩

0, 0 < x ≤ ξ ≤ 1,

− 1
p(x)

, 0 < ξ ≤ x ≤ 1.
(6.4)

It is easy to see that the function G(x, ξ) satisfies all the properties of Green’s func-
tion. Hence G(x, ξ) is the Green’s function for above boundary value problem.
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