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Abstract We use a new concept of weighted ergodic function based on the measure
theory to investigate the existence and uniqueness of weighted pseudo almost periodic
solution for a class of partial functional differential equations with infinite delay in
fading memory spaces. We illustrate our theoretical results by studying some Lotka-
Voltera reaction-diffusion systems with infinite delay.
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1 Introduction

In the last decade, many authors have produced extensive literature on the theory of
almost periodicity and its application to differential equations and partial functional
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differential equations. More details can be found in the books of Corduneanu [10],
Fink [20] and the papers [5–7, 11, 13, 14, 16, 17, 24, 26–28]. The notion of weighted
pseudo almost periodic function was introduced in 2006 by Diagana [12] (see also
[15, 29]). He introduced basic properties of weighted pseudo almost periodic function
and investigated the existence and uniqueness of weighted pseudo almost periodic
mild solutions for some abstract differential equations.

Recently, Blot, Cieutat and Ezzinbi [15] used some results of the measure theory
to establish a new concept of ergodic and weighted pseudo almost periodic func-
tions. They developed some results like completeness and composition theorems to
investigate fundamental notions on weighted pseudo almost periodic functions.

First, let us explain the meaning of the notion of weighted pseudo almost peri-
odic function introduced by Diagana [12]. Let ρ be a positive and locally integrable
function on R. A continuous function f : R → Y (here Y is Banach space) is said
ρ-pseudo almost periodic if

f = g + φ,

where g is an almost periodic function and φ is an ergodic function with respect to
ρ, in the sense that

lim
r→∞

1

m(r,ρ)

∫ r

−r

∣∣φ(t)
∣∣ρ(t) dt = 0, with m(r,ρ) =

∫ r

−r

ρ(t) dt.

Second, the new notion of weighted pseudo almost periodic function introduced by
Blot, Cieutat and Ezzinbi [15], generalize the concept of Diagana [12]. Let us con-
sider a positive measure μ on R. We say that a function f is μ-pseudo almost periodic
if

f = g + φ,

where g is almost periodic and φ is μ-ergodic in the sense that

lim
r→∞

1

μ([−r, r])
∫

[−r,r]
∣∣φ(t)

∣∣dμ(t) = 0,

where μ([−r, r]) is the measure of the interval [−r, r] (more details about this notion
can be found in [9]). One can observe that a ρ-pseudo almost periodic function is μ-
pseudo almost periodic, where the measure μ is absolutely continuous with respect
to the Lebesgue measure and its Radon-Nikodym derivative is ρ:

dμ(t)

dt
= ρ(t).

In this work, we investigate the existence and uniqueness of μ-pseudo almost pe-
riodic solutions for the following partial functional differential equation with infinite
delay

d

dt
x(t) = Ax(t) + L(xt ) + f (t) for t ∈ R, (1.1)
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where A : D(A) → X is a linear operator (not necessarily densely defined) on a Ba-
nach space (X, |.|). For every t ∈ R, the history function xt ∈ B is defined by

xt (θ) = x(t + θ) for θ ∈ (−∞,0],

where B is a normed linear space of functions mapping (−∞,0] into X and satisfying
some fundamental axioms given in [22]. L is a bounded linear operator from B to X,
and f is a given continuous X-valued function on R.

We assume that the unbounded linear operator A satisfies the following Hille-
Yosida condition.

(H0) There exist M0 ≥ 1, ω0 ∈ R such that (ω0,+∞) ⊂ ρ(A) and

∣∣(λI − A)−n
∣∣ ≤ M0(λ − ω0)

−n for n ∈ N and λ > ω0,

where ρ(A) is the resolvent set of A.

Without loss of generality, we can assume that M0 = 1. Otherwise, we can renorm
the space X with an equivalent norm such that M0 = 1.

The organization of this paper is as follows. In Sect. 2, we recall some fundamen-
tal new results about the notion of μ-pseudo almost periodic function. In Sect. 3, we
give tools that we will need in the sequel. In particular, we investigate a variation of
constants formula associated to (1.1), and we establish a generalized spectral decom-
position technique to solve it. In Sect. 4, we give our main result. We prove existence
and uniqueness of μ-pseudo almost periodic mild solutions, in the hyperbolic case,
for (1.1). Section 5 is devoted to the study of existence and uniqueness of μ-pseudo
almost periodic mild solutions for nonlinear system associated to (1.1). In the last
section, we propose an application to some reaction-diffusion equation with infinite
delay.

2 Ergodic and μ-pseudo almost periodic functions under the light of measure
theory

Throughout this paper, X is a Banach space and BC(R,X) denotes the Banach space
of bounded continuous functions from R to X provided with the supremum norm

|f |∞ = sup
t∈R

∣∣f (t)
∣∣.

We denote by B the Lebesgue σ -field of R and by M the set of all positive measures
μ on B satisfying μ(R) = +∞ and μ([a, b]) < +∞ for all a, b ∈ R (a ≤ b). Let
μ ∈ M. We formulate the following hypotheses.

(H1) For all a, b, c ∈ R, such that 0 ≤ a < b ≤ c, there exist τ0 ≥ 0 and α0 > 0 such
that

|τ | ≥ τ0 =⇒ μ
(
(a + τ, b + τ)

) ≥ α0 μ
([τ, c + τ ]).
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(H2) For all τ ∈ R, there exist β > 0 and a bounded interval I such that

μ
({a + τ : a ∈ A}) ≤ βμ(A) when A ∈ B satisfies A ∩ I = ∅.

Then, we have the following result.

Lemma 2.1 [9] The property (H2) implies (H1).

Definition 2.2 [10] A continuous function f : R −→ X is said to be (in Bohr sense)
almost periodic, if for all ε > 0, there exists � > 0, such that for all α ∈ R, there exists
τ ∈ [α,α + �] with

sup
t∈R

∣∣f (t + τ) − f (t)
∣∣ < ε.

In the sequel AP(R,X) denotes the space of almost periodic X-valued functions.
It is well known that a continuous function f : R −→ X is almost periodic if and
only if the set {fτ : τ ∈ R} is relatively compact in BC(R,X), where the function fτ

is defined by fτ (s) = f (τ + s), for s ∈ R.

Proposition 2.3 [10] (AP(R,X), | · |∞) is a Banach space.

Definition 2.4 [9] Let μ ∈ M. A bounded continuous function f : R −→ X is said
to be μ-ergodic if

lim
r→+∞

1

μ([−r, r])
∫

[−r,r]
∣∣f (t)

∣∣dμ(t) = 0.

We denote by E (R,X,μ) the space of μ-ergodic bounded continuous functions.

Definition 2.5 [9] Let μ ∈ M. A continuous function f : R −→ X is said to be
μ-pseudo almost periodic if f can be written as

f = g + φ,

where g ∈ AP(R,X) and φ ∈ E (R,X,μ).

In the sequel, PAP(R,X,μ) denotes the space of μ-pseudo almost periodic func-
tions from R to X, it is endowed with the uniform norm topology.

Remark 2.6 A pseudo almost periodic function is μ-pseudo almost periodic, with μ

the Lebesgue measure.

Example 2.7 Let ρ be a nonnegative B-measurable function. Denote by μ the posi-
tive measure defined by

μ(A) =
∫

A

ρ(t) dt for A ∈ B,
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where dt denotes the Lebesgue measure on R. The function ρ is called the Radon-
Nikodym derivative of μ with respect to the Lebesgue measure on R. In this case,
μ ∈ M if and only if its Radon-Nikodym derivative ρ is locally Lebesgue-integrable
on R and satisfies ∫ +∞

−∞
ρ(t) dt = +∞.

Example 2.8 In [24], to study pseudo almost periodic solutions for a class of differen-
tial equations with piecewise constant argument, the authors considered the following
spaces

E0 =
{

f ∈ BC(R,X) : lim
r→+∞

1

2r

∫ r

−r

∣∣f (t)
∣∣dt = 0 and

lim
r→+∞

1

2N + 1

N∑
n=−N

∣∣f (n)
∣∣ = 0

}
,

E = {
f = g + φ : g ∈ AP(R,X) and φ ∈ E0

}
.

In [9], the authors proved that

E0 = E (R,X,μ) and E = PAP(R,X,μ),

for some measure μ ∈ M defined by

μ(A) = μ1(A) + μ2(A), for all A ∈ B,

where μ1 is the Lebesgue measure on (R, B) and μ2 the measure on (R, B) defined
by

μ2(A) =
{

card(A ∩ Z), A ∩ Z is finite,
∞, A ∩ Z is infinite.

In fact, we have for f ∈ BC(R,X),

1

μ([−r, r])
∫

[−r,r]
∣∣f (t)

∣∣dμ(t) = 1

2r + 2[r] + 1

(∫ r

−r

∣∣f (t)
∣∣dt +

[r]∑
k=−[r]

∣∣f (k)
∣∣
)

,

where [.] denotes the greatest integer function.
Then, one can prove the following equality (see [9])

1

μ([−r, r])
∫

[−r,r]
∣∣f (t)

∣∣dμ(t) = α(r)

(
1

2r

∫ r

−r

∣∣f (t)
∣∣dt

)

+ β(r)

(
1

2[r] + 1

[r]∑
k=−[r]

∣∣f (k)
∣∣
)

,
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where α(r) and β(r) ∈ [ 1
4 ,1], for all r ≥ 1. In that example, one can see that E0 =

E (R,X,μ) and E = PAP(R,X,μ).

Proposition 2.9 [9] Let μ ∈ M. Then, (E (R,X,μ), | · |∞) is a Banach space.

Theorem 2.10 [9] Let μ ∈ M satisfy (H1) and f ∈ PAP(R,X,μ) be such that

f = g + φ,

where g ∈ AP(R,X) and φ ∈ E (R,X,μ). Then,

{
g(t) : t ∈ R

} ⊂ {
f (t) : t ∈ R

}
(the closure of the range of f ).

Theorem 2.11 [9] Let μ ∈ M satisfy (H1). Then, the decomposition of a μ-
pseudo almost periodic function of the form f = g + φ, where g ∈ AP(R,X) and
φ ∈ E (R,X,μ), is unique.

Theorem 2.12 [9] Let μ ∈ M satisfy (H2). Then, PAP(R,X,μ) is invariant by
translation: f ∈ PAP(R,X,μ) implies fτ ∈ PAP(R,X,μ), for all τ ∈ R.

Theorem 2.13 [9] Let μ ∈ M satisfy (H1). Then, PAP(R,X,μ) is a Banach space.

Theorem 2.14 Let μ ∈ M satisfy (H2). If f ∈ PAP(R,X,μ) and G ∈ L1(R, L(X)),
then the convolution product f ∗ G defined by

(f ∗ G)(t) =
∫ ∞

−∞
G(s)f (t − s) ds for t ∈ R,

is also μ-pseudo almost periodic. In fact, if f ∈ AP(R,X) (respectively f ∈
E (R,X,μ)), then f ∗ G ∈ AP(R,X) (respectively f ∗ G ∈ E (R,X,μ)).

Let Y be a Banach space.

Definition 2.15 [9] A continuous function f : R × X −→ Y is said to be almost
periodic in t ∈ R uniformly with respect to x ∈ X, if for each compact set K in X

and for all ε > 0, there exists � > 0 such that for any α ∈ R, there exists τ ∈ [α,α +�]
such that

sup
t∈R

sup
x∈K

∣∣f (t + τ, x) − f (t, x)
∣∣ < ε.

Denote by APU(R × X,Y) the set of all such functions f : R × X −→ Y .

Definition 2.16 [9] Let μ ∈ M. A continuous function f : R×X −→ Y is said to be
μ-ergodic in t ∈ R uniformly with respect to x ∈ X, if the two following conditions
are satisfied:

(i) for all x ∈ X, f (., x) ∈ E (R, Y,μ),
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(ii) f is uniformly continuous on each compact set K in X with respect to the second
variable x.

Denote by E U(R × X,Y,μ) the set of all such functions.

Definition 2.17 [9] Let μ ∈ M. A continuous function f : R × X −→ Y is said to
be μ-pseudo almost periodic in t ∈ R uniformly with respect to x ∈ X, if f can be
written in the form

f = g + φ,

where g ∈ APU(R × X,Y) and φ ∈ E U(R × X,Y,μ).

PAPU(R × X,Y,μ) denotes the set of such functions.

Proposition 2.18 [9] Let μ ∈ M and f ∈ PAPU(R×X,Y,μ). We have the following
properties.

(i) For all x ∈ X, f (., x) ∈ PAP(R, Y,μ),
(ii) f is uniformly continuous on each compact set K in X with respect to the second

variable x.

Theorem 2.19 ([9] Composition theorem) Let μ ∈ M, f ∈ PAPU(R×X,Y,μ) and
x ∈ PAP(R,X,μ). Assume that for all bounded subset B of X, f is bounded on
R × B . Then, the function [t �→ f (t, x(t))] ∈ PAP(R, Y,μ).

3 Phase spaces, variation of constants formula and spectral decomposition

We use the axiomatic approach introduced in [22] (see also [19]) to define the phase
space B. We assume that (B,‖ · ‖) is a normed space of functions mapping (−∞,0]
into a Banach space X and satisfying the following fundamental axioms.

(A) There exist a positive constant N , a locally bounded function M(·) on [0,+∞)

and a continuous function K(·) on [0,+∞) such that if x : (−∞, a] → X is contin-
uous on [σ,a] with xσ ∈ B, for some σ < a, then for all t ∈ [σ,a],

(i) xt ∈ B,
(ii) t → xt is continuous with respect to ‖ · ‖ on [σ,a],

(iii) N |x(t)| ≤ ‖xt‖ ≤ K(t − σ) supσ≤s≤t |x(s)| + M(t − σ)‖xσ ‖.

(B) B is a Banach space.
As a consequence of axioms (A), we deduce the following result.

Lemma 3.1 [19] Let C00 := C00((−∞,0];X) be the space of continuous functions
mapping (−∞,0] into X with compact supports. Then, C00((−∞,0];X) ⊂ B. More
precisely, for a < 0, we have

‖ϕ‖ ≤ K(−a) sup
θ≤0

∣∣ϕ(θ)
∣∣,

for any ϕ ∈ C00((−∞,0];X) with the support included in [a,0].
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The following lemma is well known.

Lemma 3.2 [19] Assume that (H0) holds. Let A0 be the part of the operator A in
D(A), which is defined by

{
D(A0) = {

x ∈ D(A) : Ax ∈ D(A)
}
,

A0x = Ax.

Then, A0 generates a C0-semigroup (T0(t))t≥0 on D(A).

To Eq. (1.1), we associate the following Cauchy problem

{
d

dt
x(t) = Ax(t) + L(xt ) + f (t) for t ≥ σ,

xσ = φ ∈ B,
(3.1)

where f : [σ,∞) → X is continuous. The following results are taken from [2].

Definition 3.3 [2] Let φ ∈ B. A function u : R → X is called a mild solution of
Eq. (3.1) on R if the following conditions hold

(i) u is continuous on [σ,∞),
(ii) uσ = φ,

(iii)
∫ t

σ
u(s)ds ∈ D(A) for t ≥ σ ,

(iv) u(t) = φ(0) + A
∫ t

σ
u(s)ds + ∫ t

σ
L(us)ds + ∫ t

σ
f (s)ds for t ≥ σ .

Theorem 3.4 [2] Assume that (H0), (A), (B) hold and f : [σ,∞) → X is continu-
ous. Then, for all φ ∈ B such that φ(0) ∈ D(A), Eq. (3.1) has a unique mild solution
u = u(·, σ,φ,L,f ) on R which is given by

u(t) =
⎧⎨
⎩

T0(t − σ)φ(0) + limλ→+∞
∫ t

σ
T0(t − s)λR(λ,A)[L(us) + f (s)]ds

for t ≥ σ,

φ(t) for t ≤ σ.

where the operator R(λ,A) = (λI − A)−1 for λ large enough.

Let

BA := {
φ ∈ B : φ(0) ∈ D(A)

}
(3.2)

be the phase space corresponding to Eq. (3.1). We define, for t ≥ 0, the operator U(t)

by

U(t)φ = ut (·,0, φ,L,0) for φ ∈ BA,

where u(·, φ,L,0) is the mild solution of Eq. (3.1), with f = 0 and σ = 0.

Theorem 3.5 [2] Assume that (H0), (A) and (B) hold. Then (U(t))t≥0 is a C0-
semigroup on BA. That is
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(i) U(0) = Id ,
(ii) U(t + s) = U(t)U(s) for t, s ≥ 0,

(iii) for all φ ∈ BA, t �→ U(t)φ is continuous from [0,∞) to BA.

Moreover, (U(t))t ≥0 satisfies, for t ≥ 0 and φ ∈ BA, the translation property

(
U(t)φ

)
(θ) =

{
(U(t + θ)φ)(0) for t + θ ≥ 0,

φ(t + θ) for t + θ ≤ 0.

In order to give a variation-of-constant formula, we need to introduce the follow-
ing sequence of linear operators (B̃n)n∈N mapping X into B, defined for n > ω and
x ∈ X, by

(B̃nx)(θ) =
{

n(nθ + 1)R(n,A)x for − 1
n

≤ θ ≤ 0,

0 for θ < − 1
n
.

For each x ∈ X and n > ω, the function B̃nx belongs to C00((−∞,0];X) with the
support included in [−1,0]. By Lemma 3.1, we deduce that

|B̃nx| ≤ ÑK(1)|x| for x ∈ X and n > ω,

where

Ñ = sup
{
λ
∣∣R(λ,A)

∣∣ : λ > ω
}
.

The variation of constants formula is the principal working tools in partial functional
differential equations, the qualitative analysis of solutions is based on that formula.
In literature, we have many works dealing with formula and using many approaches
based on sun-star theory [18], integrated semigroups and operator theory [1, 3, 21,
22, 25] and [23].

In the following result, we have developed a new variation of constants formula.

Theorem 3.6 [4] Assume that (H0) holds and f : [σ,∞) → X is continuous. Then,
for all ϕ ∈ BA, the mild solution u(., σ,ϕ,L,f ) of Eq. (3.1) satisfies the following
variation-of-constants formula

ut (., σ,ϕ,L,f ) = U(t − σ)ϕ + lim
n→∞

∫ t

σ

U(t − s)B̃nf (s)ds, for t ≥ σ. (3.3)

Moreover, for any T > σ , the limit in (3.3) exists uniformly for t ∈ [σ,T ].
Note that the semigroup (U(t))t≥0 is acting on the phase space BA and we cannot

put the limit inside of the integral, since the limit inside does not exist, more details
can be found in [4].

We suppose the following axiom.

(C) If a uniformly bounded sequence (ϕn)n in C00((−∞,0];X) converges to a func-
tion ϕ compactly in (−∞,0], then ϕ is in B and ‖ϕn − ϕ‖ → 0 as n → ∞.

Let (S0(t))t≥0 be the strongly continuous C0-semigroup defined on the subspace

B0 = {
φ ∈ B : φ(0) = 0

}
,
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by

(
S0(t)φ

)
(θ) =

{
φ(t + θ) for t + θ ≤ 0,

0 for t + θ ≥ 0.

Definition 3.7 Assume that the space B satisfies the axioms (A), (B) and (C). B is
said to be a fading memory space, if for all φ ∈ B0,

S0(t)φ −→
t→∞ 0 in B.

Moreover, B is said to be a uniform fading memory space, if
∥∥S0(t)

∥∥ −→
t→∞ 0.

The following results give some properties of fading memory spaces.

Lemma 3.8 [22] The following statements hold.

(i) If B is a fading memory space, then the functions K(·) and M(·) in the axiom
(A) can be chosen to be constants.

(ii) If B is a uniform fading memory space, then the functions K(·) and M(·) can be
chosen such that K(·) is constant and M(t) → 0 as t → ∞.

Proposition 3.9 [22] If B is a fading memory space, then the space B C((−∞,0];X)

of all bounded and continuous X-valued functions on (−∞,0], endowed with the
uniform norm topology, is continuously embedding in B.

In order to study the qualitative behavior of the C0-semigroup (U(t))t≥0, we sup-
pose the following property.

(H3) T0(t) is compact on D(A), for each t > 0.

Let V be a bounded subset of a Banach space Y . The Kuratowski measure of
noncompactness α(V ) of V is defined by

α(V ) = inf

{
d > 0: there exists a finite number of sets V1, . . . , Vn with
diam(Vi) ≤ d such that V ⊆ ⋃n

i=1 Vi

}
.

Moreover, for a bounded linear operator P on Y , we define |P |α by

|P |α = inf
{
k > 0 : α(

P(V )
) ≤ kα(V ) for any bounded set V of Y

}
.

For the C0-semigroup (U(t))t≥0, its essential growth bound ωess(U) is given by

ωess(U) = inf
{
ω ∈ R : sup e−ωt

∥∥U(t)
∥∥

α
< ∞}

.

It is well known that

ωess(U) = lim
t→∞

1

t
log

∥∥U(t)
∥∥

α
.

We have the following fundamental result.
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Theorem 3.10 [8] Assume that (H0), (H3) hold and B is a uniform fading memory
space. Then,

ωess(U) < 0.

Definition 3.11 Let C be a densely defined operator on Y . The essential spectrum of
C denoted by σess(C) is the set of λ ∈ σ(C) such that one of the following conditions
holds.

(i) Im(λI − C) is not closed,
(ii) the generalized eigenspace Mλ(C) = ⋃

k≥1 Ker(λI − C)k is of infinite dimen-
sion,

(iii) λ is a limit point of σ(C) \ {λ}.

The essential radius of any bounded operator T is defined by

ress(T ) = sup
{|λ| : λ ∈ σess(T )

}
.

In the sequel, AU denotes the infinitesimal generator of the C0-semigroup
(U(t))t≥0.

Theorem 3.12 [4] Assume that (H0), (H3) hold and B is a uniform fading memory
space. Then σ+(AU) = {λ ∈ σ(AU) : Re(λ) ≥ 0} is a finite set of the eigenvalues of
AU which are not in the essential spectrum. More precisely, λ ∈ σ+(AU) if and only
if there exists x ∈ D(A)\{0} solving the following characteristic equation

�(λ)x := λx − Ax − L
(
eλ·x

) = 0.

Definition 3.13 The C0-semigroup (U(t))t≥0 is hyperbolic if

σ(AU) ∩ iR = ∅.

Since ωess(U) < 0, then we get the following result on the spectral decomposition
of the phase space:

BA := {
φ ∈ B : φ(0) ∈ D(A)

}
.

Theorem 3.14 [4] Assume that (H0), (H3) hold and B is a uniform fading memory
space. If the C0-semigroup (U(t))t≥0 is hyperbolic then the space BA is decomposed
as a direct sum BA = S ⊕ U of two U(t)-invariant closed subspaces S and U such
that the restricted C0-semigroup on U is a group and there exist positive constants M

and c such that
∥∥U(t)ϕ

∥∥ ≤ Me−ct‖ϕ‖ for t ≥ 0 and ϕ ∈ S,∥∥U(t)ϕ
∥∥ ≤ Mect‖ϕ‖ for t ≤ 0 and ϕ ∈ U .

Consequently, we deduce the following interesting result on the existence and
uniqueness of bounded mild solutions of Eq. (1.1).



158 M. Adimy et al.

Theorem 3.15 [19] Assume that (H0), (H3) hold, B is a uniform fading mem-
ory space and f ∈ BC(R,X). If the C0-semigroup (U(t))t≥0 is hyperbolic, then,
Eq. (1.1) has a unique bounded mild solution y on R such that

yt = lim
n→+∞

∫ t

−∞
U S (t − s)Π S (

B̃nf (s)
)
ds

+ lim
n→+∞

∫ t

+∞
U U (t − s)Π U (

B̃nf (s)
)
ds for t ∈ R, (3.4)

where Π S , Π U denote respectively the projections on S and U , and U S = Π S (U),
U U = Π U (U).

4 Existence and uniqueness of μ-pseudo almost periodic solution

In this section, we give our main result: if the input function f is μ-pseudo almost
periodic then, (1.1) has a unique μ-pseudo almost periodic mild solution.

Theorem 4.1 Assume that (H0), (H2), (H3) hold and B is a uniform fading memory
space. If the C0-semigroup (U(t))t≥0 is hyperbolic and the function f is μ-pseudo
almost periodic, then, Eq. (1.1) has one and only one μ-pseudo almost periodic mild
solution y such that the following formula holds

yt = lim
n→+∞

∫ t

−∞
U S (t − s)Π S (

B̃nf (s)
)
ds

+ lim
n→+∞

∫ t

+∞
U U (t − s)Π U (

B̃nf (s)
)
ds for t ∈ R.

Proof By the help of Theorem 3.15, Eq. (1.1) has one and only one bounded mild
solution on R. Moreover, this solution is given by (3.4). Since the function f is μ-
pseudo almost periodic, then it is decomposed as follows

f = g + φ,

where g ∈ AP(R,X) and φ ∈ E (R,X,μ). Consequently, we can define the operators
QS and QU from BC(R,X) to BC(R, B), for e ∈ BC(R,X) and t ∈ R, by

⎧⎨
⎩

(QSe)(t) := limn→+∞
∫ t

−∞ U S (t − τ) Π S (B̃nf (s)) dτ,

(QUe)(t) := limn→+∞
∫ t

−∞ U U (t − τ) Π U (B̃nf (s)) dτ.

Since QS and QU are bounded linear operators from BC(R,X) to BC(R, B), then
the unique bounded mild solution x of (1.1) such that

xt = (
QSf

)
(t) + (

QUf
)
(t).



Ergodic and weighted pseudo-almost periodic solutions 159

We will show that both QSf and QUf are μ-pseudo almost periodic functions. In
fact, we have

QSf = QSg + QSφ and QUf = QUg + QUφ.

On the other hand, we have (QSg)τ = (QSgτ ), for τ ∈ R. By using the continu-
ity of the operator QS , we deduce that QS({gτ : τ ∈ R}) is relatively compact on
BC(R, B). This implies that QSg ∈ AP(R, B). Using a same argument as above,
we can prove that QUg ∈ AP(R, B). It remains to prove that QSφ ∈ E (R,X,μ) and
QUφ ∈ E (R,X,μ). By using the Hille-Yosida condition on A, one can find a positive
constant K̃ such that

∥∥(
QSφ

)
(t)

∥∥ ≤ K̃

∫ t

−∞
e−c(t−τ)

∣∣φ(τ)
∣∣dτ. (4.1)

Let G : R −→ R be the function defined by

G(t) = e−ct for t ≥ 0 and G(t) = 0 for t < 0.

Then, we have

∫ t

−∞
e−c(t−τ)

∣∣φ(τ)
∣∣dτ =

∫ ∞

0
e−cτ

∣∣φ(t − τ)
∣∣dτ =

∫ ∞

−∞
G(τ)

∣∣φ(t − τ)
∣∣dτ. (4.2)

Since t �→ |φ(t)| ∈ E (R,R,μ), we deduce from (4.2) and Theorem 2.14 that

t �→
∫ t

−∞
e−c(t−τ)

∣∣φ(τ)
∣∣dτ ∈ E (R,R,μ).

Then, we obtain from (4.1) that QSφ ∈ E (R, B,μ). Arguing as above, we prove also
that QUφ ∈ E (R, B,μ). �

5 Composition theorem and nonlinear functional differential equation

Let r > 0. We use the exponential dichotomy to study the existence of a unique μ-
pseudo almost periodic mild solution of the following nonlinear equation

d

dt
u(t) = Au(t) + L(ut ) + g

(
t, u(t − r)

)
for t ∈ R. (5.1)

We make the following assumptions.

(H4) g : R × X → X is continuous and Lipschitzian with respect to the second ar-
gument: there exists σ > 0 such that

∣∣g(t, u1) − g(t, u2)
∣∣ ≤ σ |u1 − u2| for t ∈ R and u1, u2 ∈ X.

(H5) g ∈ PAPU(R × X,X,μ).
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Theorem 5.1 Assume that (H0), (H2), (H3), (H4), (H5), hold and the C0-semigroup
(U(t))t≥0 is hyperbolic. Then, there exists σ0 > 0 such that for σ < σ0, Eq. (5.1) has
a unique μ-pseudo almost periodic mild solution.

Proof Let v ∈ PAP(R,X,μ). Assumption (H5) and Theorem 2.19 imply that the
function t → g(t, v(t − r)) is in PAP(R,X,μ). Consider the equation

d

dt
u(t) = Au(t) + L(ut ) + g

(
t, v(t − r)

)
for t ∈ R. (5.2)

Applying Theorem 4.1, we deduce that Eq. (5.2) has a unique μ-pseudo almost peri-
odic mild solution K̃v which is defined, for t ∈ R, by the following formula

[
lim

n→+∞

∫ t

−∞
U S (t − s)Π S (

B̃ng
(
s, v(s − r)

))
ds

+ lim
n→+∞

∫ t

+∞
U U (t − s)Π U (

B̃ng
(
s, v(s − r)

))
ds

]
(0).

The operator K̃ is well defined on PAP(R,X,μ). Moreover, by using the assumption
(H4) and the fact that the C0-semigroup (U(t))t≥0 is hyperbolic, we deduce that there
exists a positive constant μ0 such that

sup
t∈R

∣∣K̃(v1)(t) − K̃(v2)(t)
∣∣ ≤ (σμ0) sup

t∈R

∣∣v1(t) − v2(t)
∣∣.

If we choose σ < 1
μ0

, then the mapping v → K̃(v) is a strict contraction form

PAP(R,X,μ) to PAP(R,X,μ). Since by Theorem 2.13, we deduce that K̃ has a
unique fixed point in PAP(R,X,μ). Then, Eq. (5.1) has a unique μ-pseudo almost
periodic mild solution. �

In the sequel, we study the existence of μ-pseudo almost periodic mild solution in
a special case when the Lipschitz coefficient of g is time-dependent. More precisely,
we make the following assumption on the nonlinear function g.

(H6) g : R × X → X is continuous and

∣∣g(t, u1) − g(t, u2)
∣∣ ≤ σ(t)|u1 − u2| for t ∈ R and u1, u2 ∈ X,

where σ ∈ Lp(R,R
+) for some 1 ≤ p < ∞.

We also need the following assumption.

(H7) For all bounded subsets B of X, g is bounded on R × B .

Theorem 5.2 Assume that (H0), (H2), (H3), (H5), (H6), (H7) hold. Moreover, as-
sume that the C0-semigroup (U(t))t≥0 is hyperbolic and the unstable space is re-
duced to zero. Then, Eq. (5.1) has a unique μ-pseudo almost periodic mild solution.
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Proof (i) First case: σ ∈ L1(R,R
+).

Let v ∈ PAP(R,X,μ). Then, Theorem 2.19 implies that the function t →
g(t, v(t − r)) is in PAP(R,X,μ). Consider now the equation

d

dt
u(t) = Au(t) + L(ut ) + g

(
t, v(t − r)

)
for t ∈ R. (5.3)

Since the unstable space is reduced to {0}, then by Theorem 4.1 we deduce that
Eq. (5.3) has a unique μ-pseudo almost periodic mild solution denoted by K̃y. In
fact, we have

K̃y(t) =
(

lim
n→+∞

∫ t

−∞
U S (t − s)Π S (

B̃ng
(
s, v(s − r)

))
ds

)
(0) for t ∈ R.

The operator K̃ is well defined on PAP(R,X,μ). Let v1, v2 ∈ PAP(R,X,μ). Then,
for some positive constant η, we have

∣∣K̃(v1)(t) − K̃(v2)(t)
∣∣ ≤ η

∫ t

−∞
e−c(t−s)σ (s)

∣∣v1(s) − v2(s)
∣∣ds

and

∣∣K̃(v1)(t) − K̃(v2)(t)
∣∣ ≤ η

∫ t

−∞
σ(s)ds|v1 − v2|.

Therefore,

∣∣K̃2(v1)(t) − K̃2(v2)(t)
∣∣ ≤ η2

∫ t

−∞
σ(s)

∫ s

−∞
σ(τ)dτds|v1 − v2|

= η2

2

(∫ t

−∞
σ(s)ds

)2

|v1 − v2|.

Consequently, for all n ≥ 1 we have

∣∣K̃n(v1)(t) − K̃n(v2)(t)
∣∣ ≤ ηn

n!
(∫ t

−∞
σ(s)ds

)n

|v1 − v2|.

We choose n such that

ηn

n!
(∫ +∞

−∞
σ(s)ds

)n

< 1.

So, K̃n is a strict contraction in PAP(R,X,μ). Then, it has a unique fixed point. This
is also a fixed point of the operator K̃ . Hence, Eq. (5.1) has a unique μ-pseudo almost
periodic mild solution.

(ii) Second case: σ ∈ Lp(R,R
+), for p > 1.

We have to renorm the space PAP(R,X,μ) with the following equivalent norm

|v|c = sup
t∈R

e−cλ(t)
∣∣v(t)

∣∣ with c > 0
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and

λ(t) =
∫ t

−∞
σp(s)ds for t ∈ R.

It follows that

|K̃(v1)(t) − K̃(v2)(t)| ≤ η

(∫ t

−∞
e−c(t−s)ecλ(s)σ (s)ds

)
|v1 − v2|c.

Using the Holder inequality, we obtain for 1
p

+ 1
q

= 1 that

∫ t

−∞
e−c(t−s)ecλ(s)σ (s)ds ≤

(∫ t

−∞
e−qc(t−s)ds

) 1
q
(∫ t

−∞
ecpλ(s)σp(s)ds

) 1
p

= 1

(qc)
1
q

1

(pc)
1
p

(∫ t

−∞
cpecpλ(s)λ′(s)ds

) 1
p

= 1

(qc)
1
q

1

(pc)
1
p

ecλ(t).

It follows that

|K̃v1 − K̃v2|c ≤ η

(
1

(qc)
1
q

1

(pc)
1
p

)
|v1 − v2|c.

If we choose c such that

η

(
1

(qc)
1
q

1

(pc)
1
p

)
< 1,

then K̃ is a strict contraction in PAP(R,X,μ) and it has a unique fixed point. We
conclude that Eq. (5.1) has a unique μ-pseudo almost periodic mild solution. �

6 Example

To illustrate our previous results, we consider the following Lotka-Volterra model
with diffusion and infinite delay

⎧⎪⎪⎨
⎪⎪⎩

∂
∂t

v(t, ξ) = ∂2

∂ξ2 v(t, ξ) + ∫ 0
−∞ η(θ)v(t + θ, ξ)dθ + σ(t)F (ξ)

for t ∈ R and 0 ≤ ξ ≤ π,

v(t,0) = v(t,π) = 0 for t ∈ R

(6.1)

where η is a positive function on (−∞,0] and σ : R → R is μ-pseudo almost pe-
riodic for some positive measure μ in M satisfying (H2). F : [0,π] → R is a
continuous function. Let X = C([0,π];R) be the space of continuous functions
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from [0,π] to R endowed with the uniform norm topology. Consider the operator
A : D(A) ⊂ X → X defined by

{
D(A) = {z ∈ C2([0,π];R) : z(0) = z(π) = 0},
Az = z′′.

Lemma 6.1 [4] The operator A satisfies the Hille-Yosida condition on X.

On the other hand, one can see that

D(A) = {
ψ ∈ C

([0,π];R
) : ψ(0) = ψ(π) = 0

}
.

Let γ > 0. We define the following space

B = Cγ =
{
φ ∈ C

(
(−∞,0];X) : lim

θ→−∞ eγ θφ(θ) exists in X
}

provided with the norm

|φ|γ = sup
−∞<θ≤0

eγ θ
∣∣φ(θ)

∣∣, for φ ∈ Cγ .

Lemma 6.2 [22] The space Cγ satisfies the axioms (A) and (B). Moreover, Cγ is a
uniform fading memory space.

We add the following assumption.

(E1) η(·)e−γ · is integrable on (−∞,0].
Define {

(L(φ))(ξ) = ∫ 0
−∞η(θ)φ(θ)(ξ)dθ for ξ ∈ [0,π] and φ ∈ B,

f (t)(ξ) = σ(t)F (ξ) for t ∈ R and ξ ∈ [0,π].
Assumption (E1) implies that L is a bounded linear operator from B to X. Further-
more, f : R → X is μ-pseudo almost periodic function. We put

x(t)(ξ) = v(t, ξ) for t ∈ R and ξ ∈ [0,π].
Then, Eq. (6.1) takes the following abstract form

d

dt
x(t) = Ax(t) + L(xt ) + f (t) for t ∈ R. (6.2)

The part A0 of the operator A in D(A) is given by
{

D(A0) = {z ∈ C2([0,π];R) : z(0) = z(π) = z′′(0) = z′′(π) = 0},
A0z = z′′.

Then, it is well known that A0 generates a compact C0-semigroup on D(A). In
order to prove the existence and uniqueness of μ-pseudo almost periodic solution
of Eq. (6.2) under the hyperbolicity condition, we make the following assumption.
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(E2)
∫ 0
−∞η(θ)dθ < 1.

Theorem 6.3 Assume that (E1) and (E2) are satisfied. Then, the C0-semigroup so-
lution of (6.2) with f = 0 is hyperbolic, that is, there exist M ≥ 1 and ω > 0 such
that ∥∥U(t)

∥∥ ≤ Me−ωt for t ≥ 0.

Proof By Theorem 3.12, it suffices to show that σ+(AU) = ∅. We proceed by con-
tradiction and we assume that there exists λ ∈ σ+(AU). Then, there exists ϑ ∈
D(A)\{0} such that �(λ)ϑ = 0. This is equivalent to

(
λ − A −

∫ 0

−∞
η(θ)eλθdθ

)
ϑ = 0. (6.3)

On the other hand, the spectrum σ(A) is reduced to the point spectrum σp(A) and it is
given by σp(A) = {−n2 : n ∈ N

∗}. Then, λ is a solution of the characteristic equation
(6.3) with Re(λ) ≥ 0 if and only if λ satisfies

λ −
∫ 0

−∞
η(θ)eλθdθ = −n2 for some n ∈ N

∗.

It follows that

Re(λ) =
∫ 0

−∞
η(θ)eRe(λ)θ cos

(
Im(λ)θ

)
dθ − n2

≤
∫ 0

−∞
η(θ)dθ − n2.

Since
∫ 0
−∞ η(θ)dθ < 1, then a contradiction is obtained with the fact that Re(λ) ≥ 0.

Consequently, the C0-semigroup solution associated to (6.2) with f = 0 is hyper-
bolic. �

Consequently, we have the following result.

Proposition 6.4 Equation (6.2) has a unique μ-pseudo almost periodic mild solu-
tion.
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