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Abstract We establish some new criteria for the oscillation of fourth order nonlinear
dynamic equations on a time scale. We investigate the case of strongly superlinear and
the case of strongly sublinear equations subject to various conditions. Some examples
are given here to illustrate our main results.
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1 Introduction

This paper deals with the oscillatory behavior of solutions of fourth order nonlinear
dynamic equations of the form

(
ax�2)�2

(t) + f
(
t, xσ (t)

) = 0, t ≥ t0 (1.1)
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subject to the following conditions:

(i) a is a positive real-valued rd-continuous function satisfying
∫ ∞

t0

σ(s)

a(s)
�s < ∞. (1.2)

(ii) f : [t0,∞) × R → R is continuous satisfying

sgnf (t, x) = sgnx and f (t, x) ≤ f (t, y), x ≤ y, t ≥ t0, (1.3)

where t ≥ t0 denotes time scale interval [t0,+∞]∩ T on a time scale T through-
out this paper.

By a solution of Eq. (1.1), we mean a nontrivial real-valued function x satisfying
Eq. (1.1) for t ≥ tx ≥ t0. A solution x of Eq. (1.1) is called oscillatory if it in nei-
ther eventually positive nor eventually negative; otherwise it is called nonoscillatory.
Equation (1.1) is called oscillatory if all its solution are oscillatory.

Recently, there has been an increasing interest in studying the oscillatory behavior
of first, second, third and higher order dynamic equations on time scales, see [1–6].
In [7], the oscillation of fourth order nonlinear dynamic equations

(
a(t)

(
b(t)x�(t)

)�)�2 + f
(
t, xσ (t)

) = 0, (1.4)

and
(
a(t)

(
b(t)

(
x(t) + p(t)x(t − δ)

)�)�)�2 + f
(
t, xσ (t − δ)

) = 0 (1.5)

are considered under conditions
∫ ∞

t0

1

a(t)
�t =

∫ ∞

t0

1

b(t)
�t =

∫ ∞

t0

t

a(t)
�t = ∞. (1.6)

With respect to dynamic equations on time scales, it is fairly new topic and for general
basic ideas and background, we refer to [8, 9].

To the best of our knowledge, there is no results regarding the oscillation of
Eq. (1.1) with condition (1.2). Therefore, our main goal of this paper is to establish
some new criteria for the oscillation of Eq. (1.1) under condition (1.2).

The obtained results extend our earlier result in [2] from second to fourth order.

2 Preliminaries

A time scale T is an arbitrary nonempty closed subset of the real numbers R. Since
we are interested in oscillatory behavior, we suppose that the time scale under con-
sideration is unbounded above. The forward jump operator σ : T → T is defined by
σ(t) = inf{s ∈ T : s > t}. For a function f : T → R, we write f σ = f ◦ σ and f �

represents the delta derivative of the function f as defined for example in [8]. For the
definition of rd-continuity and further details, we refer to [8].

Besides the usual properties of the time scale integrals, we require in this paper
only the use of chain rule ([8], Theorem 1.90)

(x1−α)
�

1 − α
= x�

∫ 1

0

[
hxσ + (1 − h)x

]−α
dh, (2.1)
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where α > 0 and x is such that the right-hand side of (2.1) is well defined, and the
integration by parts ([8], Theorem 1.77)

∫ b

a

f
(
σ(t)

)
g�(t)�t = (fg)(b) − (fg)(a) −

∫ b

a

f �(t)g(t)�t, (2.2)

where a, b ∈ T and f,g ∈ Crd .
One consequence of (2.1) that will be used in the proof of our results throughout

this paper is as follows (see [2], Lemma 2.1]).

Lemma 2.1 Suppose |y|� > 0 on [t0,∞) and α > 0. Then

|y|�
(|y|σ )α

≤ (|y|1−α)
�

1 − α
≤ |y|�

|y|α on [t0,∞). (2.3)

We shall obtain results for strongly superlinear and strongly sublinear equations
according to the following classification:

Definition 2.1 Equation (1.1) (or the function f ) is said to be strongly superlinear if
there exists a constant β > 1 such that

|f (t, x)|
|x|β ≤ |f (t, y)|

|y|β for |x| ≤ |y|, xy > 0, t ≥ t0, (2.4)

and it is said to be strongly sublinear if there exists a constant γ ∈ (0,1) such that

|f (t, x)|
|x|γ ≥ |f (t, y)|

|y|γ for |x| ≤ |y|, xy > 0, t ≥ t0. (2.5)

If (2.4) holds with β = 1, then Eq. (1.1) is called superlinear and if (2.5) holds with
γ = 1, then Eq. (1.1) is called sublinear.

We may note that condition (1.3) implies
∣∣f (t, x)

∣∣ ≤ ∣∣f (t, y)
∣∣ for |x| ≤ |y|, xy > 0, t ≥ t0. (2.6)

Next, we establish some results that will be needed to prove oscillation criteria.
Lemmas 2.2 and 2.3 give useful information about the behavior of possible nonoscil-
latory solutions of Eq. (1.1).

Lemma 2.2 If x is an eventually positive solution of Eq. (1.1), then one of the fol-
lowing four cases hold for all sufficiently large t ≥ t0:

(I)
(
ax�2)�

(t) > 0, x�2
(t) > 0 and x�(t) > 0;

(II)
(
ax�2)�

(t) > 0, x�2
(t) < 0 and x�(t) > 0;

(III)
(
ax�2)�

(t) < 0, x�2
(t) < 0 and x�(t) > 0;

(IV)
(
ax�2)�

(t) > 0, x�2
(t) > 0 and x�(t) < 0.
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Proof From Eq. (1.1), we have

(
ax�2)�2

(t) = −f
(
t, xσ (t)

)
< 0 for all t ≥ t0.

It follows that (ax�2
)
�
(t), x�2

(t) and x�(t) are eventually monotonic and of one
sign on [t0,∞).

Next, we consider the following four cases for all large t ≥ t0:

(i1)
(
ax�2)�

(t) > 0, x�2
(t) < 0 and x�(t) < 0;

(i2)
(
ax�2)�

(t) < 0, x�2
(t) < 0 and x�(t) < 0;

(i3)
(
ax�2)�

(t) < 0, x�2
(t) > 0 and x�(t) < 0;

(i4)
(
ax�2)�

(t) < 0, x�2
(t) > 0 and x�(t) > 0.

Then two cases (i1) and (i2) are not valid. In fact, if x�2
(t) < 0 and x�(t) < 0

eventually, then limt→∞ x(t) = −∞, which contradicts the fact that x(t) > 0 even-
tually.

In the two cases (i3) and (i4), we see that (ax�2
)�(t) < 0 and (ax�2

)�
2
(t) < 0

and hence one can easily find that limt→∞ a(t)x�2
(t) = −∞, i.e., x�2

(t) < 0 for all
t ≥ t0. Thus the two cases (i3) and (i4) are disregarded. This completes the proof. �

Lemma 2.3 If x is an eventually positive solution of Eq. (1.1), then there exist posi-
tive constants c1 and c2 such that

c1ξ(t) ≤ x(t) ≤ c2t for all sufficiently large t ≥ t0, (2.7)

where

ξ(t) =
∫ ∞

t

∫ ∞

s

1

a(u)
�u�s.

Proof Let x be an eventually positive solution. Let t1 ≤ t0, integrating (1.1) twice
from t1 to t and dividing by a(t), we get

x�2
(t) = a(t1)x

�2
(t1)

1

a(t)
+ (

ax�2)�
(t1)

(t − t1)

a(t)

− 1

a(t)

∫ t

t1

∫ η

t1

f
(
ζ, xσ (ζ )

)
�ζ�η

= a(t1)x
�2

(t1)
1

a(t)
+ (

ax�2)�
(t1)

(t − t1)

a(t)

− 1

a(t)

∫ t

t1

(
t − σ(η)

)
f

(
ζ, xσ (ζ )

)
�ζ�η

where we have applied Lemma 1 in [5] in the last step. Integrating the resulting
equation twice from t1 to t and using the same arguments, we get
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x(t) = x(t1) + x�(t1)(t − t1) + a(t1)x
�2

(t1)

∫ t

t1

(t − σ(η))

a(η)
�η

+ (
ax�2)�

(t1)

∫ t

t1

(t − σ(η))(η − t1)

a(η)
�η

−
∫ t

t1

(t − σ(η))

a(η)

∫ η

t1

(
η − σ(ζ )

)
f

(
ζ, xσ (ζ )

)
�ζ�η (2.8)

for all t ≥ t1 ≥ t0. By using the Leibniz rule ([8], Theorem 1.117) and the L’Hôpital’s
([8], Theorem 1.120), we have

lim
t→∞

∫ t

t1

(t−σ(η))(η−t1)
a(η)

�η

(t − t1)
= lim

t→∞

∫ t

t1

(η − t1)

a(η)
�η = constant,

which shows the asymptotic relation
∫ t

t1

(t − σ(η))(η − t1)

a(η)
�η ∼ (t − t1). (2.9)

Now consider the discussion above in 4 different cases of Lemma 2.2 to prove the
claim.

For the right-hand side, if (I) in Lemma 2.2 holds then

x(t) ≤ x(t1) + x�(t1)(t − t1) + a(t1)x
�2

(t1)

∫ t

t1

(t − σ(η))

a(η)
�η

+ (
ax�2)�

(t1)

∫ t

t1

(t − σ(η))(η − t1)

a(η)
�η,

then the right-hand side of (2.7) trivially holds as the coefficients in the inequality
above are all positive and (2.9) holds; if (II) in Lemma 2.2 holds then

x(t) ≤ x(t1) + x�(t1)(t − t1) + (
ax�2)�

(t1)

∫ t

t1

(t − σ(η))(η − t1)

a(η)
�η,

hence (2.7) holds from (2.9); if (III) in Lemma 2.2 holds then

x(t) ≤ x(t1) + x�(t1)(t − t1),

hence (2.7) holds; if (IV) in Lemma 2.2 holds then

x(t) ≤ x(t1) + a(t1)x
�2

(t1)

∫ t

t1

(t − σ(η))

a(η)
�η

+ (
ax�2)�

(t1)

∫ t

t1

(t − σ(η))(η − t1)

a(η)
�η,

then the right-hand side of (2.7) trivially holds as the coefficients in the inequality
above are all positive and (2.9) holds;

For the left-hand side, if (I) or (IV) in Lemma 2.2 holds, (ax�2
)(t) is positive

and increasing and hence we conclude that x(t) ≥ c̄ξ(t) for t ≥ t1 and c̄ is a positive
constant.

If (II) in Lemma 2.2 holds, (ax�2
)(t) is negative and increasing and hence we

conclude that x(t) ≥ ¯̄cξ(t) for t ≥ t1 and ¯̄c is a positive constant.
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If (III) in Lemma 2.2 holds, (ax�2
)(t) is negative and decreasing and hence we

conclude that x(t) ≥ c̃ξ(t) for t ≥ t1 and c̃ is a positive constant. This completes the
proof. �

We may note that the inequality parallel to those listed in Lemmas 2.2 and 2.3
hold for an eventually negative solution of Eq. (1.1).

Remark 2.1 Based on Lemma 2.3, all nonoscillatory solutions of Eq. (1.1) which are
asymptotic to c1t , c1 
= 0 as t → ∞ can be classified an maximal solutions and which
are asymptotic to c2ξ(t), c2 
= 0 as t → ∞ can be regarded as the minimal solutions.

Remark 2.2 Based on Lemma 2.3, all nonoscillatory solutions of Eq. (1.1) which are
asymptotic to c1t , c1 
= 0 as t → ∞ can be classified an maximal solutions and which
are asymptotic to c2ξ(t), c2 
= 0 as t → ∞ can be regarded as the minimal solutions.

Remark 2.3 From Lemma 1 in [5] ξ(t) can be rewritten as

ξ(t) =
∫ ∞

t

∫ ∞

s

1

a(u)
�u�s =

∫ ∞

t

∫ σ(u)

t

1

a(u)
�s�u =

∫ ∞

t

σ (u) − t

a(u)
�u.

3 Main results

We shall investigate the oscillatory behavior of all solutions of Eq. (1.1) when it is ei-
ther strongly superlinear or strongly sublinear. We begin with the strongly superlinear
case of Eq. (1.1).

Theorem 3.1 Suppose that Eq. (1.1) is strongly superlinear. If
∫ ∞

t0

σ(s)
∣∣f

(
s, cξσ (s)

)∣∣�s = ∞, for all c 
= 0, (3.1)

then Eq. (1.1) is oscillatory.

Proof Let x be a nonoscillatory solution of Eq. (1.1). Suppose that x(t) > 0 for t ≥
t0 ∈ T, where t0 is chosen so large that the four cases of Lemma 2.2 and (2.7) in
Lemma 2.3 hold with ξ(t) < 1 for all t ≥ t0.

Next, we distinguish the following four cases:
Case (I). In this case, we see that x�(t) > 0 and x�2

(t) > 0 for t ≥ t0, and in view
of (2.7), there exists a constant b > 0 such that

xσ (t) ≤ bσ(t) and xσ (t) ≥ bξσ (t) for t ≥ t0. (3.2)

Integrating Eq. (1.1) from t0 to t and using the fact that (ax�2
)�(t) > 0 for t ≥ t0,

we have

(
ax�2)�

(t) +
∫ t

t0

f
(
s, xσ (s)

)
�s = (

ax�2)�
(t0) < ∞.
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Thus,
∫ ∞

t0

f (s, xσ (s)�s < ∞. (3.3)

Using (3.2) and the superlinearity of f in (3.3), we get

∞ >

∫ ∞

t0

(
f (s, xσ (s))

(xσ (s))β

)(
xσ (s)

)β
�s ≥

∫ ∞

t0

(
σ(s)

ξσ (s)

)β

f
(
s, bξσ (s)

)
�s

>

∫ ∞

t0

σ(s)f
(
s, bξσ (s)

)
�s, (3.4)

which contradicts condition (3.1).
Case (II). In this case, we have (ax�2

)�(t) > 0, x�2
(t) < 0 and x�(t) > 0 for

t ≥ t0. By (2.7), there exists a constant α > 0 such that

xσ (t) ≥ α and xσ (t) ≥ αξσ (t) for t ≥ t0. (3.5)

We multiply Eq. (1.1) by σ(t) and integrate from t0 to t we obtain
∫ t

t0

σ(s)f
(
s, xσ (s)

)
�s = −t

(
ax�2)�

(t) + t0
(
ax�2)�

(t0) +
∫ t

t0

(
ax�2)�

�s

≤ t0
(
ax�2)�

(t0) +
∫ t

t0

(
ax�2)�

(s)�s

= t0
(
ax�2)�

(t0) + ax�2
(t) − ax�2

(t0)

≤ t0
(
ax�2)�

(t0) − ax�2
(t0) < ∞.

Thus, we find
∫ ∞

t0

σ(s)f
(
s, xσ (s)

)
�s < ∞. (3.6)

From (3.5) and (3.6), we obtain (3.4) which contradicts (3.1).
Case (III). In this case (3.5) holds and since (ax�2

)�(t) < 0 and is decreasing on
[t0,∞), we have

(
ax�2)�

(u) ≤ (
ax�2)�

(t) for u ≥ t ≥ t0.

Integrating this inequality from t to s ≥ t we get
(
ax�2)

(s) ≤ (s − t)
(
ax�2)�

(t) ≤ s
(
ax�2)�

(t),

or

x�2
(s) ≤

(
s

a(s)

)(
ax�2)�

(t) for s ≥ t ≥ t0. (3.7)

Integrating (3.7) from t to υ ≥ s ≥ t ≥ t0 and letting υ → ∞, we get

x�(t) ≥
(∫ ∞

t

(
s

a(s)

)
�s

)
y(t) ≥ ξ(t)y(t) for t ≥ t0, (3.8)
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where y(t) = −(ax�2
)�(t) > 0 for t ≥ t0. Since x�(t) > 0 and x�2

(t) < 0 for t ≥ t0,
there exists a constant k > 0 such that

x(t) ≥ ktx�(t) for t ≥ t0 (3.9)

Using (3.9) in (3.8), we obtain

x(t) ≥ ktξ(t)y(t) for t ≥ t0,

or

xσ (t) ≥ kσ (t)ξσ (t)yσ (t) for t ≥ t0. (3.10)

Now, Eq. (1.1) takes the form

y�(t) = f
(
t, xσ (t)

) = f (t, xσ (t))

(xσ (t))β

(
xσ (t)

)β
, t ≥ t0. (3.11)

Using (3.5), (3.10) and the superlinearity property in (3.11) we have

y�(t) ≥ c̄σ β(t)f
(
t, dξσ (t)

)(
yσ (t)

)β for t ≥ t0,

where c̄ = ( k
d
)β . Thus, we can easily see that

y�(t)

(yσ (t))β
≥ c̄σ (t)f

(
t, dξσ (t)

)
for t ≥ t0. (3.12)

By Lemma 2.1, we obtain

(y1−β(t))�

β − 1
≥ y�(t)

(yσ (t))β
≥ c̄σ (t)f

(
t, dξσ (t)

)
for t ≥ t0.

Integrating this inequality from t0 to t we get

∞ > y1−β(t0) ≥ y1−β(t) + c̄(β − 1)

∫ t

t0

σ(s)f
(
s, dξσ (s)

)
�s,

which contradicts condition (3.1).
Case (IV). In this case, a(t)x�2

(t) > 0 and is increasing on [t0,∞). Thus

a(s)x�2
(s) ≥ a(t)x�2

(t) for s ≥ t ≥ t0.

Integrating this inequality twice from t to u ≥ t ≥ t0 and letting u → ∞, one can
easily find

x(t) ≥ ξ(t)
(
ax�2)

(t) for t ≥ t0. (3.13)

From the fact that (ax�2
)�

2
(t) < 0, (ax�2

)�(t) > 0 and ax�2
(t) > 0 for t ≥ t0,

there exists a constant b1 > 0 such that
(
ax�2)

(t) ≥ b1t
(
ax�2)�

(t) for t ≥ t0

:= b1Z(t), (3.14)

where Z(t) = (ax�2
)�(t) > 0 on [t0,∞). Using (3.14) in (3.13), we get

xσ (t) ≥ b1σ(t)ξσ (t)Zσ (t) for t ≥ t0. (3.15)
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Integrating Eq. (1.1) from t to u ≥ t ≥ t0 and letting u → ∞, we have

Z(t) = (
ax�2)�

(t) ≥
∫ ∞

t

f
(
s, xσ (s)

)
�s, t ≥ t0. (3.16)

Also, (2.5) holds and so there exists a constant d1 > 0 such that

xσ (t) ≥ d1ξ
σ (t) for t ≥ t0. (3.17)

Now, using (3.15), (3.17) and superlinearity of f in (3.16) we get

Z(t) ≥
∫ ∞

t

f (s, xσ (s))

(xσ (s))β

(
xσ (s)

)β
�s ≥

(
b1

d1

)β ∫ ∞

t

σ β(s)f
(
s, d1ξ

σ (s)
)
Zσ (s)�s

≥
(

b1

d1

)β

Zβ(t)

∫ ∞

t

σ (s)f
(
s, d1ξ

σ (s)
)
�s.

Thus

Z1−β(t) ≥
(

b1

d1

)β ∫ ∞

t

σ (s)f
(
s, d1ξ

σ (s)
)
�s for t ≥ t0.

Letting t = t0 in the above inequality, we obtain a contradiction to condition (3.1).
A similar argument holds if we assume that x is an eventually negative solution of

Eq. (1.1). This completes the proof. �

Next, we present a sufficient condition for the oscillation of strongly sublinear
equation (1.1).

Theorem 3.2 Suppose that Eq. (1.1) is strongly sublinear. If
∫ ∞

t0

(
s

σ (s)

)γ

ξ(s)
∣∣f

(
s, cσ (s)

)∣∣�s = ∞ for all c 
= 0, (3.18)

then Eq. (1.1) is oscillatory.

Proof Let x be a nonoscillatory solution of Eq. (1.1) and assume that x(t) > 0 for
t ≥ t0 ∈ T, where to is chosen so large that the four cases of Lemma 2.2 and (2.7) in
Lemma 2.3 hold with ξ(t) < 1 for all t ≥ t0.

Next, we consider the following four cases:
Case (I). There exist positive constants k1 and k2 such that

k1σ(t) ≤ xσ (t) ≤ k2σ(t) for all t ≥ t0. (3.19)

From (3.3) and (3.19) and using the strong sublinearity of f we get

∞ >

∫ ∞

t0

f
(
s, x(s)

)
�s =

∫ ∞

t0

f (s, xσ (s))

(xσ (s))γ

(
xσ (s)

)γ
�s

≥
∫ ∞

t0

f (s, k2σ(s))

(k2σ(s))γ

(
k1σ(s)

)γ
�s

≥
(

k1

k2

)γ ∫ ∞

t0

ξ(s)f
(
s, k2σ(s)

)
�s,

which contradicts (3.18).
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Case (II). There exist positive constants b1 and b2 such that

b1 ≤ xσ (t) ≤ b2σ(t) for t ≥ t0. (3.20)

From (3.6), (3.20) and strong sublinearity of f , we obtain

∞ >

∫ ∞

t0

σ(s)f
(
s, x(s)

)
�s =

∫ ∞

t0

σ(s)
f (s, xσ (s))

(xσ (s))γ

(
xσ (s)

)γ
�s

≥
(

b1

b2

)γ ∫ ∞

t0

s1−γ

(
s

σ (s)

)γ

f
(
s, b2σ(s)

)
�s

≥ c

(
b1

b2

)γ ∫ ∞

t0

(
s

σ (s)

)γ

ξ(s)f
(
s, b2σ(s)

)
�s,

where c is a positive constant. This contradicts condition (3.18).
Next we consider:
Case (III). Integrating Eq. (1.1) from u to t ≥ u ≥ t0 twice, we get

−x�2
(t) ≥

∫ t

u

∫ s

u

1

a(t)
f

(
τ, xσ (τ )

)
�τ�s

=
∫ t

u

(
t − σ(τ)

a(t)

)
f

(
τ, xσ (τ )

)
�τ.

Integrating this inequality from u to t ≥ u ≥ t0 we find

x�(u) ≥
∫ t

u

(∫ s

u

(
s − σ(τ)

a(s)

)
�s

)
f

(
τ, xσ (τ )

)
�τ.

There exists a constant c1 > 0 such that

x�(t) ≥
∫ ∞

t

c1ξ(τ )f
(
τ, xσ (τ )

)
�τ. (3.21)

Since x�(t) > 0 and x�2
(t) < 0 for t ≥ t0, there exists a constant c2 > 0 such that

x(t) ≥ c2tx
�(t) for t ≥ t0. (3.22)

Using (3.21) in (3.22) we have

x(t) ≥ ct

∫ ∞

t

ξ(s)f
(
s, xσ (s)

)
�s,

where c = c1c2. Next, we let

y(t) =
∫ ∞

t

ξ(s)f
(
s, xσ (s)

)
�s.

Then

−y�(t) = ξ(t)f
(
t, xσ (t)

) = ξ(t)
f (t, xσ (t))

(xσ (t))γ

(
xσ (t)

)γ for t ≥ t0. (3.23)

In this case, there exists a constant b > 0 such that

x(t) ≤ bt for t ≥ t0. (3.24)
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Thus,

−y�(t) ≥ ξ(t)
f (t, bσ (t))

(bσ (t))γ

(
cσ (t)y(t)

)γ

or

−y�(t)

yγ (t)
≥

(
c

b

)γ

ξ(t)f
(
t, bσ (t)

)
for t ≥ t0.

Integrating this inequality from t0 to t and using Lemma 2.1 we get
∫ t

t0

−(y1−γ (s))�

1 − γ
�s ≥ −

∫ t

t0

y�(s)

yγ (s)
�s ≥

(
c

b

)γ ∫ t

t0

ξ(s)f
(
s, bσ (s)

)
�s,

or

∞ >
y1−γ (t0)

1 − γ
≥

(
c

b

)γ ∫ t

t0

ξ(s)f
(
s, bσ (s)

)
�s,

which contradicts condition (3.18).
Case (IV). As in the proof of Theorem 3.1, Case (III), we obtain (3.13) and (3.14)

for t ≥ t0. Since (ax�2
)(t) is increasing, we see that

xσ (t) ≥ ξσ (t)
((

ax�2)
(t)

)σ ≥ ξσ (t)
(
ax�2)

(t) for t ≥ t0. (3.25)

Using (3.14) in (3.25), we get

xσ (t) ≥ b1tξ
σ (t)

(
ax�2)�

(t) for t ≥ t0. (3.26)

Using (3.24) and the strong sublinearity of f in Eq. (1.1), we get

−Z�(t) = f
(
t, xσ (t)

) = f (t, xσ (t))

(xσ (t))γ

(
xσ (t)

)γ ≥ f (t, cσ (t))

(cσ (t))γ

(
b1tξ

σ (t)Z(t)
)γ

,

where Z(t) = (ax�2
)�(t) for t ≥ t0. Thus

−Z�(t)

Zγ (t)
≥

(
b1

c

)γ (
t

σ (t)

)
ξσ (t)f

(
t, cσ (t)

)
for t ≥ t0.

The rest of the proof is similar to that of Case (III) and hence is omitted.
A similar argument holds if we assume that x is an eventually negative solution of

Eq. (1.1). This completes the proof. �

Remarks
1. The results of this paper are presented in a form which is essentially new even

for the special cases of Eq. (1.1) when T = R and T = Z, i.e., for the corresponding
differential equation

(
a(t)x′′(t)

)′′ + f
(
t, x(t)

) = 0 (3.27)

and the difference equation

�2(a(t)�2x(t)
) + f

(
t, x(t + 1)

) = 0. (3.28)

For Eq. (3.27), we give the following oscillation result.
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Theorem 3.3 Assume
∫ ∞

t0

σ(s)

a(s)
ds < ∞.

(i) If Eq. (3.27) is strongly superlinear and
∫ ∞

t0

σ(s)
∣∣f

(
s, cξ(s)

)∣∣ds = ∞ for all c 
= 0,

where

ξ(t) =
∫ ∞

t

∫ ∞

s

1

a(u)
duds,

then Eq. (3.27) is oscillatory.
(ii) If Eq. (3.27) is strongly sublinear and

∫ ∞

t0

ξ(s)
∣∣f (s, cs)

∣∣ds = ∞ for all constants c 
= 0,

then Eq. (3.27) is oscillatory.

Also for Eq. (3.28) we obtain the following new oscillation result:

Theorem 3.4 Suppose
∞∑

s=t0

σ(s)

a(s)
< ∞.

(i) If Eq. (3.28) is strongly superlinear and
∞∑

s=t0

(s + 1)
∣∣f

(
s, cξ(s + 1)

)∣∣ = ∞ for every constant c 
= 0,

where

ξ(t) =
∞∑

s=t

∞∑

u=s

1

a(u)
,

then Eq. (3.28) is oscillatory.
(ii) If Eq. (3.28) is strongly sublinear and

∞∑

s=t0

(
s

s + 1

)γ

ξ(s)
∣∣f

(
s, c(s + 1)

)∣∣ = ∞ for every constant c 
= 0,

then Eq. (3.28) is oscillatory.

2. When either
∫ ∞

t0

s

a(s)
�s = ∞, or

∫ ∞

t0

1

a(s)
�s = ∞

holds, we see from the proofs of our results that Cases (I) and (II) of Lemma 2.2 are
the only cases to be considered and so easier oscillation criteria for Eq. (1.1) can be
obtained. Here, we omit the details.
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3. The results of this paper can be easily extended to delay dynamic equation of
the form

(
ax�2)�2

(t) + f
(
t, xσ

(
g(t)

)) = 0,

where g : T → T, g(t) ≤ t for t ∈ T, g is non-decreasing and limt→∞ g(t) = ∞.
The details are left to the reader.

4. We may employ other types of time scales, e.g., T = hZ with h > 0, T = qN0

with q > 1, T = N
2
0 . . . etc., see [8, 9]. The details are left to the reader.

4 Examples

Example 4.1 Consider the differential equation
(
tσ (t)x�2)�2

(t) + (
σ(t)xσ (t)

)3 = 0, t ≥ 1. (4.1)

Denote a(t) = tσ (t), f (t, xσ (t)) = (σ (t)xσ (t))3. It’s easy to see that a is a positive
real-valued rd-continuous function,

∫ ∞
1

σ(s)
a(s)

�s = ∫ ∞
1

1
t
�t < ∞, sgnf (t, x) = sgnx

and f (t, x) ≤ f (t, y), x ≤ y, t ≥ 1. Furthermore f (t, x) is strongly superlinear with

|σ(t)xσ (t)|3
|xσ (t)|2 ≤ |σ(t)yσ (t)|3

|yσ (t)|2 for |x| ≤ |y|, xy > 0, t > 1.

From Lemma 2.2 we get that

ξ(t) =
∫ ∞

t

∫ ∞

s

1

uσ(u)
�u�s =

∫ ∞

t

1

s
�s ≥ 1

t
, t > 1.

Then we obtain
∫ ∞

1
σ(s)

∣∣f
(
s, cξσ (s)

)∣∣�s ≥
∫ ∞

1
|c|3σ(s)�s = ∞,

for all c 
= 0, which shows that all conditions in Theorem 3.1 holds. So by Theo-
rem 3.1 Eq. (4.1) is oscillatory.

Example 4.2 Consider the difference equations

�2(2t�2xt

) + etx3
t+1 = 0 (4.2)

here f (t, xt+1) = etx3
t+1, a(t) = 2n. From Theorem 3.4 we get that

ξ(t) =
∞∑

s=t

∞∑

u=s

1

2u
=

∞∑

s=t

1

2s−1
= 1

2t−2
.

Then we obtain
∞∑

s=1

(s + 1)
∣∣f

(
s, cξσ (s)

)∣∣ =
∞∑

s=1

c3es(s + 1)

23s−6
= ∞,

for all c 
= 0, which shows that all conditions in Theorem 3.4 holds. So by Theo-
rem 3.4 Eq. (4.2) is oscillatory.
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