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Abstract In this work, an effective technique for solving a class of singular two
point boundary value problems is proposed. This technique is based on the Ado-
mian decomposition method (ADM) and Green’s function. The technique relies on
constructing Green’s function before establishing the recursive scheme for the solu-
tion components. In contrast to the existing recursive schemes based on ADM, the
proposed recursive scheme avoids solving a sequence of nonlinear algebraic or tran-
scendental equations for the undetermined coefficients. The approximate solution is
obtained in the form of series with easily calculable components. For the complete-
ness, the convergence and error analysis of the proposed scheme is supplemented.
Moreover, the numerical examples are included to demonstrate the accuracy, appli-
cability, and generality of the proposed scheme. The results reveal that the method is
very effective, straightforward, and simple.

Keywords Singular boundary value problem · Adomian decomposition method ·
Green’s function · Thomas-Fermi equation
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1 Introduction

The aim of this article is to introduce an improved decomposition method with
Green’s function for the approximate solution of the following class of singular
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two-point boundary value problems [1–3]:
(
xαy′)′ = f (x, y), 0 ≤ α < 1, x ∈ (0,1], (1.1)

and subject to the following boundary conditions:

y(0) = α1, β1y(1) + γ1y
′(1) = η1, (1.2)

where α1, β1 > 0, γ1, and η1 are any finite real constants. We assume that for any
(x, y) ∈ ([0,1]× R), the function f (x, y) and ∂f /∂y are continuous and ∂f /∂y ≥ 0.
The problem of type (1.1) arises very frequently in applied sciences and in phys-
iological studies. For example, in the study of distribution of heat sources in the
human head [4] and steady-state oxygen diffusion in a spherical cell with Michaelis-
Menten uptake kinetics [5]. In particular, when α = 0 and f (x, y) = x−1/2y3/2, (1.1)
is known as Thomas-Fermi equation [6].

Recently, a great deal of interest has been focused in the study of (1.1) and (1.2)
(see for example [1–3, 6–12]) and many of the references therein. The main diffi-
culty of the problem (1.1) is that the singularity behavior occurs at x = 0. A number
of methods has been used to solve such singular boundary value problems. In [7],
a standard three-point finite difference scheme was used with uniform mesh for the
solution of problem (1.1) for α ∈ (0,1). In [1, 3], the finite difference methods were
considered to obtain the numerical results. The numerical method based on Green’s
function was applied to get numerical solutions in [2]. In [11], the novel approach
that combines a modified decomposition method with the cubic B-spline collocation
technique was presented to obtain approximate solution. Recently, a new modified
decomposition method was applied to handle these problems (see [12]). These nu-
merical methods have many advantages, but a huge amount of computational work is
needed to obtain accurate numerical solution especially for nonlinear problems.

1.1 Adomian decomposition method (ADM)

In this subsection, we briefly describe standard ADM or MADM for nonlinear singu-
lar boundary value problems.

In recent years, many authors [9–28] have shown interest to study of the ADM for
different scientific models. Adomian [21] asserted that the ADM provides an efficient
and computationally suitable method for generating approximate series solution for
a large class of differential equations.

According to Wazwaz [25], (1.1) in the operator form can be written as

Ly = x−αf (x, y), (1.3)

where L is a linear differential operator defined by

L = x−α d

dx

(
xα d

dx

)
.

The inverse operator L−1 was proposed as (see [25])

L−1(·) =
∫ x

0
x−α

∫ x

0
xα(·) dx dx. (1.4)
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Operating the inverse linear operator L−1(·) on both sides of (1.3) yields

y = y(0) + xy′(0) + L−1[x−αf (x, y)
]
. (1.5)

The solution y and the nonlinear function N(y) ≡ f (x, y) are decomposed by infinite
series as

y =
∞∑

n=0

yn, N(y) =
∞∑

n=0

An, (1.6)

where An are Adomian polynomials that can be constructed for various classes of
nonlinear functions with the formula given in [18] as:

An = 1

n!
dn

dλn

[

N

( ∞∑

k=0

ykλ
k

)]

λ=0

, n = 0,1,2, . . . . (1.7)

Note that Adomian’s polynomial can be generated from Taylor expansion of N(y)

about the first component y0, i.e., N(y) = ∑∞
k=0 Ak = ∑∞

k=0
[y−y0]k

k! Nk(y0).
Substituting the series (1.6) into (1.5), we obtain

∞∑

n=0

yn = y(0) + xy′(0) + L−1

[

x−α
∞∑

n=0

An

]

. (1.8)

On comparing both sides of (1.8), the standard ADM is given by

y0 = y(0) + xy′(0), yk+1 = L−1[x−αAk

]
, k ≥ 0, (1.9)

and modified ADM is given by

y0 = y(0), y1 = xy′(0) + L−1
[
x−αA0

]
,

yk+1 = L−1
[
x−αAk

]
, k ≥ 0.

}

(1.10)

Thus all components yn can be calculated recurrently, the series solution of y follows
immediately with the undetermined coefficient y′(0), and the unknown constant y′(0)

will be determined later using boundary conditions at x = 1 (see [11, 22, 23, 28]). The
n-term truncated approximate series solution is then given by φn(x) = ∑n

m=0 ym(x).
The ADM has been used for solving nonlinear boundary value problems by sev-

eral researchers [9–12, 19, 20, 22–24, 26, 27]. Solving such problems using standard
ADM or MADM is always a computationally involved task as it requires the com-
putation of undetermined coefficients in a sequence of nonlinear algebraic equations
which increases the computational work (see [9, 11, 12, 22–24]). Major disadvantage
of the earlier methods for solving nonlinear BVPs is that we need to solve a sequence
of growingly higher order polynomials or more difficult transcendental equations [9,
11, 22, 24]. For example, consider nonlinear equation

y′′ = ey, 0 ≤ x ≤ 1,

y(0) = 0, y(1) = 0.

}

(1.11)
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Applying the standard ADM scheme (1.9) with zeroth component y0 = ηx, where
y′(0) = η to the above problem (1.11), we obtain the components as

y0 = ηx,

y1 = (−1 + eηx − ηx)

η2
,

y2 = (−5 + e2ηx − 2ηx + eηx(4 − 4ηx))

4η4
,

y3 = (−22 + e3ηx − 6ηx + e2ηx(6 − 6ηx) + 3eηx(5 + 2ηx(−3 + ηx)))

12η6
,

...

and the n-term approximate solutions φn(x) are given by

φ1(x) = ηx + (−1 + eηx − ηx)

η2
,

φ2(x) = ηx + (−1 + eηx − ηx)

η2
+ (−5 + e2ηx − 2ηx + eηx(4 − 4ηx))

4η4
,

φ3(x) = ηx + (−1 + eηx − ηx)

η2
+ (−5 + e2ηx − 2ηx + eηx(4 − 4ηx))

4η4

+ (−22 + e3ηx − 6ηx + e2ηx(6 − 6ηx) + 3eηx(5 + 2ηx(−3 + ηx)))

12η6
,

...

One can note that the above calculations become more and more complicated and
cannot lead to accurate results for the other approximations. To obtain approximate
solution, the other boundary condition at x = 1 is imposed on φn, and solving for η,
we obtain the approximate solutions. However, solving such transcendental equation
for η require additional computational work, and η may not be uniquely determined
(see [9, 12, 22, 24]). In order to avoid solving such transcendental equations for non-
linear boundary value problems, some modification of ADM were proposed in [10,
26, 27].

The main aim of this paper is to introduce a modification of the ADM which
combines with Green’s function to overcome the difficulties occurred in the standard
ADM or MADM for solving nonlinear singular boundary value problems (1.1). We
propose an improved recursion scheme which does not require the computation of
unknown constants, that is, without solving a sequence of growingly higher order
polynomial or difficult transcendental equations to obtain unknown constant [9, 11,
12, 22, 24, 28]. The main advantage of our proposed method is that it provides a
direct recursive scheme for solving the singular boundary value problem.

The rest of paper is organized as follows. In Sect. 2, the description of improved
recursive scheme based on Green’s function is presented. In Sect. 3, the convergence
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of improved recursive scheme is discussed. In Sect. 4, we illustrate our method with
numerical results along with the graphical representation. In Sect. 5, conclusion is
given.

2 Improved decomposition method

In this section, we propose an improved decomposition method based on Green’s
function for solving nonlinear singular two point boundary value problems.

The corresponding homogeneous problem of (1.1) is given by:

(
xαy′)′ = 0, 0 < x ≤ 1,

y(0) = α1, β1y(1) + γ1y
′(1) = η1,

and its unique solution is

ŷ(x) = α1 + (η1 − β1α1)x
1−α

β1 + γ1(1 − α)
. (2.1)

Let us again consider the problem (1.1) with homogeneousness boundary conditions

(
xαy′)′ = f (x, y), 0 < x ≤ 1,

y(0) = 0, β1y(1) + γ1y
′(1) = 0.

(2.2)

The Green’s function of (2.2) can be easily constructed and it is given by

G(x, ξ) =
⎧
⎨

⎩

x1−α

1−α

[
1 − β1ξ

1−α

β1+γ1(1−α)

]
, 0 ≤ x ≤ ξ,

ξ1−α

1−α

[
1 − β1x

1−α

β1+γ1(1−α)

]
, ξ ≤ x ≤ 1.

(2.3)

Note that construction of green’s function is presented in the Appendix.
Then the exact solution of (2.2) is given by

ỹ(x) =
∫ 1

0
G(x, ξ)f

(
ξ, y(ξ)

)
dξ. (2.4)

Therefore, we obtain the solution of (1.1) as y(x) = ŷ(x) + ỹ(x), that is,

y(x) = α1 + (η1 − β1α1)x
1−α

β1 + γ1(1 − α)
+

∫ 1

0
G(x, ξ)f

(
ξ, y(ξ)

)
dξ. (2.5)

Note that the right hand side of (2.5) does not involve any undetermined coefficients.
We now decompose the solution y(x) by a series

y(x) =
∞∑

n=0

yn, (2.6)
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and the nonlinear function f (x, y) is decomposed by series

f (x, y) =
∞∑

n=0

An(y0, y1, . . . , yn), (2.7)

where An(y0, y1, . . . , yn) are Adomian polynomials [18].
Substituting the series (2.6) and (2.7) into (2.5), we obtain

∞∑

n=0

yn = α1 + (η1 − β1α1)x
1−α

β1 + γ1(1 − α)
+

∫ 1

0
G(x, ξ)

∞∑

n=0

An dξ. (2.8)

Comparing both sides of (2.8), the improved decomposition method is given by

y0 = α1,

y1 = (η1 − β1α1)x
1−α

β1 + γ1(1 − α)
+

∫ 1

0
G(x, ξ)A0 dξ,

yn+1 =
∫ 1

0
G(x, ξ)An dξ, n ≥ 1.

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(2.9)

Note that the improved recursive scheme (2.9) does not require any additional com-
putational work for unknown constants. This modification also avoids solving a se-
quence of nonlinear algebraic or transcendental equations for the undetermined coef-
ficients with multiple roots, which is required for solution by several earlier modified
recursion schemes using the ADM or MADM [9, 11, 23, 24, 28].

The above improved recursive scheme gives the complete determination of solu-
tion components yn and hence, n-term approximate series solution can be obtained
as

ψn(x) =
n∑

m=0

ym. (2.10)

3 Convergence analysis

In this section, we shall discuss the convergence analysis of improved decomposition
method for singular boundary value problem (1.1). To do this, note that (2.5) can be
written in the operator equation form as

y = g + N (y), (3.1)

where g and N (y) are given by

g = α1 + (η1 − β1α1)x
1−α

β1 + γ1(1 − α)
, (3.2)

N (y) =
∫ 1

0
G(x, ξ)f

(
ξ, y(ξ)

)
dξ. (3.3)
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Note that the maximum value of the Green’s function (2.3) can easily be obtained
and it is given by

M = max
0≤x,ξ≤1

∣∣G(x, ξ)
∣∣ = β1 + γ1(1 − α)

4β1(1 − α)
. (3.4)

Lemma 3.1 Let X = C[0,1] be the Banach space with the norm ‖y(x)‖ =
maxx∈[0,1] |y(x)|. Defining the mapping N : X → X, where N is nonlinear operator
defined by (3.3). Assume that the function f (x, y) satisfies the Lipschitz condition
|f (x, y1) − f (x, y2)| ≤ L|y1 − y2| for all y1, y2 ∈ X. Then the operator N satisfies
the Lipschitz condition with Lipschitz constant δ = ML, where M is given by (3.4).

Proof Consider for any y1, y2 ∈ X, we have

∥∥N (y1) − N (y2)
∥∥ = max

0≤x≤1

∣
∣∣∣

∫ 1

0
G(x, ξ)

[
f (x, y1) − f (x, y2)

]
dξ

∣
∣∣∣

≤ M max
0≤x≤1

∣∣f (x, y1) − f (x, y2)
∣∣

≤ ML max
0≤x≤1

|y1 − y2|
≤ ML‖y1 − y2‖.

Thus, we have

∥∥N (y1) − N (y2)
∥∥ ≤ δ‖y1 − y2‖, (3.5)

where δ = ML. Under the condition 0 ≤ δ < 1 the mapping N is contraction there-
fore, by Banach fixed-point theorem for contraction there exits a unique solution of
problem (1.1). �

The improved decomposition method for (3.1) is equivalent to the following re-
cursive scheme

y0 = g,

ψn+1 = y0 + N (ψn), n ≥ 0.

}

(3.6)

Finding the solution of (3.1) is equivalent to find the sequence {ψn} such that ψn =
y0 + y1 + · · · + yn satisfies the (3.6).

In following theorem, we shall give the convergence of the sequence {ψn} to the
exact solution y of (3.1).

Theorem 3.1 Let N (y) be the nonlinear operator defined by (3.3) which satisfies
the Lipschitz condition with Lipschitz constant δ < 1. If ‖y0‖ < ∞, then there holds
‖yk+1‖ ≤ δ‖yk‖, k = 0,1,2, . . . , and the sequence {ψn} defined by (2.10) converges
to y.
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Proof Since

ψ1 = y0 + y1,

ψ2 = y0 + y1 + y2,

...

ψn = y0 + y1 + y2 + · · · + yn,

...

we have yk+1 = ψk+1 − ψk , k = 1,2, . . . .
We now show that the sequence {ψn} is convergent sequence. To prove this, it is

sufficient to show that {ψn} is Cauchy sequence in Banach space X = C[0,1]. Using
(3.5) and (3.6), we have

‖yn+1‖ = ‖ψn+1 − ψn‖ = ∥∥N (ψn) − N (ψn−1)
∥∥ ≤ δ‖ψn − ψn−1‖ = δ‖yn‖.

Thus we obtain

‖yn+1‖ ≤ δ‖yn‖ ≤ δ2‖yn−1‖ ≤ · · · ≤ δn+1‖y0‖.
Now for all n,m ∈ N, with n ≥ m, we have

‖ψn − ψm‖ = ∥∥(ψn − ψn−1) + (ψn−1 − ψn−2) + · · · + (ψm+1 − ψm)
∥∥

≤ ‖ψn − ψn−1‖ + ‖ψn−1 − ψn−2‖ + · · · + ‖ψm+1 − ψm‖
≤ δn‖y0‖ + δn−1‖y0‖ + · · · + δm+1‖y0‖
≤ δm+1(1 + δ + δ2 + · · · + δn−m−1)‖y0‖

≤ δm+1(1 − δn−m)

1 − δ
‖y0‖.

Since 0 ≤ δ < 1 so, (1 − δn−m) ≤ 1, and ‖y0‖ < ∞, it follows

‖ψn − ψm‖ ≤ δm+1

1 − δ
‖y0‖, (3.7)

which converges to zero, that is, ‖ψn −ψm‖ → 0, as m → ∞. This implies that there
exits ψ such that limn→∞ ψn = ψ . But, we have y = ∑∞

n=0 yn = limn→∞ ψn, that
is, y = ψ which is exact solution of (3.1). This completes the proof. �

Theorem 3.2 The maximum absolute truncation error of the series solution defined
by (2.10) to the problem can be estimated by

max
0≤x≤1

∣∣∣∣∣
y(x) −

m∑

j=0

yj

∣∣∣∣∣
≤ δm+1

1 − δ
‖y0‖,

where y(x) exact solution and ψm = ∑m
j=0 yj approximate series solution.
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Proof From (3.7) we have

‖ψn − ψm‖ ≤ δm+1

1 − δ
‖y0‖.

Since limn→∞ ψn = y, fixing m and letting n → ∞ in above equation, we obtain

∥∥y(x) − ψm

∥∥ ≤ δm+1

1 − δ
‖y0‖.

Hence the maximum absolute truncation error is given by

max
0≤x≤1

∣∣∣∣∣
y(x) −

m∑

j=0

yj

∣∣∣∣∣
≤ δm+1

1 − δ
‖y0‖. (3.8)

This completes the proof. �

4 Numerical illustrations

In this section, improved scheme (2.9) is implemented for solving singular bound-
ary value problems (1.1). We demonstrate the effectiveness of this scheme with four
numerical examples. All the numerical results obtained by proposed method are com-
pared with known results. In addition, the maximum absolute error functions En(x)

are also plotted.

Example 4.1 Consider the nonlinear singular two point boundary value the problem
[29]

(
xαy′)′ = βxα+β−2ey

(
βxβey − α − β + 1

)
, 0 < x ≤ 1,

y(0) = ln

(
1

4

)
, y(1) = ln

(
1

5

)
,

⎫
⎪⎬

⎪⎭
(4.1)

where the exact solution is y(x) = ln(1/(4 + xβ)).

We apply the improved scheme (2.9) to (4.1), where 0 ≤ α < 1 and α1 = ln(1/4),
β1 = 1, γ1 = 0, η1 = ln(1/5), and the scheme (2.9) for (4.1) becomes as follow:

y0 = ln

(
1

4

)
,

y1 =
(

ln

(
1

5

)
− ln

(
1

4

))
x1−α +

∫ 1

0
G(x, ξ)ξα+β−2A0(y0) dξ,

yn+1 =
∫ 1

0
G(x, ξ)ξα+β−2An(y0, y1, . . . , yn) dξ, n ≥ 1.

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(4.2)
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The Adomian’s polynomials for f (x, y) = β(βxβe2y − ey(α +β −1)), y0 = ln(1/4)

are obtained using the formula given by (1.7) as:

A0 = β
[
0.0625βxβ + 0.25(1 − α − β)

]
,

A1 = β
[
0.125βxβ + 0.25(1 − α − β)

]
y1,

A2 = β
[
0.125βxβ + 0.25(1 − α − β)

]
y2

+ β
[
0.25βxβ + 0.25(1 − α − β)

]y2
1

2
,

...

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.3)

In particular, for α = 0.5, β = 1, using (4.2) and (4.3) we obtain the successive solu-
tion components:

y0 = −1.38629,

y1 = 0.00602312x0.5 − 0.25000x + 0.02083330x2,

y2 = −0.00573744x0.5 − 0.000501926x1.5 + 0.01041670x2 + 0.000150570x2.5

− 0.00451389x3 + 0.000186010x4,

...

For α = 0.5, β = 3.5, using (4.2), (4.3), we obtain the solution components yn of
solution y(x) as:

y0 = −1.38629,

y1 = 0.0100295x0.5 − 0.25x3.5 + 0.01682690x7,

y2 = −0.00890489x0.5 − 0.00188054x4 + 0.0144231x7 + 0.000292528x7.5

− 0.00406651x10.5 + 0.000136329x14,

...

We now define error function as En(x) = |ψn(x) − y(x)| and the maximum absolute
error is given

E(n) = max
0<x≤1

En(x).

The error functions En(x), for n = 3,4,5 are plotted in Figs. 1 and 2. In addition, the
maximum absolute error E(n), for n = 4,6,8,10 are listed in Tables 1 and 2.

Example 4.2 Consider the following nonlinear singular two point boundary value
problem
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Fig. 1 Error functions En,
n = 3,4,5 of Example 4.1 when
α = 0.5, β = 1

Fig. 2 Error functions En,
n = 3,4,5 of Example 4.1 when
α = 0.5, β = 3.5

(
x1/2y′)′ = 3

16

(−4 + 5x3/2)y5, 0 < x < 1,

y(0) = 1, y(1) = √
1/2,

⎫
⎬

⎭
(4.4)

with exact solution y(x) = √
1/(1 + x3/2).

Table 1 Maximum error of Example 4.1, when β = 1

α E(4) E(6) E(8) E(10)

0.25 2.13678 × 10−5 2.40784 × 10−7 3.39377 × 10−9 5.16526 × 10−11

0.5 1.57194 × 10−5 1.12679 × 10−7 1.27959 × 10−9 1.55169 × 10−11

0.75 9.99975 × 10−6 1.69296 × 10−7 4.68696 × 10−10 9.72399 × 10−12

Table 2 Maximum error of Example 4.1, when β = 3.5

α E(4) E(6) E(8) E(10)

0.25 1.24950 × 10−5 2.40492 × 10−7 7.75054 × 10−10 2.30935 × 10−11

0.5 3.65516 × 10−5 4.54840 × 10−7 5.87251 × 10−9 7.81716 × 10−11

0.75 6.79920 × 10−5 7.19404 × 10−7 2.78721 × 10−8 9.29998 × 10−11
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Applying the scheme (2.9) to (4.4), where α1 = 1, β1 = 1, γ1 = 0, and η1 =
0.7071067812, the scheme (2.9) for (4.4) reads as follow:

y0 = 1,

y1 = 0.2928932x1/2 +
∫ 1

0
G(x, ξ)g(ξ)A0(y0) dξ,

yn+1 =
∫ 1

0
G(x, ξ)g(ξ)An(y0, y1, . . . , yn) dξ, n ≥ 1,

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(4.5)

where g(x) = 3
16 (−4 + 5x3/2).

As given above, the Adomian’s polynomials for f (y) = y5, y0 = 1 are given by:

A0 = 1,

A1 = 5y1,

A2 = 10y2
1 + 5y2,

A3 = 10y3
1 + 20y1y2 + 5y3,

...

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(4.6)

Using (4.5) and (4.6), we have the successive solution components as

y0 = 1,

y1 = 0.0821068x0.5 − 0.5x1.5 + 0.125x3,

y2 = −0.045527x0.5 − 0.102633x2 + 0.25x3 + 0.0366548x3.5

− 0.15625x4.5 + 0.0177557x6,

...

The maximum absolute error functions En(x), for n = 5,6,7 are plotted in Fig. 3.
From the figure we see that when number of iterations increases the error decreases.
In addition, the maximum absolute error E(n), for n = 4,6,8,10 are also listed in
Table 3.

Example 4.3 Consider the nonlinear singular two point boundary value problem [12,
24]

y′′ + 0.5

x
y′ = (

0.5ey − e2y
)
, 0 < x < 1,

y(0) = ln(2), y(1) = 0,

⎫
⎬

⎭
(4.7)

with exact solution y(x) = ln[2/(x2 + 1)].

Applying the scheme (2.9) to (4.7), where α = 0.5 and α1 = ln(2), β1 = 1, and
γ1 = η1 = 0, and the scheme (2.9) for (4.7) becomes as:
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Table 3 Maximum error of Example 4.2

n 4 6 8 10

E(n) 4.58440 × 10−3 5.01359 × 10−4 2.39478 × 10−5 4.73806 × 10−6

Fig. 3 Error functions En,
n = 5,6,7 of Example 4.2

y0 = ln(2),

y1 = − ln(2)x1/2 +
∫ 1

0
G(x, ξ)ξ1/2A0(y0) dξ,

yn+1 =
∫ 1

0
G(x, ξ)ξ1/2An(y0, y1, . . . , yn) dξ, n ≥ 1.

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(4.8)

In similar manner, the Adomian’s polynomials for f (y) = (0.5ey − e2y), y0 = ln(2)

are obtained as:

A0 = −3,

A1 = −7y1,

A2 = −7.5y2
1 − 7y2,

A3 = −5.16667y3
1 − 15y1y2 − 7y3,

...

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(4.9)

Making use of (4.8) and (4.9), we have successive solution components yn as

y0 = ln(2),

y1 = 0.0211385x0.5 − x2 + 0.285714x4,

y2 = 0.0193055x0.5 − 0.0126831x2.5 + 0.214286x4 + 0.0093949x4.5

− 0.268398x6 + 0.0380952x8,

...
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Table 4 Maximum error of Example 4.3

n 4 6 8 10

E(n) 4.69144 × 10−2 6.92128 × 10−3 8.25260 × 10−4 1.08089 × 10−4

Fig. 4 Error functions En,
n = 7,8,9 of Example 4.3

In Fig. 4, the maximum absolute error functions En(x), for n = 7,8,9 are plotted. In
addition, numerical results for maximum absolute error E(n), for n = 4,6,8,10 are
listed in Table 4.

Example 4.4 Consider the following linear singular two point boundary value prob-
lem [29]

(
xαy′)′ = βxα+β−2(βxβ + α + β − 1

)
y, 0 < x ≤ 1,

y(0) = 1, y(1) = e,

}

(4.10)

with exact solution y(x) = exβ
.

We apply the recursive scheme (2.9) to (4.10), where α1 = 1, β1 = 1, γ1 = 0, and
η1 = e, and the scheme (2.9) for (4.10) can be read as:

y0 = 1,

y1 = (e − 1)x1−α +
∫ 1

0
G(x, ξ)ξα+β−2A0(y0) dξ,

yn+1 =
∫ 1

0
G(x, ξ)ξα+β−2An(y0, y1, . . . , yn) dξ, n ≥ 1,

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(4.11)

where the Adomian polynomials given by An = β(βxβ + α + β − 1)yn.
For α = 0.5, β = 1: we have the successive solution components yn, n > 0 using

(4.11)

y0 = 1,

y1 = 0.384948x0.5 + x + 0.333333x2,
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Table 5 Maximum error of Example 4.4, when β = 1, α = 0.5

n 4 6 8 10

E(n) 7.07779 × 10−3 7.38774 × 10−4 7.42702 × 10−5 8.03711 × 10−6

Fig. 5 Error functions En,
n = 5,6,7 of Example 4.4 when
α = 0.5, β = 1

y2 = −0.551338x0.5 + 0.128316x1.5 + 0.166667x2 + 0.0769897x2.5

+ 0.155556x3 + 0.0238095x4,

...

The maximum absolute error E(n), for n = 4,6,8,10 are displayed in Table 5. In
addition, the error functions En(x), for n = 5,6,7 are plotted in Fig. 5.

5 Conclusion

In this paper, we have demonstrated that improved recursive scheme can be applied to
solve a class of nonlinear singular two point boundary value problems efficiently. The
accuracy of the numerical results indicates that the proposed method is well suited
for the solution of such type of problems. The advantage of current approach is that
it provides a direct scheme to obtain approximate solutions and we have also shown
graphically that these approximate solutions are almost identical to the exact solu-
tion. Another major advantage of proposed method over existing recursive schemes
is that it does not require the computation of undetermined coefficients. Moreover, the
proposed method provides a reliable technique which requires less work compared
to the traditional techniques such as finite difference method, cubic spline method,
and standard ADM or MADM. The numerical results of the examples are presented
and it has been shown that only a few terms are required to obtain accurate solutions.
By comparing the results with other existing methods, it has been proved that pro-
posed method is a powerful method for solving singular two point boundary value
problems.
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Appendix

Construction of Green’s function of following the problem

(
xαy′)′ = f (x, y), 0 < x ≤ 1,

y(0) = 0, β1y(1) + γ1y
′(1) = 0.

Consider the linear differential equation

(
xαy′)′ = f (x).

Integrating the above equation twice first from x to 1 and then from 0 to x, changing
the order of integration, and applying the boundary conditions, we obtain

y(x) =
∫ x

0

ξ1−α

1 − α

[
1 − β1x

1−α

β1 + γ1(1 − α)

]
f (ξ) dξ

+
∫ 1

x

x1−α

1 − α

[
1 − β1ξ

1−α

β1 + γ1(1 − α)

]
f (ξ) dξ,

y(x) =
∫ 1

0
G(x, ξ)f (ξ) dξ,

where Green’s function is given by

G(x, ξ) =
⎧
⎨

⎩

x1−α

1−α

[
1 − β1ξ

1−α

β1+γ1(1−α)

]
, 0 ≤ x ≤ ξ,

ξ1−α

1−α

[
1 − β1x

1−α

β1+γ1(1−α)

]
, ξ ≤ x ≤ 1.
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