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Abstract A two-step iterative scheme based on the multiplicative splitting iteration
is presented for PageRank computation. The new algorithm is applied to the linear
system formulation of the problem. Our method is essentially a two-parameter iter-
ation which can extend the possibility to optimize the iterative process. Theoretical
analyses show that the iterative sequence produced by our method is convergent to
the unique solution of the linear system, i.e., PageRank vector. An exact parameter re-
gion of convergence for the method is strictly proved. In each iteration, the proposed
method requires solving two linear sub-systems with the splitting of the coefficient
matrix of the problem. We consider using inner iterations to compute approximate
solutions of these linear sub-systems. Numerical examples are presented to illustrate
the efficiency of the new algorithm.
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1 Introduction

Many problems in scientific computing give rise to a system of linear equations
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Ax = b, A ∈ Cn×n, and x, b ∈ Cn, (1.1)

with A is a large sparse non-Hermitian matrix. Iterative methods play an important
role for solving large sparse system of linear equations (1.1) as either solvers or pre-
conditioners, in both theoretical studies and practical applications; for details, see
[10, 31] and references therein.

Recently, with the booming development of the Internet, web search engines have
become one of the most important Internet tools for information retrieval. One of the
best-known algorithms in web search is Google’s PageRank algorithm [23]. Page-
Rank is related to a link analysis algorithm for ranking Web pages whereby a page’s
importance is determined according to the link structure of the Web. The core of
the PageRank algorithm involves computing the principle eigenvector of the Google
matrix representing the hyperlink structure of the web. The Google matrix is defined
as a convex combination of matrices P and a certain rank-1 matrix:

A = αP + (1 − α)veT (1.2)

where P is a column-stochastic matrix (i.e., the dangling nodes are already replaced
by columns with 1/n), α (0 ≤ α < 1) is the damping factor, e is a column vector of all
ones, and v is a personalization vector. It is common to set v = e/n in the PageRank
model, see [14] for the details.

A key parameter in the model is the damping factor, a scalar that determines the
weight given to the Web link graph in the model. Usually, the damping factor α

is a real positive number close to 1. The question of the optimal choice of α is an
interesting issue, one can see [4] for a recent study. It was argued in [18] that the
PageRank vector derived from larger α such as 0.99 perhaps gives a ‘truer’ PageRank
than α = 0.85 does. In practice, it may therefore make sense to consider a large range
of values [9]. Moreover, PageRank-type algorithms are used in application areas other
than web search [22, 28], where the value of α often has a concrete meaning.

Usually, the Google matrix A is so extremely large and sparse that many algo-
rithms for fast eigenvector computation in the field of the numerical linear algebra
are unsuitable for this problem, because they require matrix inversions or matrix de-
compositions. For this reason, there are a variety of PageRank optimization methods
which use the web link graph [13, 15, 21, 32]. Meanwhile, iterative methods based
on matrix-vector products have been widely studied for this problem.

The original PageRank algorithm uses the power method to compute successive
iterates that converge to the principal eigenvector of the Google matrix. However, the
eigenvalues of A is the scaling of those of P , except for the dominant eigenvalue [6,
17]. Thus, when the largest eigenvalue of A is not well separated from other eigen-
values if the damping factor α is close to 1, then the power method converges very
slowly. Many researchers proposed several methods to accelerate the convergence
of the power method, such as the quadratic extrapolation method [14], the adaptive
method [16], and the power extrapolation method [12]. And a number of iterative
methods based on Krylov subspace were proposed for computing PageRank. For in-
stance, Arnoldi-type method [9], power-Arnoldi method [25], Arnoldi-extrapolation
method [26] and adaptively accelerated Arnoldi method [30]. For more theoretical
analysis, we refer to [5, 27].
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Generally speaking, these techniques can be classified into two groups: one is
to reduce the total iterative steps, and the other is to reduce the computational cost
per iteration. Unfortunately, these goals usually contradict each other. For a general
review of these celebrated approaches, we refer the readers to [18–20].

On the other hand, some researchers focused their attention on the PageRank linear
system [1, 7]. Iterative methods based on the linear system are good alternatives for
computing the PageRank. We note that the smaller the damping factor is, the easier
it is to solve the problem. Gleich et al. [8] proposed an inner-outer iteration method
combined with Richardson iterations in which each iteration requires solving a linear
system similar in its algebraic structure to the original one. This approach is very
efficient as it can solve the PageRank problem with a lower damping factor β .

Recently, the idea of introducing iterative scheme based on splitting of the coeffi-
cient matrix into the linear systems has been successfully applied into the solution of
linear equation (1.1) [2, 3, 29]. By taking the advantage of the inner-outer iteration
algorithm in [8] and the idea of the splitting iterations, we propose a new algorithm
for computing the PageRank vector in this paper.

This paper is organized as follows. In Sect. 2, we briefly introduce the PageRank
linear system and the inner-outer iteration method for PageRank problem. In Sect. 3,
we first study the multiplicative splitting iteration method, its theoretical properties,
and then propose a multiplicative splitting iteration method for computing the Page-
Rank. Numerical tests and comparisons are reported in Sect. 4. Finally, some brief
concluding remarks are given in Sect. 5.

2 The inner-outer iteration method for computing PageRank

In this section, we briefly review the linear system formulation of PageRank problem
and the inner-outer iteration method for computing PageRank.

2.1 PageRank linear system

By the Ergodic Theorem for Markov chains [11], the Markov chain defined by matrix
A has a unique stationary probability distribution if A is aperiodic and irreducible.
In the case of the PageRank model, the Google matrix A achieves these desirable
properties.

Assuming that the probability distribution over the surfer’s location at time 0 is
given by vector x(0), the probability distribution for the surfer’s location at time k

is given by x(k) = Akx(0). The unique stationary distribution of the Markov chain is
defined as limk→∞ x(k), which is equivalent to limk→∞ Akx(0), and is independent of
the initial distribution x(0). This is simply the principal eigenvector of Google matrix
A, which is exactly the PageRank vector we would like to compute. So the PageRank
vector is defined as the vector satisfying x = Ax, with A is defined in (1.2).

Notice that A in (1.2) is dense because veT is typically dense, but it never needs
to be explicitly formed. In particular, the matrix-vector multiplication Ax can be
efficiently computed by

Ax = αPx + (1 − α)v, (2.1)
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where x is a probability vector, i.e., ‖x‖1 = 1. Obviously, if we give an initial vector
with a unit 1-norm, then so do all the iterators x throughout the iteration, and the
normalization is avoided.

Since eT x = 1, the original PageRank problem can be recast from (2.1) as the
linear system:

(I − αP )x = (1 − α)v. (2.2)

In what follows, we will refer to (2.2) as the PageRank linear system, and more details
of the linear system formulation of PageRank problem can be found in [1, 7, 8].

2.2 The inner-outer iteration method for computing PageRank

By taking the fact that the original PageRank problem is easier to solve when the
damping factor α is small, Gleich et al. [8] proposed an inner-outer iteration method
for computing PageRank by using the linear system formulation of PageRank (2.2)
and the stationary inner-outer iterations.

Instead of solving (2.2) directly, they consider the following stationary iteration:

(I − βP )xk+1 = (α − β)Pxk + (1 − α)v, k = 0,1,2, . . . , (2.3)

defined as the outer iteration with a lower damping factor β , i.e., 0 < β < α. Since
solving the linear system with I −βP is still computationally difficult, they compute
xk+1 using an inner Richardson iteration as follows. Setting the right-hand items of
(2.3) as

f = (α − β)Pxk + (1 − α)v, (2.4)

then they define the inner linear system as

(I − βP )y = f, (2.5)

and apply the inner iteration

yj+1 = βPyj + f, j = 0,1,2, . . . , l − 1, (2.6)

where, they take y0 = xk as the initial vector and assign the computed solution yl as
the new xk+1.

To terminate the iterations, they apply the 1-norm of the residuals of the inner
system (2.5) and the outer system (2.2) respectively as stopping criteria. For the inner
iteration (2.6) they use

∥
∥f − (I − βP )yj+1

∥
∥

1 < η, (2.7)

and for the outer iteration (2.3) they apply
∥
∥(1 − α)v − (I − αP )xk+1

∥
∥

1 < τ, (2.8)

the parameter η and τ are the inner and outer tolerances respectively.
The above algorithm is the core idea of the inner-outer iteration method for Page-

Rank. More details and advantages of the inner-outer iteration method can be found
in [8].
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3 The multi-splitting iteration method for computing PageRank

In this part, we study the multiplicative splitting iterations and its theoretical prop-
erties, and then introduce our new algorithm based on the multiplicative splitting
iterations. The motivation and implementation of our new algorithm are studied in
details.

3.1 The multi-splitting iteration method for linear systems

The matrix splitting methods play an important role for solving large sparse system
of linear equations (1.1). Let A = Mi − Ni (i = 1,2) be two splittings of the matrix
A ∈ Cn×n. The multiplicative splitting iteration method for solving the system of
linear equations (1.1) is defined as follows (see [2]):

Given an initial guess x0, for k = 0,1,2, . . . , until {xk} converges, compute
{

uk+1 = M−1
1 N1xk + M−1

1 b,

xk+1 = M−1
2 N2uk+1 + M−1

2 b,
k = 0,1,2, . . . . (3.1)

If we introduce matrices

Hmsi = M−1
2 N2M

−1
1 N1, Gmsi = M−1

2 N2M
−1
1 + M−1

2 ,

then the multiplicative splitting iteration method can be equivalently written in the
form:

xk+1 = Hmsixk + Gmsib, k = 0,1,2, . . . . (3.2)

We note that (3.1) can be generalized to the two-step splitting iteration framework,
and the following lemma describes a general convergence criterion for a two-step
splitting iteration (see [3]).

Lemma 3.1 Let A ∈ Cn×n, A = Mi − Ni (i = 1,2) be two splittings1 of the matrix
A, and let x0 ∈ Cn be a given initial vector. If {xk} is a two-step iteration sequence
defined by

{
M1xk+ 1

2
= N1xk + b,

M2xk+1 = N2xk+ 1
2
+ b,

k = 0,1,2, . . . ,

then

xk+1 = M−1
2 N2M

−1
1 N1xk + M−1

2

(

I + N2M
−1
1

)

b, k = 0,1,2, . . . .

Moreover, if the spectral radius ρ(M−1
2 N2M

−1
1 N1) is less than 1, then the iteration

sequence {xk} converges to the unique solution x∗ ∈ Cn×n of the system of linear
equations (1.1) for all initial vectors x0 ∈ Cn.

Evidently, the multiplicative splitting iteration method for the original system of
linear equations (1.1) is convergent if the spectral radius of the iteration matrix Hmsi
is less than 1, i.e., ρ(Hmsi) < 1.

1Here and in what follows, A = M − N is called a splitting of the matrix A if M is a nonsingular matrix.
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3.2 The multi-splitting iteration method for computing PageRank

We now present our new algorithm for computing PageRank by using the PageRank
linear system (2.2) and the multi-splitting iterations (3.1).

As is described in Sect. 2.1, the PageRank problem x = Ax can be reformulated as
(2.2). Moreover, it is obvious that the smaller the damping factor is, the easier it is to
solve the problem. In other words, the same PageRank problem with β as a damping
factor, namely

(I − βP )x = (1 − β)v,

is easier to solve than the original problem (2.2) if β is smaller than α.
Due to this consideration, we introduce two parameters β1 and β2 in the multi-

plicative splitting iterations for PageRank computation. This leads to the following
multiplicative splitting iteration method for computing PageRank (or, simply denoted
by MSI method).

Method 3.1 (MSI method) Given an initial guess x0, for k = 0,1,2, . . . , until {xk}
converges, compute

{
(I − β1P)uk+1 = (α − β1)Pxk + (1 − α)v,

(I − β2P)xk+1 = (α − β2)Puk+1 + (1 − α)v,
k = 0,1,2, . . . , (3.3)

where α is the given damping factor, two parameters β1 and β2 satisfying 0 ≤ β1 < α,
0 ≤ β2 < α, as for the initial guess we may take x0 = e/‖e‖1, which is commonly
used, see the following section.

The new method MSI is actually a two-parameter two-step iterative method and
we will argue that there exists a reasonable convergent domain of two-parameters for
MSI method.

Clearly, the multiplicative splitting iteration method for (2.2) is associated with
the splitting of the coefficient matrix I − αP :

I − αP = Mi − Ni (i = 1,2),

M1 = I − β1P, N1 = (α − β1)P,

M2 = I − β2P, N2 = (α − β2)P .

And the corresponding two-step iteration matrix of the multiplicative splitting it-
eration method (3.3) is given by

H̃msi(β1, β2) = M−1
2 N2M

−1
1 N1 = (I − β2P)−1(α − β2)P (I − β1P)−1(α − β1)P .

We now study the convergence properties of the multiplicative splitting iteration
method for computing PageRank. For the convergence properties of the MSI method,
we apply Lemma 3.1 to obtain the following main theorem.

Theorem 3.1 Let α be the damping factor in the PageRank linear system (2.2), and
let Mi = I − βiP, Ni = (α − βi)P (i = 1,2) are the two splittings of the matrix
I − αP . Then the iterative matrix H̃msi(β1, β2) of the MSI method for PageRank
computation is given by
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H̃msi(β1, β2) = (I − β2P)−1(α − β2)P (I − β1P)−1(α − β1)P, (3.4)

and its spectral radius ρ(H̃msi(β1, β2)) is bounded by

σ(β1, β2) ≡ (α − β2)(α − β1)

(1 − β2)(1 − β1)
,

therefore, it holds that

ρ
(

H̃msi(β1, β2)
) ≤ σ(β1, β2) < 1 ∀ 0 ≤ β1 < α, 0 ≤ β2 < α;

i.e., the multiplicative splitting iteration method for PageRank computation converges
to the unique solution x∗ ∈ Cn of the linear system of equations (2.2).

Proof By putting

M1 = I − β1P, N1 = (α − β1)P, M2 = I − β2P, and N2 = (α − β2)P

in Lemma 3.1 and noting that M1 = I −β1P and M2 = I −β2P are diagonally dom-
inant M-matrix for any positive constant βi < α (i = 1,2) [24], we obtain Eq. (3.4).

By observing that if λi is an eigenvalue of P , then

μi = (α − β2)(α − β1)λ
2
i

(1 − β2λi)(1 − β1λi)

is an eigenvalue of H̃msi(β1, β2). Since |λi | ≤ 1, we get

|μi | =
∣
∣
∣
∣

(α − β2)(α − β1)λ
2
i

(1 − β2λi)(1 − β1λi)

∣
∣
∣
∣
≤ (α − β2)(α − β1)|λi |2

(1 − β2|λi |)(1 − β1|λi |)
= (α − β2)(α − β1)

(|λi |−1 − β2)(|λi |−1 − β1)
≤ (α − β2)(α − β1)

(1 − β2)(1 − β1)

with equality holding for λ1 = 1, so ρ(H̃msi(β1, β2)) = (α−β2)(α−β1)
(1−β2)(1−β1)

< 1. �

Theorem 3.1 shows that the MSI method converges to the unique solution of the
linear system (2.2), i.e., PageRank vector, for any given constant β1 and β2 satisfying
0 ≤ β1 < α, 0 ≤ β2 < α.

As an immediate consequence of Theorem 3.1, we have the following corollary.

Corollary 3.1 Let α, β1, β2 and |μi | be defined in Theorem 3.1. If β1β2 < α, then
|μi | < α.

From Corollary 3.1, it can be concluded that the asymptotic convergence rate of
the MSI method is faster than that of the power method with β1 and β2 satisfying
some moderate conditions.

Next, we will discuss the implementation detail of MSI method for PageRank
computation. Notice that each iteration of this method involves solving a two half-
step linear system:

{
(I − β1P)uk+1 = (α − β1)Pxk + (1 − α)v,

(I − β2P)xk+1 = (α − β2)Puk+1 + (1 − α)v,
k = 0,1,2, . . . , (3.5)
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when 0 < β1 < α, 0 < β2 < α, but each of them is still computationally difficult,
even when βi (i = 1,2) is small. In this case, the implementation of the half-step of
MSI method in each iteration is similar to that of the inner-outer iteration method [8],
i.e., instead of solving linear system with I − βiP (i = 1,2) directly, we define the
following inner linear systems as

(I − βiP )y = fi (i = 1,2), (3.6)

where f1 = (α − β1)Pxk + (1 − α)v or f2 = (α − β2)Puk+1 + (1 − α)v. Then
we use the inner iteration (2.6) to get approximate solution uk+1 and xk+1 in (3.5),
respectively. To terminate the inner iterations, we apply

∥
∥fi − (I − βiP )yj+1

∥
∥

1 < η (i = 1,2), (3.7)

as stopping criteria for (2.6).
For the original PageRank problem (2.2), the iterations of our algorithm is termi-

nated, when the solution vector xk+1 satisfies the stopping criteria:
∥
∥(1 − α)v − (I − αP )xk+1

∥
∥

1 < τ. (3.8)

In particular, when at least one of the two parameters β1 and β2 in (3.3) equals
to 0, we give some remarks about the proposed algorithm.

Remark 3.1 When β1 = β2 = 0, the MSI method reduces to the power method [23].
That is, in each iteration of MSI method for PageRank computation, we need to apply
the power method twice. Obviously, the convergence rate of the MSI method also
reduces to the square of power method’s, i.e., α2.

Remark 3.2 When β1 = 0, β2 
= 0, the MSI method reduces to a new special two-
step method. That is, in each iteration of MSI method for PageRank computation, we
first need to run power method only once in the half iteration step and then solve the
remaining linear sub-system by inner iterations, the similar results hold for β1 
= 0,
β2 = 0.

4 Numerical examples

In this section, we present the numerical experiments to illustrate the performance of
the multiplicative splitting iteration method.

In our experiment, we test three methods for computing PageRank, i.e., the power
method, the inner-outer iteration (called as ‘in-out’) method in [8] and the multiplica-
tive splitting iteration (called as ‘MSI’) method, with damping factor α varying from
0.95 to 0.998. For the inner-outer method, it is observed in [8] that the algorithm is
effective for a crude inner tolerance η and is not sensitive to the choice of the param-
eter β . Hence, our experiments use the choices η = 10−2 and β = 0.5. And for a fair
comparison, just like in the inner-outer method, the inner tolerance in (3.7) is taken
as η = 10−2.

Because the 1-norm is a natural choice for the PageRank computation [14], in
our comparisons we choose the 1-norm of the residual as stopping criterion. For the
power method, the stopping criterion is
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Table 1 The characteristics of test matrices

No. Matrix n nnz den

1 Web-Stanford 281903 2312497 0.291 × 10−2

2 Amazon0505 410236 3356824 0.199 × 10−2

3 Stanford-Berkeley 683446 7583376 0.162 × 10−2

‖xk+1 − xk‖1 < 10−8,

whereas for the inner-outer iteration method and the multiplicative splitting iteration
method, the stopping criterion is

∥
∥(1 − α)v − (I − αP )xk+1

∥
∥

1 < 10−8.

The test matrices are obtained from: http://www.cise.ufl.edu/research/sparse/
matrices/groups.html. In Table 1, we list the characteristics of the test matrices in-
cluding matrix size (n), number of nonzeros (nnz) and density (den), which is defined
by

den = nnz

n × n
× 100.

In our experiments, the largest test matrix is of size 683,446 and has 7,583,376 nonze-
ros.

Numerical experiments were done on a computer with an Inter Corei3 2.27 GHz
with 2G memory. For justification, we set the initial vector x(0) = e/‖e‖1, where
e = (1,1, . . . ,1)n, and n is the dimension of the Google matrix. When we state a
speedup, we use relative percentage gain

vr − vt

vr

· 100 %, (4.1)

where vr is a reference performance and vt is a test performance.

4.1 Choice of the number of β1 and β2

According to Theorem 3.1, the MSI method converges for any β1 and β2, satisfying
0 ≤ β1 < α, 0 ≤ β2 < α. Table 2 and Table 3 show the number of iterations of the MSI
method for two matrices ‘Web-Stanford’ and ‘Stanford-Berkeley’ when α = 0.99, β1
grows from 0.1 to 0.9 and β2 varies from 0.1 to 0.9, respectively.

From Table 2 and Table 3, a rough conclusion is that with one of the parameters
β1 and β2 determined, the iteration steps usually first decrease and then increase with
the other parameter increasing; for instance, in Table 3, for β2 = 0.1, the iteration
steps first decrease for β1 from 0.1 to 0.7, and then increase for β1 from 0.8 to 0.9.
However, to find an explicit relation between β1 and β2, or to find the optimal β1 and
β2 appear very complicated for general PageRank matrices. Our extensive empirical
experience shows that the choice with β1 = 0.5 and β2 = 0.85 generally yields good
performance. That’s why we choose β1 = 0.5 and β2 = 0.85 for MSI method in our
experiments.

http://www.cise.ufl.edu/research/sparse/matrices/groups.html
http://www.cise.ufl.edu/research/sparse/matrices/groups.html
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Table 2 The number of iteration of MSI versus β1 and β2 for ‘Web-Stanford’ matrix

β2\β1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 652 617 539 502 487 487 509 497 563

0.3 564 530 507 488 486 486 486 500 537

0.5 487 487 487 486 486 485 484 483 545

0.7 486 485 485 485 484 485 484 493 491

0.9 552 546 523 495 482 527 512 504 549

Table 3 The number of iteration of MSI versus β1 and β2 for ‘Stanford-Berkeley’ matrix

β2\β1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 620 570 528 514 513 512 511 514 530

0.3 533 521 515 514 513 512 511 510 516

0.5 514 513 513 512 512 512 511 509 522

0.7 512 512 511 511 511 510 510 509 507

0.9 541 527 524 511 508 508 509 515 523

4.2 Comparison of CPU time and the number of iteration

In Table 4, we list the number of iterations and CPU time for all the test matrices.
In the MSI algorithm, according to the analysis of Sect. 4.1, we choose β1 = 0.5 and
β2 = 0.85. The “Gain” in the last column of Table 4 denotes the efficiency of MSI
over in-out in terms of CPU time calculated by (4.1). Numerical experiments indicate
that our algorithm is better than the inner-outer iteration method.

In all examples, the multiplicative splitting iteration method converges with about
half the iterative steps as that of the inner-outer iteration method. Obviously, our
method requires less time than the inner-outer method for increasing value of α and n,
where α and n denote respectively the damping factor and the size of the Google ma-
trix. For the matrix “Stanford-Berkeley” with α = 0.998, for example, the inner-outer
iteration method and the multiplicative iteration method require 470.485 s, 426.671 s
respectively to reach the desired accuracy; see Table 4. Thus the effectiveness of the
proposed algorithm is verified. However, as for the matrix-vector products, they are
approximately equal because each iteration of MSI method needs about two matrix-
vector multiplications.

Before ending this section, we would like to discuss the complexity of the three
methods. The computational cost of the power method per iteration is essentially
a matrix-vector product. The in-out method is slightly more expensive than that of
the power method per iteration but with much less total iteration steps. Since the
MSI method per iteration consists of two in-out processes, then its cost per iteration
approximates that of two steps of the in-out method; see, for instance, [8, 14].
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Table 4 Comparison of various methods for test matrices

No. α Iterations Time (s)

Power in-out MSI Power in-out MSI Gain

1 0.95 280 228 112 19.615 13.545 12.603 6.95 %

0.99 1392 971 483 104.362 55.576 51.703 6.97 %

0.995 2783 1763 878 325.609 100.625 93.446 7.13 %

0.998 6963 3689 1844 576.400 210.096 194.917 7.22 %

2 0.95 238 233 114 23.193 20.059 18.654 7.00 %

0.99 1043 1032 512 99.134 85.848 79.723 7.13 %

0.995 1949 1922 957 183.340 159.404 147.926 7.20 %

0.998 4691 4607 2299 441.627 380.476 352.243 7.42 %

3 0.95 277 225 111 36.143 25.284 23.271 7.96 %

0.99 1341 1024 508 169.249 111.139 101.467 8.70 %

0.995 2618 1925 959 343.625 207.843 189.239 8.95 %

0.998 6350 4362 2177 912.610 470.485 426.671 9.35 %

5 Conclusions

In this paper, we proposed a generalized two-step iteration scheme for the computa-
tion of the PageRank vector and demonstrated that the iterative series produced by
MSI method converge to the PageRank vector when the parameters β1 and β2 satisfy
some moderate conditions. Our new algorithm is easy to be implemented. Numerical
tests indicate that our new method works better than the inner-outer iteration method.
In the future, the theory of the optimal choice for the two parameter β1 and β2 is still
required to be further analyzed.
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