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Abstract Shunting Inhibitory Artificial Neural Networks are biologically inspired
networks in which the synaptic interactions are mediated via a nonlinear mechanism
called shunting inhibition, which allows neurons to operate as adaptive nonlinear
filters. This paper considers the problem of existence and exponential stability of the
pseudo almost periodic solution for shunting inhibitory cellular neural networks with
mixed delays. The Banach fixed point theorem and the variant of a certain integral
inequality with explicit estimate are used to establish the results. The results of this
paper are new and they complement previously known results.
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1 Introduction

Cellular neural networks, introduced by Chua and Yang [12, 13], have been exten-
sively investigated due to their important applications in such fields as image process-
ing and pattern recognition [5-9]. Later, Bouzerdoum and Pinter and Bouzerdoum
[3, 4] have introduced a new class of CNNs, namely the shunting inhibitory CNNs
(SICNNSs). SICNNs have been extensively applied in psychophysics, speech, percep-
tion, robotic, adaptive pattern recognition, vision, and image processing. It is well
known that studies on SICNNs not only involve a discussion of stability properties,
but also involve many dynamic behaviors such as periodic oscillatory behavior and
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almost periodic oscillatory properties. This is modeled using the notion of pseudo
almost periodic functions which can be represented as an almost periodic process
plus an ergodic component. Hence, there have been extensive results on the problem
of the existence and stability of the equilibrium point, periodic and almost periodic
solutions of SICNNs with constant time delays and time-varying delays in the litera-
ture. We refer the reader to [10, 20] and the references cited therein. However, there
exist few results on the existence and exponential stability of the almost periodic
solutions of SICNNs with continuously distributed delays. On the other hand, it is
well known, that time delays are inevitable in the interactions between neurons. This
means, that there exist time delays in the information processing of neurons due to
various reasons. For instance, time delays can be caused by the finite switching speed
of amplifier circuits in neural networks or deliberately introduced to achieve tasks
of dealing with motion related problems, such as moving image processing, pattern
recognition, robotics, etc. Consequently, time delays in the neural networks make the
dynamic behaviors become more complex, and may destabilize the stable equilibria
and admit almost periodic oscillation, pseudo almost periodic motion, bifurcation and
chaos.

Few years ago, Chen and Cao [10] have investigated the existence of almost peri-
odic solution of the following system of SICNNs:

d.X"
Sh=—aini— Y Cif (= 0)xij () + Lij@) e))
CHeN:(i.))

However, to the author’s best knowledge, there is no published paper considering the
pseudo almost periodic solutions for SICNNs neural networks with mixed delays.
Motivated by the above discussion, we consider the following more general SICNNss:

dx”
d;j =—a;jXij — Z B,kjl (0)g (xi (t — 1)) xi (1)
Bf/eN,(i.j)

- > Cﬁ(r)(/o Kl-,-<u)f(xkz<t—u))du)xi,-(nui,(r) (©)

CHeN . j)

The main purpose of this paper is to obtain some sufficient conditions for the ex-
istence, uniqueness and exponentially stability of the pseudo almost periodic solu-
tion for system (2). By applying fixed point theorem and differential inequality tech-
niques, we derive some new sufficient conditions ensuring the existence, uniqueness
and exponential stability of the pseudo almost periodic solution in the convex set,
which are new and they complement previously known results. Moreover, an exam-
ple is provided to illustrate the effectiveness of the new results.

2 Almost periodic and pseudo almost periodic functions
In this section, we would like to recall some basic notations and results of almost

periodicity [2, 11, 15] and pseudo almost periodicity [17—19] which shall come into
play later on. BC(R, R") denotes the set of bounded continued functions from R
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to R”. Note that (BC(R, R"), ||.|lco) is a Banach space where |.||s denotes the sup
norm || f{loo := sup;eg [ f (O]l

Definition 1 Let k € N and f € C(R,R¥). We say that f is almost periodic (Bohr
a.p.) or uniformly almost periodic (u.a.p.), when the following property is satisfied:

Ve>0, >0, YaeR, WBelwa+l]. [fC+8-f0O)], =<e

We denote by AP(R, R¥) the set of the Bohr a.p. functions from R to R¥. It is
well-known that the set AP(R, R¥) is a Banach space with the supremum norm.
Besides, the concept of pseudo almost periodicity was introduced by Zhang [17-
19] in the early nineties. It is a natural generalization of the classical almost period-
icity. Define the class of functions PAPy (R, R¥) as follows
k 1 r
PAPY(R, X) = € BC(R,R lim — t)||dt=03.
O(®, X) {f (RR)/ lim [T||f< | }
Definition 2 A function f € BC(R, R¥) is called pseudo almost periodic if it can be

expressed as f = h+ ¢, where h € AP (R, R¥) and ¢ € PAPy(R, R). The collection
of such functions will be denoted by PAP(R, R¥).

Remark 1 The functions & and ¢ in the above definition are respectively called the
almost periodic component and the ergodic perturbation of the pseudo almost peri-
odic function f. Further, the decomposition given in the definition above is unique.
Observe that (PAP(RR, Rk), Il - lloo) is @ Banach space and

AP(R,R¥) ¢ PAP(R,R*) € BC(R, RF)

since the function ¢ (7) = sin’t + sin® v/5¢ + exp(—t2 cos? 1) is pseudo almost peri-
odic function but not almost periodic.

3 Description system and preliminaries
In this paper, we study a class of shunting inhibitory cellular neural networks with

distributed time delay. The dynamics of a cell C;; are described by the following
equation

d)C"
L= —ajjxij — BY (1)g (xu (t — 7))xi (1)
d[ J
Bf/eN,(i.j)

- > ciﬁ?(r)(/ Ki,-<u)f(xkz<r—u>)du)xi,»(r)+Li,»(r> (©)
CHeN,i.j) °

i=12,....,m; j=1,2,...,n, where C;; denote the cell at the (i, j) position of the
lattice at time ¢, the r-neighborhood N, (i, j) of C;; is determined by

Ny, j) = {Cx :max(lk —il,|l = jl) <r, 1<k <m,1 <l <n}.
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Here x;;(-) represents the activity of the cell C;;(-), L;;(-) is the external input
to C;j(-) , the constant a;; > 0 is the passive decay rate of the cell activity, Bl.kjl )

and C f‘.l (-) are the connection or coupling strength of postsynaptic activity of the
cell transmitted to the cell C;; (-) depending upon discrete delays and distributed
delays, respectively; the activation functions f and g are continuous representing
the output or firing rate of the cell C;;(¢); T represents axonal signal transmission
delay. Note that the functions Bikjl ), ijl (), Lij(-), K;j(-) are all pseudo almost
periodic. Throughout this paper, we set

x11(1)

i (1)
x() ={xij()} = :

o1 (1)

X (1)

For all x () = {x;; (1)} € R"*™, we define the norm
o] = max{x,0)

We also consider the following conditions (H1), (H»), (H3), (Hs), (Hs) and (Hpg).
(Hp) f:R — R satisfies the Lipschitz condition, i.e. there exists positive scalar
Ly >0suchthatforall x,y e R

|f(x) = FO| < Lylx—yl 3

(Hy) g : R — R satisfies the Lipschitz condition, i.e. there exists positive scalar
Lg > Osuchthatforall x,y e R

lg(x) — g(y)| < Lglx — y| 4)

(H3) Forall 1 <i <mand 1 < j < n, the functions Bl.kjl ¢, cikjl (), Lij (), Kij ()
are pseudo almost periodic,
(Hy) there exist non-negative constants M s, M, L, r, p such that

L..
0 <My =sup|f(x)], 0 < Mg =sup|g(x)|. L:rr_la_x{l},
xeR xeR Lo L dij
Kl Kl
Mg ZB}C}eN,(i,j) |Bj; (O] + My ZC{(J.IGN,(i,j) IG5 (O]
R = supmax - ,
teR BJ aij
ORI
°T1°kr

andforallt eR, foralll <i<m;1<j<n

(ZBi"J.’eN,(i,j)(Mg + LgP)|Bikjl O+ ZC{‘J?eN,(i,j)(LfP + Mf)|cikjl(t)|>

a,-j

<1.

a =
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(Hs)Forall 1 <i <m and 1 < j <n, the delay kernels K;; : [0, +00) — R are
continuous, integrable and satisfying

00 00
/ Kij(u)=1, / K,-j(u)e”“du < 400,
0 0

where u is a sufficiently non negative small constant.
(Hg) For every sufficiently small ¢ > 0

aij — ( Y BwuipMg+Lgp+ Y |CH@p|My+ pr>
B eN:(i.)) CleNG.j)

is non-negative.

Definition 3 [14] Let f : R — R be a continuous function, then % is defined

as
DY f®) _, fa+h)—f@)
—— =limsup——————
dt h—0F h
Remark 2 The upper-right Dini derivative w of | f(#)] is given by
DTV|f()l . dz (1)
. S = t
o sign(f () —

where sign(-) is the signum function.

4 Existence of the pseudo almost periodic solution

In order to prove the first main result of this paper, we shall demonstrate some lem-
mas.

Lemma 1 If ¢ € PAP(R, R¥), then ¢(- — h) € PAP(R, R¥) for all h € R.

Proof By Definition, we can write ¢ = @1 + ¢, where ¢; € AP(R, R¥) and ¢, €
PAPy(R, R¥). Obviously,
e —h)=@i(- —h)+@2(- —h).
Observe that @1 (- — h) € AP(R, R¥) and
1 T 1 T—h
0<— t—h)||dt = — t||dt
o7 [ Jeme=mldr =5z [ o]
2T +2h T+h
< — t)|dt,
=2rQT +2h) )1y, 20

which implies that ¢ (- — k) € PAPy(R, R¥). So ¢(- — h) € PAP(R, R¥). O
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240 F. Chérif

Lemma 2 Suppose that assumptions (Hy)—(H3) hold. If p € PAP(R, R), then for all
i, j the function W;; : t —> (fooo K;j(uw)o(t — u)du) belongs to PAP(R, R).

Proof By definition, we can write ¢ = @1 + ¢2, where ¢ € AP(R,R) and ¢, €
PAPy(R, R). Then

w,»ja):/o Ko@) (91 — ) + 92t — 10))du

o0 o0
- / Kij (@)pr (¢ — u)du + / Kij g2t — w)du
0 0
=Wh(0) + W)
First, let us prove that \I-'ilj € AP(R, R). For all £ > 0 one has
3. >0, VaeR, Fela,a+l] |oi¢-+8)—ei1()]  <e.

and consequently

}\I/ilj(t+3)—lIJi1j(t)’=/é Kij(u)<p1(t+8—u)du—/0 Kij(wei(t —u)du

= [ K@i+ —wdu— [ K@i - wdu
0 0

- /O Kii)[@1(t 45— ) — o1 — w)]du

t
- f Kt — w)[g1u + 8) — o1 (w)]du

—00

IA

t
f K3t — )] 1t + ) — 1) d
<&

which implies that \I/ilj € AP(R, R). Now we turn our attention to the function \1112]
One has

1 T

lim — W2(1)(1)|dt

r_iToozT/,T} GO0
T

= lim — dt

T—+00 2T J_7p
) 1 [e'¢) T
= lim = A !Kij(u)l(/_T|¢z(t—u)|dt>du
1 00 T—u
lim — |K,](M)|</ |§02(Z)|d2>du
T—u

T—+00 2T Jo _

. 1 o0 T+u
STEIEOOﬁ/O |Kij(”)|</_T_u|<ﬂ2(z)|dz>du

lim Oo|1< ( )|7T+“ /T+u| @)|dz )d
= ii(u u
oy N LA Y e W AL

= 0’
which implies that \Ilizj (t) € PAPy(R, R). Consequently W;;(¢) € PAP(R, R). O

/O Kij ) (t — w)du
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Lemma 3 Suppose that assumptions (Hy)—(Ha) hold. Define the nonlinear operator
T by: for each @ = (@11, ..., Qlns - Cmls---» Omn)’ € PAP(R, R"¥™M)

t — 3
[ €™M Fyi (s, @r1(s))ds

[t e =By, (s, g1 (s))ds

xp(1) = :
Sl e € Ft (s, 1 (5))ds
f’ e—anm(t_s)l;' (s ($))ds
—00 nm\S> Pnm
where
Fij(s.0i)) ==Y Bl )g(ouls —)eij(s)
Bi"j’eN,(i,j)

-y C,»kjl(s)(/ Kij(u)f(wkz(s—”))d”>¢if'(s)+L"f(s)'
C{fi[eNr(i,j) °

5
Then T maps PAP(R, R™™) into itself.

Proof Let ¢ € PAP(R, R"*™). Immediately by Lemma 2 the function

f— ( | " Kot - u)du)
0

belongs to PAP(R, R"*™), Next, by using (Hi), (Hz), (H3) and the composition
theorem of [1] it follows that the functions ®;; : s —> Fj;(s, ¢;j(s)) belong to
PAP(R,R). Consequently, one can write ®;; = @}j + ¢>izj where Cbl!j € AP(R,R)
and <1>,2j € PAPy(R,R). So, forall 1 <i<mand1<j<n

t

e~V (5)ds + / e UITID (5)ds = ©1(1) + O2(1).

—00

t
(Tijpij)(®) =/

—00

Let us prove the almost periodicity of the function
t
oF :t+—>/ e_“"f(t_‘v)@ilj(s)ds.
—00

For ¢ > 0, we consider in view of the almost periodicity of ® ilj, a number L such
that in any interval [c, @ + L[ one finds a number §, with property that

sup|®}; (1 +8) — @}, (1] <e,
teR
where forall 1 <i <m and 1 < j <n. Afterwards, we can write
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t+8 t
|@1(; +68) — @1(;)| = '/ e—aij(t—s)cbilj(s)ds _ / e—uij(l—s)cpilj(s)ds
—00

—00

t t
= ' / e I D (s + 8)ds — / e D (s)ds
—00

—0o0

t
—00

&
<

= 3

a; j
which implies that ®; € AP(R, R). Now, we turn our attention to ®;. We have to
prove thatforall 1 <i <mand 1 <j <n

1 T t
lim — —4j =) o2 (s)ds|dt = 0.
o 1| e
Clearly,
T | pt (52
li — 4= ps (s)ds|dt < I + I
where
1 T t
L= lim — / / le= 1= @2 (5)|ds )dt
T—+o00 2T -T -T J
and

1 T -T ( )2
_ 3 —a;i(t—s
L= TETOO ﬁ /;T a (foo |6’ : q)ij (S)|ds).

Now, we shall prove that I} =1, =0

1 T t ) 1 T t )
2T _T</—T|e(tm” i (S)|ds)dt T 2T /—T </—T e (g, (S)|ds>dl
1 T t+T )
P o
1 T +o00 )
< ﬁfT(/O eEa"j|d>ij(t—§)|d§>dt
+oo £ 1 T )
= —sdij | — O (t —&)|dr |d
/0 ; (zr/_T| 21— ¢)| )s

Since the function <I>12j (-) € PAPy(R, R) then the function ®7 defined by

T+E 1 T+
®T(§)—Tm _T_$|q)ij(”)|d”
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is bounded and satisfy limr_, o, ©7(§) = 0. Consequently, by the Lebesgue domi-
nated convergence theorem, we obtain

1 T t
L= lim — / / e (=941 @2 (5)|ds )dt = 0.
T—+00 2T -T -T J

On the other hand, notice that |<I>i2j loo = SUP;cr |<I>i2j ()| < oo then

1 T -T
h= lim — ( f |e("‘)“"-"<Dl-2j(s)|ds>dt
—+0o —T \J—00
1 T -T
=iz [ ([ o wlasJa
- —00

sup |(I)2 ®)| T +o0
lim R / / e t%idE \dt
T—4o00 2T -T t+T

sup,er |®% ()| (T 7 p+oo
lim SUPrer 175 1)1 / f e 5% dg \dr
T—+o0 2T T \J2r

supyeg | D7 (1) 2

T—+o0 ajj

IA

IA

= aijT —

Consequently, the function ®, belongs to PAPy(R,R). So for all 1 <i <m and
1 <j<n, (I'gj) belongs to PAP(R,R) and consequently (I'¢) belongs to
PAP(R, R">™M), O

Theorem 1 Suppose that assumptions (Hy)—(Hs) hold. Then (2) has a unique
pseudo almost periodic solution in the convex set

RL
B=B(¢o,p)={(pGPAP(R,R"X'”),||<p—<p0|| < 1—R} (6)

where

O —an(i—
f_ooe ant=s) 111 (s)ds

fioo e~ am=9) 1, (s)ds

wo(t) = :
fioo e_aml(t_s)Lml (S)dS

fioo e nm (tis)an (s)ds

Proof Set B = B(go, p) = {¢ € PAP(R,R™™), |lp — ¢o|| < {25}, Clearly, B is a
closed convex subset of PAP(R, R"*™) and

o] = supmax{/ e(’”“”Li/(s)ds} < supmax{l} =max{l} =L.
teR b | J—o0 ' teR &J | Gij i.j | aij
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244 F. Chérif

Therefore, for any ¢ € I3 by using the estimate just obtained, we see that
L

1—r

RL
el < lle —goll + llgoll = T +L=
Let us prove that the operator I' is a self-mapping from 5 to B. For short, we denote
in the rest of the proof N, (i, j) = N,. Let us consider ¢ € 5 then we have

t
/_oo eaij(ls)( Z Bikjl(S)g((Pkl(s — T))go,'j(s)

[Ce)@) — g0 | = supmax

BfleN,
+ ) c,kj(s)< / Kz](s)f(fﬂkl(s—u))du><ﬂu(s)ds>‘
CHeN,
t
<supmax{/ e“"/(’s)(Mg Z 1B (s)]
teR bJ —00

Kl
Bij €N,

+Mp Y |C (S)’dS>H||‘P”

CgeN
MY ey, |BE O+ Ms Y cugy ICH @)
< sup max{ i 5 }ugon
teR LJ aijj
RL
=< V]
=1-L

which implies that (I'p) € B. Next, we shall prove that the operator I is a contraction
mapping of B. In fact, in view of (H3), (H3) and (Hy) for any ¢, ¢ € B, we have

|(Te) — @]
t
=suprr_1a_x{/ e_('_s)“"-"( Z Bkl(S)g(fﬂkl(S—T))%j(S)
teR UJ —00 Bk.leNr
— Y B ®)g(puls — 1))
Bf/eN,
+ Y BIO[g(euls — 1) — g(Ymils — 1)) Wi (s)
Bf/eN,
+ Y C{f}(s)( / Kij(u)f(ﬁl’kl(s—M))du>90ij(s)d5
CikjleN, 0
-y c“m( f Kiju) f (Yut — u))du>w,-j(t>)ds }
ij[eN, 0
t
<supmax{/ e(’x)”ing( Z |Bkl(s)||<p,j(s) wij(s)|>
teR bLJ —0 B.",.’eN,
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Pap solution of SICNNs 245

+ Y B ®)|g(eus — 1)) = g(Wrls — )| || ()]

BHeN

+ Y |CH® || )]

CkleN,
X <f0 |Kij )| f (o (s — ) — £ (Yra(s —u>)|du)

+ ) [CH®)]]0ij () = ¥ij ()] /0 K,-,-(u)f(x/fms—u))duds}

Kl
Cl.j €N,

t
<supmax{/ e_(’_s)a”< Z |Bkl(S)H‘le(s) ij ()]

teR L.J Bkl

+Lg Y |BY (s)Hsokz(s—r)—wkz(s—r)||w,](s>|
Bi{eN: (i.j)

+ Y B ®)|g(ous — 1)) — g(Wrls — D) || ()]

BUeN

+ Y |CH® || )]

C’f’eN,
X (fo |Kij )| f (o (s — ) — £ (Yua(s —u))|du)

+Mf Z |C (S)H(pl](?)_l/ft](s)‘)dY}

C“eN

t
<supmax{f e_(’_s)a”< Z |B L) |@ij () — i (5)]

teR bJ B"l

+Lg Y. |B"’<s>!|¢kz(s—r)—wkz<s—r>||x/f1]<s>|

kil
B[j eN,

+-§:|dﬂ@ﬂf£ Kij ()| g (s — u) — (s — w)|du|g;j(s)]

Cfi’eN,
+My Z |C (S)H(/)U(S) W,’j(S)Dds}
c“eN,
<ale— vl

By (Hy), the operator I is a contraction mapping. Consequently, I" possess a unique
fixed point ¢, € B CPAP(R, R™™) that is I'(¢x) = ¢«. Hence, @, is the unique
pseudo almost periodic of the model (2). (|
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5 Stability of the pseudo almost periodic solution

In this section, we study the exponential stability of the unique almost periodic solu-
tion of the model (2).

Theorem 2 Suppose that assumptions (Hy)—(Hg) hold. Let ¢ = (011, ..., @lny .-+,
Omls -+ Omn)' the unique pseudo almost periodic solution of (2) in B. Then there
exists a constant . > 0 such that for any solution x of (2) in B and for all t > 0 we
have

|x(@®) — @) || < Me™

where M = sup, _q [|x(1) — (1)

Proof Forall 1l <i <m,1<j<n, set

Xij=@—ap+ Y |BH)IMy+Lee"p
Bi"j’eN,(i,j)

+00
+ > ICH@HIMs+Lygp / Kij(s)e"ds (7)
CH N (i.j) °

By hypothesis (Hg), ¥;;(0) < 0. Since the functions ¢ — x;;(¢) are continuous
functions on R there exists a sufficiently small constant j such that

Xxij(w) <0, 1<i<m,1<i=<n.
Take an arbitrary € > 0. Forall 1 <i <m, 1 <i <n, set
2ij (1) = |xij (1) — @ij ()|
Then forall 1 <i <m,1 < j <n, and for all # < 0, one has
Zij(t) <M <M +e.
In the following, we shall prove that forall 7 > O and forall 1 <i <m,1<j<n
Zij(t) <M +e.
Suppose the contrary. Then there exists 1 < iy <m, 1 < jo <n such that
Aigjo = {t >0, 2igjo (1) > M + €} #0
Let
inf{t > 0,z;;(t) > M +e}#0 {t>0,z;;(t) > M+ e} #0
tij:{+oo {t>0,z;;t) >M+e} =0

It follows that #;; > 0 and z;; () < M +¢€, for all t < #;; Let us denote 7, = min;; #;;,
where 1 < p <m,1 <gq <n. It follows that 0 < 7,;, < +00 and for all t < t,,, one
has

zijt) <M +e, 1<i<m,1<j<n.
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Pap solution of SICNNs 247

In addition, noting that ¢, = inf{t > 0, 2,4 () > M + €}, we obtain immediately
qu(tpq) =M +e, D+qu(tpq) >0.
Now since x(-) and ¢(-) are solutions of (2), we get
0< D+qu(tpq)
_ pt
=D [|xpg (1) — ¢pq (l)|em]|t:zpq
DY |x; (1) — i (1)]

=l = gt + 2

)

= |qu (Tpg) — Ppq (tpq)“‘ewpq + el ra5gn(xpg (1pg) — Ppg(tpq))

1=lpq

X {—apq (*pg(tpg) = Ppq(tpg))

+ Z Bf;lq (tpg) |8 (¥k1 (tpg = T))xpg (1pg)
B eN; (p.q)

- g((/?kl (tpg — ":))Ql)pq (tpq) |em’"’

+0o0
+ Z Cfalq(tpq)/o kij () f (xki(tpg — 1)) pg (tpq)

CHeN:(p.9)
Mg }

< |xpq(tpg) = 0pq(tpg) | 1€ Pt — apgetv| x4 (1pg) = 9pg (tpq)]

+ Z <|Bfai1 (tp) | & (X1t (tpg — ©) [Xpg (1pg) — @pg (tpg)|
Bf{eN,(p.q)

- f((pkl(tpq - u))du(ppq (tpq)

+ |8 (vt (tpg — ©)) — 8 (011t pg = 0))||@pg (1pg) ] "7
+ [g(vu(tpg — ©)) = g (@1 tpg — )| |@pg (tpq)|>

ki t
+ ) CpLpgeth
CHeN (p.g)

+00
/0 ki ) f (x40 (tpg — )

X g (tpg) = @pq 1pg)]

+o00
+ /0 kij )| f (xki(tpg — ) — f (w1 (tpg — ) |dugpg (tpg)

SM+O—ap)+ D |BY (1) |Mgzpg(tpg) + Le|zii(tpg — )" p
Bf{eN;(p.q)

+00
+ Z }Cfalq(tpq”zpq(tpq)Mf/ kij (u)du
CHeN (p.a) 0

400
+/ l9pg (tpg)|L ¢ Kij(u)e! ziy (tpg — u)du
0
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§(M+e)<(u—a,,q)+ > B ()| My + Lee" p
Bl.kjleNr(pyq)

+o0
+ Z }Cfalq(tpq”Mf + Lf/)/ kij(”)ewd”>
CHeN (p.a) ’

It follows that x;; () > 0 which contradicts the fact that x;; (i) < 0. Thus we obtain
that for all # > O,

zij (1) = |xij (1) — @i ()] < (M + €)e .

Note that ||x(7) — ()]l = sup,cg max;; |x; () — ¢;(¢)|, then passing to limit when
€ — 07 we obtain for all > 0

|x(0) — )] < (M + €)™

The proof of this theorem is completed. g

Remark 3 Our results and the method used in the proof of Theorem 1 are essentially
new. Moreover, it should be pointed out that the proof of the exponential stability is
similar than Theorem 5 in [8]. Notice that the pseudo almost periodicity is without
importance in the proof of the above theorem and we have to replace the varying-time
delay t(¢) by a constant delay t. Further, if Bl.kjl (t) = 0 then this paper will be the
natural continuation of [21] since the authors studied the almost periodic solutions.
Besides, our model is more general than [20]. On the other hand if a;;(¢) = a;; and
C ikjl () = 0 then this paper improve and generalize [16].

To our best knowledge, there is no published paper considering the pseudo almost
periodic solutions for shunting inhibitory cellular neural networks with impulses and
mixed delays.

6 An example

In order to illustrate some features of our main results, in this section, we will ap-
ply our main results to some special three-dimensional systems and demonstrate the
efficiencies of our criteria.

Let us consider

dx..
Sh=—ai = Y BOg0u(t = 0)xij (1)
BffeN, (i, ))

- > o ( / Kij(u) f (e (1 —u))du)xij(r> +Lij(1) (®)
CHeN, (. j) ‘
where i, j € {1, 2, 3}.

ajy ap a3 5
a1 axp a3 |=\|7
a3 axn  asz 4

W L oo
o0 N o©
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Bii B Bis 0.1cosv/2t 0.2cos+/5t 0.3 cos~/2t

By By By | =1 0.6cosv21 0 0.5cos /5t

B31 B3y B 0 0.4cos+/2t  0.2cos/5t

Cii Cpp Cy3 0.2cos~/2t  0.4cos/5t 0

Cyi Cxn Cx | =|0.3cosv2t 0 0.3 cos /5t

C31 C3xn Cs3 0.5cos \/gt 0.6cos+/2t 0.5cos «/§t

L L I cost+e”2 cos? 1 sint+e”2 cos? 1 costJre”2 cos? ¢

11 12 13 20 20 20

L2] L22 L23 — sin \/El-‘re_lz coszt COSZ+€_Z2 coszl cos +e—/2c052t
20 20 20

L31 L3 L33 siniet>cos’t sinte= 20 ginstsin /D 05
20 20 20

Let the r-neighborhood N, (i, j) (i, j € {1,2,3}) of Cij be

N, (1,1) ={Cq1, C12, C21, C12}
Ny (2,1) ={C31, C11, C22, C31}

N, (1,3) ={C12, C13, Ca3}
N, (3,3) ={C33, C33, C23, C22}

It follows

CreN;(1,1)

CreN,(1,2)

CrieN,(1,3)

CreN(2,1)

CreN(2,2)

CrieN;(2,3)

CreN;(3,1)

CreNy(3,2)

CrieN;(3.3)

N (2,2) ={C2, C31, Ci2, C23, C32}
Ny (2,3) ={C23, C13, C22, C33}

3 CBh) =0.7]cos V2t | +0.5|cos /51

N:(1,2) ={C12, C11, C2, C13}
N:(3,1) ={C31, C21, C2, C3}

N;(3,2) ={C32, Cx, C31,C33} (9)

> I ()] =0.5]cos V2| + 0.4] cos V51|
> R =02|cosv/2t| +0.4| cos /51|
>l =0.7|cos /51|

> C5()=0.5|cosv2t| +0.5|cos /51|

(10)

> By =0.8|cos V51|
> C§()=03|cosv2t| +0.8| cos /5t
> Ch)=0.6cos V2| + | cos /51|

3 Cl() =0.6]cos v/21] +0.8] cos V5|
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Similarly,

> Bl ()] =07 cos v/2t] +0.2| cos v/5t|
BueN, (1,1)

Z |Bi‘é(t)| :0.4|cosﬁt| +O.2|COS\/§I|
By eN,(1,2)

> 1B =0.7|cos V2| + 0.3| cos /5|
BrieNy(1,3)

D B3 ()] =04]cos 21| +0.2| cos v/5|
BueN, (2,1)

> IBY ()] =]|cosV2t| + 0.7 cos V/5t| (11
B eNy(2,2)

> IBK(0)=0.3|cos V2| +0.7| cos v/5]
Bri€Nr(2,3)

> By ()] =|cosV2]
BueN, (3,1)

> IBY () =04]cos V2| +0.2| cos V5|
By eN,(3,2)

> IBY(0) = 04| cos V2| +0.7| cos v/5|

Bri€N(3,3)

Pose f(x) =gx) = %(|x + 1] —|x —1|). Clearly My =M, =0.1

M Kl
Mg 3 ghten, . 1Bij D1+ My Yctien, .y 1Cij O]
R = supmax

teR 1J ajj
M 1.7+ Ms1.6
:supmax{ <u>”:0.11 (12)
teR isJ aij

EAREATARE
L =supmaxy —- =maxy — ¢ = —.
teR 6J ajj i,j aij 30

Now, since

a = sup max

(ZB@;GN, (Mg + Lgp) B (D1 + X, (Lo + Mp)IC] (r>|>
: : : <1
teR 4J

aij
and for all i, j € {1, 2, 3}
Yoo BlwpIMy+ Lo+ > [CHupMy+Lip<3  (13)
BffeN, (i) CHeN . j)

then all the conditions of Theorems 1 and 2 are satisfied and consequently by Theo-
rem 2 it follows that the unique pseudo almost periodic solution of (8) is exponential
stable.
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7 Conclusion

In this paper, some novel sufficient conditions are presented ensuring the existence
and uniqueness of the pseudo almost periodic solution for shunting inhibitory cel-
lular neural networks with mixed distributed delays. Note that we just require that
activation function is globally Lipschitz continuous, which is less conservative and
less restrictive than the monotonic assumption in previous results. The method is very
concise and the obtained results are new and they complement previously known re-
sults [20]. Finally, an illustrative example is given to demonstrate the effectiveness of
the obtained results.
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