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Abstract This paper investigates some new existence results for an nth-order non-
linear differential equation with four-point nonlocal integral boundary conditions
(strip/slit like conditions). Our results are based on some standard fixed point the-
orems and Leray-Schauder degree theory.
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1 Introduction

Nonlocal multi-point problems constitute an important class of boundary value prob-
lems and have been addressed by many authors, for instance, see [1, 3, 6, 7, 9, 11–16,
18–23]. The multi-point boundary conditions appear in certain problems of thermo-
dynamics, elasticity and wave propagation, see [18] and the references therein. The
multi-point boundary conditions may be understood in the sense that the controllers
at the end points dissipate or add energy according to censors located at intermediate
positions. However, much of the literature dealing with four-point boundary condi-
tions is restricted to the involvement of nonlocal parameters in the solution or gradient
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of the solution of the problem. Recently, Ahmad and Ntouyas [5] studied a second
order boundary value problem with four-point nonlocal integral boundary conditions.

The aim of the present paper is to develop some existence results for the following
nth-order boundary value problem with four-point nonlocal integral boundary condi-
tions

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x(n)(t) = f (t, x(t)), 0 < t < 1,

x(0) = α
∫ ξ

0 x(s)ds, x′(0) = 0, x′′(0) = 0, . . . , x(n−2)(0) = 0,

x(1) = β
∫ 1
η

x(s)ds, 0 < ξ < η < 1,

(1.1)

where f is a given continuous function, and α,β are real numbers.
Integral boundary conditions have various applications in applied fields such as

blood flow problems, chemical engineering, thermoelasticity, underground water
flow, population dynamics, etc. For a detailed description of the integral boundary
conditions, we refer the reader to the papers [4, 10] and references therein. It has
been observed that the limits of integration in the integral part of the boundary con-
ditions are often taken to be fixed. In the present study, limits of integration in the
integral boundary conditions involve the parameters 0 < ξ < η < 1. The application
of such conditions can be found in the slit/strip diffraction problems [2, 8].

The paper is organized as follows: in Sect. 1, we prove an auxiliary lemma that
we need in the sequel. The main results based on the Banach contraction principle
and Krasnoselskii’s theorem are presented in Sect. 2, while the third result relying on
Leray-Schauder degree theory, is obtained in Sect. 3. The methods used are standard,
however their exposition in the framework of problem (1.1) is new.

Lemma 1.1 For a given y ∈ C[0,1], a unique solution of the boundary value prob-
lem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x(n)(t) = y(t), 0 < t < 1,

x(0) = α
∫ ξ

0 x(s)ds, x′(0) = 0, x′′(0) = 0, . . . , x(n−2)(0) = 0,

x(1) = β
∫ 1
η

x(s)ds, 0 < ξ < η < 1,

(1.2)

is given by

x(t) =
∫ t

0

(t − s)n−1

(n − 1)! y(s)ds

+ 1

n�

[

α
(
n − β(1 − ηn)

)
∫ ξ

0

(∫ s

0

(s − m)n−1

(n − 1)! y(m)dm

)

ds

+ αβξn

∫ 1

η

(∫ s

0

(s − m)n−1

(n − 1)! y(m)dm

)

ds − αξn

∫ 1

0

(1 − s)n−1

(n − 1)! y(s)ds

]

+ tn−1

�

[

−α
(
1 − β(1 − η)

)
∫ ξ

0

(∫ s

0

(s − m)n−1

(n − 1)! y(m)dm

)

ds
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+ β(1 − αξ)

∫ 1

η

(∫ s

0

(s − m)n−1

(n − 1)! y(m)dm

)

ds

− (1 − αξ)

∫ 1

0

(1 − s)n−1

(n − 1)! y(s)ds

]

, (1.3)

where

� = αξn

n

(
1 − β(1 − η)

) + (1 − αξ)

(

1 − β(1 − ηn)

n

)

�= 0. (1.4)

Proof We know that the general solution of the equation x(n)(t) = y(t) can be written
as

x(t) = c1 + c2t + c3t
2 + · · · + cnt

n−1 +
∫ t

0

(t − s)n−1

(n − 1)! y(s)ds, (1.5)

where c1, c2, . . . , cn ∈ R are arbitrary constants. Applying the boundary conditions
for the problem (1.2), we find that c2 = 0, . . . , cn−1 = 0,

c1 = α

�

(

1 − β(1 − ηn)

n

)∫ ξ

0

(∫ s

0

(s − m)n−1

(n − 1)! y(m)dm

)

ds

+ αξn

n�

{

β

∫ 1

η

(∫ s

0

(s − m)n−1

(n − 1)! y(m)dm

)

ds −
∫ 1

0

(1 − s)n−1

(n − 1)! y(s)ds

}

and

cn = − α

�

(
1 − β(1 − η)

)
∫ ξ

0

(∫ s

0

(s − m)n−1

(n − 1)! y(m)dm

)

ds

+ (1 − αξ)

�

{

β

∫ 1

η

(∫ s

0

(s − m)n−1

(n − 1)! y(m)dm

)

ds −
∫ 1

0

(1 − s)n−1

(n − 1)! y(s)ds

}

,

where � is given by (1.4). Substituting the values of c1, . . . , cn in (1.5), we get
(1.3). �

2 Existence results in Banach space

Let (X,‖ · ‖) be a Banach space and C = C([0,1],X) denotes the Banach space of
all continuous functions from [0,1] → X endowed with a topology of uniform con-
vergence with the norm denoted by ‖ · ‖.

By Lemma 1.1, the problem (1.1) can be transformed to a fixed point problem as

x = �(x), (2.1)

where � : C → C is given by
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(�x)(t) =
∫ t

0

(t − s)n−1

(n − 1)! f (s, x(s))ds

+ 1

n�

[

α
(
n − β(1 − ηn)

)
∫ ξ

0

(∫ s

0

(s − m)n−1

(n − 1)! f (m,x(m))dm

)

ds

+ αβξn

∫ 1

η

(∫ s

0

(s − m)n−1

(n − 1)! f (m,x(m))dm

)

ds

− αξn

∫ 1

0

(1 − s)n−1

(n − 1)! f (s, x(s))ds

]

+ tn−1

�

[

−α
(
1 − β(1 − η)

)
∫ ξ

0

(∫ s

0

(s − m)n−1

(n − 1)! f (m,x(m))dm

)

ds

+ β(1 − αξ)

∫ 1

η

(∫ s

0

(s − m)n−1

(n − 1)! f (m,x(m))dm

)

ds

− (1 − αξ)

∫ 1

0

(1 − s)n−1

(n − 1)! f (s, x(s))ds

]

, t ∈ [0,1].

For the forthcoming analysis, we need the following assumptions:

(A1) ‖f (t, x) − f (t, y)‖ ≤ L‖x − y‖, ∀t ∈ [0,1], L > 0, x, y ∈ X;
(A2) ‖f (t, x)‖ ≤ μ(t), ∀(t, x) ∈ [0,1] × X, and μ ∈ C([0,1],R

+).

For convenience, let us set

� = 1

(n + 1)!
(

(n + 1) + δ1 + δ2

|�|
)

, (2.2)

where

δ1 = |α|ξn

n

(
ξ |n − β(1 − ηn)| + |β|(1 − ηn+1) + (n + 1)

)
,

and

δ2 = |α(1 − β(1 − η))|ξn+1 + [|β|(1 − ηn+1) + (n + 1)]|1 − αξ |.

Theorem 2.1 Assume that f : [0,1] × X → X is a jointly continuous function and
satisfies the assumption (A1) with L < 1/�, where � is given by (2.2). Then the
boundary value problem (1.1) has a unique solution.

Proof Setting supt∈[0,1] ‖f (t,0)‖ = M and choosing r ≥ �M
1−L�

, we show that
�Br ⊂ Br, where Br = {x ∈ C : ‖x‖ ≤ r}. For x ∈ Br, we have:

‖(�x)(t)‖ ≤
∣
∣
∣

α

n�

[
(n − β(1 − ηn)) − n(1 − β(1 − η))tn−1

]∣
∣
∣

×
∫ ξ

0

(∫ s

0

(s − m)n−1

(n − 1)! ‖f (m,x(m))‖dm

)

ds
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+
∣
∣
∣
∣

β

n�

[
αξn + n(1 − αξ)tn−1

]∣∣
∣
∣

×
∫ 1

η

(∫ s

0

(s − m)n−1

(n − 1)! ‖f (m,x(m))‖dm

)

ds

+
∣
∣
∣
∣

1

n�

[
αξn + n(1 − αξ)tn−1

]∣∣
∣
∣

∫ 1

0

(1 − s)n−1

(n − 1)! ‖f (s, x(s))‖ds

+
∫ t

0

(t − s)n−1

(n − 1)! ‖f (s, x(s))‖ds

≤
∣
∣
∣

α

n�

[
(n − β(1 − ηn)) − n(1 − β(1 − η))tn−1

]∣
∣
∣

×
∫ ξ

0

(∫ s

0

(s − m)n−1

(n − 1)! (‖f (m,x(m)) − f (m,0)‖ + ‖f (m,0)‖)dm

)

ds

+
∣
∣
∣
∣

β

n�

[
αξn + n(1 − αξ)tn−1

]∣∣
∣
∣

×
∫ 1

η

(∫ s

0

(s − m)n−1

(n − 1)! (‖f (m,x(m)) − f (m,0)‖ + ‖f (m,0)‖)dm

)

ds

+
∣
∣
∣
∣

1

n�

[
αξn + n(1 − αξ)tn−1

]∣∣
∣
∣

×
∫ 1

0

(1 − s)n−1

(n − 1)! (‖f (s, x(s)) − f (s,0)‖ + ‖f (s,0)‖)ds

+
∫ t

0

(t − s)n−1

(n − 1)! (‖f (s, x(s)) − f (s,0)‖ + ‖f (s,0)‖)ds

≤ (Lr + M)

{∣
∣
∣

α

n�

[
(n − β(1 − ηn)) − n(1 − β(1 − η))tn−1

]∣
∣
∣

×
∫ ξ

0

(∫ s

0

(s − m)n−1

(n − 1)! dm

)

ds

+
∣
∣
∣
∣

β

n�

[
αξn + n(1 − αξ)tn−1

]∣∣
∣
∣

∫ 1

η

(∫ s

0

(s − m)n−1

(n − 1)! dm

)

ds

+
∣
∣
∣
∣

1

n�

[
αξn + n(1 − αξ)tn−1

]∣∣
∣
∣

∫ 1

0

(1 − s)n−1

(n − 1)! ds

+
∫ t

0

(t − s)n−1

(n − 1)! ds

}

≤ Lr + M

(n + 1)!
(

(n + 1) + δ1 + δ2

|�|
)

= (Lr + M)� ≤ r.



102 B. Ahmad, S.K. Ntouyas

Now, for x, y ∈ C and for each t ∈ [0,1], we obtain

‖(�x)(t) − (�y)(t)‖
≤

∣
∣
∣

α

n�

[
(n − β(1 − ηn)) − n(1 − β(1 − η))tn−1

]∣
∣
∣

×
∫ ξ

0

(∫ s

0

(s − m)n−1

(n − 1)! ‖f (m,x(m)) − f (m,y(m))‖dm

)

ds

+
∣
∣
∣
∣

β

n�

[
αξn + n(1 − αξ)tn−1

]∣∣
∣
∣

×
∫ 1

η

(∫ s

0

(s − m)n−1

(n − 1)! ‖f (m,x(m)) − f (m,y(m))‖dm

)

ds

+
∣
∣
∣
∣

1

n�

[
αξn + n(1 − αξ)tn−1

]∣∣
∣
∣

∫ 1

0

(1 − s)n−1

(n − 1)! ‖f (s, x(s)) − f (s, y(s))‖ds

+
∫ t

0

(t − s)n−1

(n − 1)! ‖f (s, x(s)) − f (s, y(s))‖ds

≤ L‖x − y‖
{∣
∣
∣

α

n�

[
(n − β(1 − ηn)) − n(1 − β(1 − η))tn−1

]∣
∣
∣

×
∫ ξ

0

(∫ s

0

(s − m)n−1

(n − 1)! dm

)

ds

+
∣
∣
∣
∣

β

n�

[
αξn + n(1 − αξ)tn−1

]∣∣
∣
∣

∫ 1

η

(∫ s

0

(s − m)n−1

(n − 1)! dm

)

ds

+
∣
∣
∣
∣

1

n�

[
αξn + n(1 − αξ)tn−1

]∣∣
∣
∣

∫ 1

0

(1 − s)n−1

(n − 1)! ds +
∫ t

0

(t − s)n−1

(n − 1)! ds

}

≤ L

(n + 1)!
(

(n + 1) + δ1 + δ2

|�|
)

‖x − y‖

= L�‖x − y‖,

where � is given by (2.2). Observe that � depends only on the parameters involved
in the problem. As L < 1/�, therefore � is a contraction. Thus, the conclusion of
the theorem follows by the contraction mapping principle (Banach fixed point theo-
rem). �

Our next existence result is based on Krasnoselskii’s fixed point theorem [17].

Theorem 2.2 (Krasnoselskii’s fixed point theorem). Let M be a closed convex and
nonempty subset of a Banach space X. Let A,B be the operators such that (i) Ax +
By ∈ M whenever x, y ∈ M ; (ii) A is compact and continuous; (iii) B is a contraction
mapping. Then there exists z ∈ M such that z = Az + Bz.
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Theorem 2.3 Let f : [0,1] × X → X be a jointly continuous function mapping
bounded subsets of [0,1] × X into relatively compact subsets of X, and the assump-
tions (A1) and (A2) hold, with

L(δ1 + δ2)

|�|(n + 1)! < 1. (2.3)

Then the boundary value problem (1.1) has at least one solution on [0,1].

Proof Letting supt∈[0,1] |μ(t)| = ‖μ‖, we fix

r ≥ ‖μ‖
(n + 1)!

(

(n + 1) + δ1 + δ2

|�|
)

,

and consider Br = {x ∈ C : ‖x‖ ≤ r}. We define the operators P and Q on Br as

(P x)(t) =
∫ t

0

(t − s)n−1

(n − 1)! f (s, x(s))ds,

(Qx)(t) = 1

n�

[

α
(
n − β(1 − ηn)

)∫ ξ

0

(∫ s

0

(s − m)n−1

(n − 1)! f (m,x(m))dm

)

ds

+ αβξn

∫ 1

η

(∫ s

0

(s − m)n−1

(n − 1)! f (m,x(m))dm

)

ds

− αξn

∫ 1

0

(1 − s)n−1

(n − 1)! f (s, x(s))ds

]

+ tn−1

�

[

−α
(

1 − β(1 − η)
)∫ ξ

0

(∫ s

0

(s − m)n−1

(n − 1)! f (m,x(m))dm

)

ds

+ β(1 − αξ)

∫ 1

η

(∫ s

0

(s − m)n−1

(n − 1)! f (m,x(m))dm

)

ds

− (1 − αξ)

∫ 1

0

(1 − s)n−1

(n − 1)! f (s, x(s))ds

]

, t ∈ [0,1].

For x, y ∈ Br, we find that

‖P x + Qy‖ ≤ ‖μ‖
(n + 1)!

(

(n + 1) + δ1 + δ2

|�|
)

≤ r.

Thus, P x + Qy ∈ Br. It follows from the assumption (A1) together with (2.3) that Q
is a contraction mapping. Continuity of f implies that the operator P is continuous.
Also, P is uniformly bounded on Br as

‖P x‖ ≤ ‖μ‖
n! .

Now we prove the compactness of the operator P .
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In view of (A1), we define sup(t,x)∈[0,1]×Br
‖f (t, x)‖ = f < ∞, and consequently

we have

‖(P x)(t1) − (P x)(t2)‖

=
∥
∥
∥
∥

∫ t1

0

[(t1 − s)n−1 − (t2 − s)n−1]
(n − 1)! f (s, x(s))ds −

∫ t2

t1

(t2 − s)n−1

(n − 1)! f (s, x(s))ds

∥
∥
∥
∥

≤ f

n! |t
n
1 − tn2 |,

which is independent of x. Thus, P is equicontinuous. Using the fact that f maps
bounded subsets into relatively compact subsets, we have that P (A)(t) is relatively
compact in X for every t, where A is a bounded subset of C. So P is relatively
compact on Br. Hence, by the Arzelá-Ascoli Theorem, P is compact on Br. Thus
all the assumptions of Theorem 2.2 are satisfied. So the conclusion of Theorem 2.2
implies that the boundary value problem (1.1) has at least one solution on [0,1]. �

3 Existence of solution via Leray–Schauder degree theory

Theorem 3.1 Let f : [0,1] × X → X. Assume that there exist constants 0 ≤ κ < 1
�

,

where � is given by (2.2) and M > 0 such that ‖f (t, x)‖ ≤ κ‖x‖ + M for all t ∈
[0,1], x ∈ X. Then the boundary value problem (1.1) has at least one solution.

Proof Lets us define an operator � : C → C as

x = �(x), (3.1)

where

(�x)(t) =
∫ t

0

(t − s)n−1

(n − 1)! f (s, x(s))ds

+ 1

n�

[

α
(
n − β(1 − ηn)

)∫ ξ

0

(∫ s

0

(s − m)n−1

(n − 1)! f (m,x(m))dm

)

ds

+ αβξn

∫ 1

η

(∫ s

0

(s − m)n−1

(n − 1)! f (m,x(m))dm

)

ds

− αξn

∫ 1

0

(1 − s)n−1

(n − 1)! f (s, x(s))ds

]

+ tn−1

�

[

−α
(

1 − β(1 − η)
)∫ ξ

0

(∫ s

0

(s − m)n−1

(n − 1)! f (m,x(m))dm

)

ds

+ β(1 − αξ)

∫ 1

η

(∫ s

0

(s − m)n−1

(n − 1)! f (m,x(m))dm

)

ds

− (1 − αξ)

∫ 1

0

(1 − s)n−1

(n − 1)! f (s, x(s))ds

]

, t ∈ [0,1].
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In view of the fixed point problem (3.1), we just need to prove the existence of at
least one solution x ∈ C satisfying (3.1). Define a suitable ball BR with radius R > 0
as

BR = {x ∈ C : ‖x‖ < R} ,

where R will be fixed later. Then, it is sufficient to show that � : BR → C satisfies

x �= λ�x, ∀x ∈ ∂BR and ∀λ ∈ [0,1]. (3.2)

Let us set

H(λ,x) = λ�x, x ∈ X, λ ∈ [0,1].
Then, by the Arzelá-Ascoli Theorem, hλ(x) = x −H(λ,x) = x −λ�x is completely
continuous. If (3.2) is true, then the following Leray-Schauder degrees are well de-
fined and by the homotopy invariance of topological degree, it follows that

deg(hλ,BR,0) = deg(I − λ�,BR,0) = deg(h1,BR,0)

= deg(h0,BR,0) = deg(I,BR,0) = 1 �= 0, 0 ∈ Br,

where I denotes the identity operator. By the nonzero property of Leray-Schauder
degree, h1(t) = x − λ�x = 0 for at least one x ∈ BR. In order to prove (3.2), we
assume that x = λ�x for some λ ∈ [0,1] and for all t ∈ [0,1] so that

‖x(t)‖ = ‖λ(�x)(t)‖
≤

∣
∣
∣

α

n�

[
(n − β(1 − ηn)) − n(1 − β(1 − η))tn−1

]∣
∣
∣

×
∫ ξ

0

(∫ s

0

(s − m)n−1

(n − 1)! ‖f (m,x(m))‖dm

)

ds

+
∣
∣
∣
∣

β

n�

[
αξn + n(1 − αξ)tn−1

]∣∣
∣
∣

∫ 1

η

(∫ s

0

(s − m)n−1

(n − 1)! ‖f (m,x(m))‖dm

)

ds

+
∣
∣
∣
∣

1

n�

[
αξn + n(1 − αξ)tn−1

]∣∣
∣
∣

∫ 1

0

(1 − s)n−1

(n − 1)! ‖f (s, x(s))‖ds

+
∫ t

0

(t − s)n−1

(n − 1)! ‖f (s, x(s))‖ds

≤ (κ‖x‖ + M)

{∣
∣
∣

α

n�

[
(n − β(1 − ηn)) − n(1 − β(1 − η))tn−1

]∣
∣
∣

×
∫ ξ

0

(∫ s

0

(s − m)n−1

(n − 1)! dm

)

ds

+
∣
∣
∣
∣

β

n�

[
αξn + n(1 − αξ)tn−1

]∣∣
∣
∣

∫ 1

η

(∫ s

0

(s − m)n−1

(n − 1)! dm

)

ds

+
∣
∣
∣
∣

1

n�

[
αξn + n(1 − αξ)tn−1

]∣∣
∣
∣

∫ 1

0

(1 − s)n−1

(n − 1)! ds +
∫ t

0

(t − s)n−1

(n − 1)! ds

}
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≤ κ‖x‖ + M

(n + 1)!
(

(n + 1) + δ1 + δ2

|�|
)

= (κ‖x‖ + M)�,

which, on taking norm and solving for ‖x‖, yields

‖x‖ ≤ M�

1 − κ�
.

Letting R = M�
1−κ�

+ 1, (3.2) holds. This completes the proof. �

Remark 3.1 By fixing the values of α and β in results of this paper, we obtain some
new results. For instance, the existence results for a three-point nth-order boundary
value problem with nonlocal integral boundary conditions of the form

x(0) = 0, x′(0) = 0, . . . , x(n−2)(0) = 0, x(1) = β

∫ 1

η

x(s)ds, 0 < η < 1,

can be obtained by taking α = 0 while the results for a three-point nth-order boundary
value problem with nonlocal integral boundary conditions

x(0) = α

∫ ξ

0
x(s)ds, x′(0) = 0, . . . , x(n−2)(0) = 0, x(1) = 0, 0 < ξ < 1,

follow by taking β = 0 in the results of this paper.

4 Examples

Example 4.1 Consider the following fourth-order nonlinear ordinary differential
equation with four-point nonlocal integral boundary conditions

⎧
⎪⎨

⎪⎩

x(4)(t) = L

(t+1)2
‖x‖

1+‖x‖ , L > 0, t ∈ [0,1],

x(0) = ∫ 1/3
0 x(s)ds, x′(0) = 0, x′′(0) = 0, x(1) = ∫ 1

2/3 x(s)ds.

(4.1)

Here, α = β = 1, ξ = 1/3, η = 2/3, and f (t, x) = L

(t+1)2
‖x‖

1+‖x‖ . Clearly ‖f (t, x) −
f (t, y)‖ ≤ L‖x − y‖. Further, � = 130/243, and

� = 1

(n + 1)!
(

(n + 1) + δ1 + δ2

|�|
)

= 0.10298295.

For L < 1/� = 9.71034526, the conclusion of Theorem 2.1 holds. Therefore, the
boundary value problem (4.1) has a unique solution on [0,1].
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Example 4.2 Consider the following fourth-order boundary value problem
⎧
⎪⎨

⎪⎩

x(4)(t) = 1
(4π)

sin(2π‖x‖) + ‖x‖
1+‖x‖ , t ∈ [0,1],

x(0) = ∫ 1/3
0 x(s)ds, x′(0) = 0, x′′(0) = 0, x(1) = ∫ 1

2/3 x(s)ds.

(4.2)

Here, α = β = 1, ξ = 1/3, η = 2/3, and

∣
∣
∣f (t, x)

∣
∣
∣ =

∣
∣
∣
∣

1

(4π)
sin(2π‖x‖) + ‖x‖

1 + ‖x‖
∣
∣
∣
∣ ≤ 1

2
‖x‖ + 1.

Clearly M = 1 and

κ = 1

2
<

1

�
= 9.71034526.

Thus, all the conditions of Theorem 3.1 are satisfied and consequently the problem
(4.2) has at least one solution.
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