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Abstract In this paper, we study a generalized Nicholson’s Blowflies model with
feedback control and multiple time-varying delays. Under proper conditions, we em-
ploy a novel proof to establish some criteria to guarantee the global exponential con-
vergence and permanence of this model. Moreover, we give two examples to illustrate
our main results.
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1 Introduction

As we known, Nicholson’s blowflies model belongs to a class of biological systems
and it (or its analogue equation) has been attracted more attention because of its
extensively realistic significance. In particular, there have been extensive results on
Nicholson’s a blowflied model in the literature, which were paced on the most im-
portant dynamic behaviors of this model such as existence of positive solutions, per-
sistence, permanence, oscillation and stability. We refer the reader to [1–7] and the
references cited therein.
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Recently, Wang and Fang [8] proposed and studied the following discrete and
continuous Nicholson’s blowflies models with feedback control:{

x(n + 1) = x(n) exp{−δ(n) + p(n)e−α(n)x(n) − c(n)u(n)},
�u(n) = −a(n)u(n) + b(n)x(n − m),

(1.1)

and {
x′(t) = x(t)(−δ(t) + p(t)e−α(t)x(t) − c(t)u(t)),

u′(t) = −a(t)u(t) + b(t)x(t − τ).
(1.2)

where δ(t), p(t), c(t), a(t), b(t) are all continuous functions bounded above and
below by positive constants and τ is a positive constant. By developing some new
analysis technique, they showed that feedback control variable has no influence on
the permanence of the above system (1.1). However, they did not investigate the per-
sistent property of the system (1.2). On the other hand, in the real world, the delays in
differential equations of population and ecology problems are usually time-varying.
Thus, it is worthwhile continuing to investigate the convergence and permanence of
Nicholson’s blowflies models with feedback control and time-varying delays.

In this paper we consider the following generalized Nicholson’s blowflies model
with feedback control and multiple time-varying delays:⎧⎪⎨

⎪⎩
x′

1(t) = −α(t)x1(t) + β(t)x1(t − τ1(t))e
−γ (t)x1(t−τ2(t))

− c(t)x1(t)x2(t − η(t)),

x′
2(t) = −λ(t)x2(t) + b(t)x1(t − δ(t)).

(1.3)

where α(t), β(t), γ (t), b(t) and λ(t) are all continuous functions bounded above and
below by positive constants, c(t) > 0, τ1(t) ≥ 0, τ2(t) ≥ 0, η(t) ≥ 0 and δ(t) ≥ 0
are bounded continuous functions. Obviously, (1.2) is a special case of (1.3) with
τ1(t) ≡ τ2(t) ≡ 0, η(t) ≡ 0 and δ(t) ≡ const > 0.

Throughout this paper, given a bounded continuous function g defined on R, let
gi and gs be defined as

gi = inf
t∈R

g(t), gs = sup
t∈R

g(t).

Denote by R2(R2+) the set of all (nonnegative) real vectors. Let C = ∏2
i=1 C([−ri ,0],

R1) be the continuous functions space equipped with the usual supremum norm || · ||,
and let C+ = ∏2

i=1 C([−ri ,0],R1+), where r1 = max{τ s
1 , τ s

2 , δs} and r2 = ηs . If xi(t)

is defined on [t0 − ri, σ ) with t0, σ ∈ R1 and i ∈ I := {1,2}, then we define xt ∈ C as
xt = (x1

t , x2
t ) where xi

t (θ) = xi(t + θ) for all θ ∈ [−ri ,0] and i ∈ I .
Due to the biological interpretation of model (1.3), we just consider initial condi-

tions associated with system (1.3) are of the form:

xt0 = ϕ, ϕ = (ϕ1, ϕ2) ∈ C+ and ϕ1(0) > 0, ϕ2(0) > 0. (1.4)

Define a continuous map f :R1 × ∏2
i=1 C([−ri ,0],R1+) → R2 by setting

f1(t, ϕ) = −α(t)ϕ1(0) + β(t)ϕ1(−τ1(t))e
−γ (t)ϕ1(−τ2(t)) − c(t)ϕ1(0)ϕ2(−η(t))
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and

f2(t, ϕ) = −λ(t)ϕ2(0) + b(t)ϕ1(−δ(t)).

Then, f is a locally Lipschitze map with respect to ϕ ∈ C+, which ensure the exis-
tence and uniqueness of the solution of (1.3) with admissible initial conditions (1.4).

We write xt (t0, ϕ)(x(t; t0, ϕ)) for a solution of the admissible initial value problem
(1.3) and (1.4) with xt0(t0, ϕ) = ϕ and t0 ∈ R. Also, let [t0, η(ϕ)) be the maximal
right-interval of existence of xt (t0, ϕ).

The remaining part of this paper is organized as follows. In Sect. 2, we shall give
some notations and preliminary results. In Sect. 3, we shall derive new sufficient con-
ditions for checking the global exponential convergence and permanence of system
(1.2). In Sect. 4, we shall give some examples and remarks to illustrate our results
obtained in the previous sections.

2 Preliminary results

Now we state several Definitions and Lemmas which play important roles in the proof
of main results.

Definition 2.1 System (1.3)–(1.4) is said to be permanent, if there are positive con-
stants mi and Mi such that

mi ≤ lim inf
t→+∞ xi(t; t0, ϕ) ≤ lim sup

t→+∞
xi(t; t0, ϕ) ≤ Mi, for all i = 1,2.

Lemma 2.1 [9] If a > 0, b > 0 and dx
dt

≥ b − ax, when t ≥ t∗ and x(t∗) > 0, we
have

lim inf
t→+∞ x(t) ≥ b

a
.

If a > 0, b > 0 and dx
dt

≤ b − ax, when t ≥ t∗ and x(t∗) > 0, we have

lim sup
t→+∞

x(t) ≤ b

a
.

Lemma 2.2 Let τ1(t) ≡ τ2(t) for all t ∈ R. Then, the solution xt (t0, ϕ) ∈ C+ for
all t ∈ [t0, η(ϕ)), the set of {xt (t0, ϕ) : t ∈ [t0, η(ϕ))} is bounded, and η(ϕ) = +∞.
Moreover, xi(t; t0, ϕ) > 0 for all t ≥ t0, i = 1,2.

Proof Since ϕ ∈ C+, using Theorem 5.2.1 in [10, p. 81], we have xt (t0, ϕ) ∈ C+
for all t ∈ [t0, η(ϕ)). Let x(t) = (x1(t), x2(t)) = x(t; t0, ϕ). Integrating the second
equation of (1.3) from t0 to t , we have

x2(t) = e
− ∫ t

t0
λ(u)du

x2(t0) + e
− ∫ t

t0
λ(u)du

∫ t

t0

e

∫ s
t0

λ(v)dv
b(s)x1(s − δ(s))ds, (2.1)
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for all t ∈ [t0, η(ϕ)). It follows from x2(t0) = ϕ2(0) > 0 that x2(t) > 0 for all t ∈
[t0, η(ϕ)). Again from (1.3) and supu≥0 ue−γ iu = 1

γ ie
, we get

x′
1(t) = −(α(t) + c(t)x2(t − η(t)))x1(t) + β(t)x1(t − τ1(t))e

−γ (t)x1(t−τ2(t))

≤ −α(t)x1(t) + β(t)x1(t − τ1(t))e
−γ (t)x1(t−τ2(t))

≤ −αix1(t) + βs

γ ie
, (2.2)

which, together with x1(t0) = ϕ1(0) > 0, implies that

x1(t) = e
− ∫ t

t0
ρ(u)du

x1(t0)

+ e
− ∫ t

t0
ρ(u)du

∫ t

t0

e

∫ s
t0

ρ(v)dv
β(s)x1(s − τ1(s))e

−γ (s)xs (s−τ2(s))ds

> 0, where t ∈ [t0, η(ϕ)), ρ(u) = α(u) + c(u)x2(u − η(u)), (2.3)

and

x1(t) ≤ e−αi(t−t0)x1(t0) + βs

γ iαie
(1 − e−αi(t−t0)), where t ∈ [t0, η(ϕ)). (2.4)

Therefore, x1(t) is bounded on [t0, η(ϕ)). From (2.1), we obtain that x2(t) is also
bounded on [t0, η(ϕ)). According to Theorem 2.3.1 in [11], we can easily obtain
η(ϕ) = +∞. This ends the proof of Lemma 2.2. �

Lemma 2.3 Let αi > βs . Then, the solution xt (t0, ϕ) ∈ C+ for all t ∈ [t0, η(ϕ)),
the set of {xt (t0, ϕ) : t ∈ [t0, η(ϕ))} is bounded, and η(ϕ) = +∞. Moreover,
xi(t; t0, ϕ) > 0 for all t ≥ t0, i = 1,2.

Proof By a carbon copy of the proof of Lemma 2.2, we obtain that the xt (t0, ϕ) ∈ C+,
and xi(t; t0, ϕ) > 0 for all t ∈ [t0, η(ϕ)), i = 1,2.

We now show that x1(t) is bounded on [t0, η(ϕ)). Define a continuous function
�(u) by setting

�(u) = −[αi − u] + βseur1, u ∈ [0,1].
Then, we have

�(0) = −αi + βs < 0,

which implies that there exist two constants η > 0 and σ ∈ (0, λi) ∩ (0,1] such that

�(σ) = −[αi − σ ] + βseσr1 < −η < 0. (2.5)

We consider the Lyapunov functional

V (t) = x1(t)e
σ t . (2.6)
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Calculating the derivative of V (t) along the solution x(t) of (1.3), we have

V ′(t) ≤ −α(t)x1(t)e
σ t + β(t)x1(t − τ1(t))e

−γ (t)x1(t−τ2(t))eσ t

− c(t)x1(t)x2(t − η(t))eσ t + σx1(t)e
σ t

≤ (σ − α(t))x1(t)e
σ t + β(t)x1(t − τ1(t))e

σ t , for all t ∈ (t0, η(ϕ)). (2.7)

We claim that

V (t) = x1(t)e
σ t < eσ t0

(
max

t∈[−r0,t0]
|ϕ(t) − x∗(t)| + 1

)
: = M1 for all t ∈ (t0, η(ϕ)).

(2.8)
Contrarily, there must exist η(ϕ) > t∗ > t0 such that

V (t∗) = M1 and V (t) < M1 for all t ∈ [t0 − r1, t∗), (2.9)

which implies that

V (t∗) − M1 = 0 and V (t) − M1 < 0 for all t ∈ [t0 − r1, t∗). (2.10)

Together with (2.7) and (2.10), we obtain

0 ≤ (V (t∗) − M1)
′

= V ′(t∗)

≤ (σ − α(t∗))x1(t∗)eσ t∗ + β(t∗)x1(t∗ − τ1(t∗))eσ t∗

= (σ − α(t∗))x1(t∗)eσ t∗ + β(t∗)x1(t∗ − τ1(t∗))eσ(t∗−τ1(t∗))eστ1(t∗)

≤ [(σ − αi) + βseσr1]M1. (2.11)

Thus,

0 ≤ (σ − αi) + βseσr1,

which contradicts with (2.5). Hence, (2.8) holds. It follows that

x1(t) < M1e
−σ t for all t ∈ (t0, η(ϕ)). (2.12)

Thus, x1(t) is bounded on [t0, η(ϕ)). From (2.1), we obtain that x2(t) is bounded on
[t0, η(ϕ)). Again from Theorem 3.1 in [11], we can easily obtain η(ϕ) = +∞. This
ends the proof of Lemma 2.3. �

3 Main results

Theorem 3.1 Assume that αi > βs , then, the solution x(t; t0, ϕ) of (1.3) and (1.4)
converges exponentially to (0,0) as t → +∞.
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Proof Since αi > βs , by a similar argument as in the proof in Lemma 2.3, we get

x1(t) < M1e
−σ t for all t > t0. (3.1)

Integrating the second equation of (1.3) from T0 to t (≥ T0 = t0 +max{r1, r2 +1}),
by (3.1), we get

x2(t) = e
− ∫ t

T0
λ(u)du

x2(T0) +
∫ t

T0

e− ∫ t
s λ(v)dvb(s)x1(s − δ(s))ds

≤ x2(T0)e
λiT0e−λi t + bsM1

∫ t

T0

eλi(s−t)b(s)e−σ(s−δ(s))ds

≤ x2(T0)e
λiT0e−λi t + bsM1e

σr1

λi − σ
e−λi t (e(λi−σ)t − e(λi−σ)T0)

≤
[
x2(T0)e

λiT0e−(λi−σ)t + bsM1e
σr1

λi − σ

]
e−σ t

≤ M2e
−σ t , (3.2)

where M2 = x2(T0)e
λiT0 + bsM1e

σr1

λi−σ
. It follows from (3.1) and (3.2) that the solu-

tion x(t; t0, ϕ) of (1.3) and (1.4) converges exponentially to (0,0) as t → +∞. This
completes the proof of Theorem 3.1. �

Theorem 3.2 Let

inf
t∈R

β(t)

α(t)
> 1, lim

t→+∞ c(t) = 0, and τ1(t) ≡ τ2(t) for all t ∈ R, (3.3)

then system (1.3)–(1.4) is permanent.

Proof From Lemma 2.2, we obtain that the set of {xt (t0, ϕ) : t ∈ [t0,+∞)} is
bounded and there exist positive constants K1 and K2 such that

0 < x1(t) ≤ K1, 0 < x2(t) ≤ K2, for all t > t0. (3.4)

It follows that

lim sup
t→+∞

x1(t) ≤ K1, lim sup
t→+∞

x2(t) ≤ K2. (3.5)

We next prove that there exists a positive constant k1 such that

lim inf
t→+∞ x1(t) ≥ k1. (3.6)

Suppose, for the sake of contradiction, lim inft→+∞ x1(t) = 0. For each t ≥ t0, we
define

m(t) = max
{
ξ : ξ ≤ t, x1(ξ) = min

t0≤s≤t
x1(s)

}
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Observe that m(t) → +∞ as t → +∞ and

lim
t→+∞x1(m(t)) = 0. (3.7)

However, x1(m(t)) = mint0≤s≤t x1(s), and so x′
1(m(t)) ≤ 0. According to the fact

that τ1(t) ≡ τ2(t) for all t ∈ R, we have

0 ≥ x′
1(m(t))

= −α(m(t))x1(m(t)) + β(m(t))x1(m(t) − τ1(m(t)))e−γ (m(t))x1(m(t)−τ1(m(t)))

− c(m(t))x1(m(t))x2(m(t) − η(m(t)))

and consequently,

α(m(t))x1(m(t)) + c(m(t))x1(m(t))x2(m(t) − η(m(t)))

≥ β(m(t))x1(m(t) − τ1(m(t)))e−γ (m(t))x1(m(t)−τ1(m(t)))

≥ β(m(t))x1(m(t) − τ1(m(t)))e−γ sx1(m(t)−τ1(m(t))). (3.8)

This, together with (3.7) implies that

lim
t→+∞x1(m(t) − τ1(m(t))) = 0. (3.9)

Now we select a sequence {tn}+∞
n=1 such that

lim
n→+∞ tn = +∞, lim

n→+∞α(m(tn)) = α∗, lim
n→+∞β(m(tn)) = β∗. (3.10)

In view of (3.8), we get

α(m(tn)) + c(m(tn))x2(m(tn) − η(m(tn)))

≥ β(m(tn))
x1(m(tn) − τ1(m(tn)))e

−γ sx1(m(tn)−τ1(m(tn)))

x1(m(tn))

≥ β(m(tn))
x1(m(tn) − τ1(m(tn)))e

−γ sx1(m(tn)−τ1(m(tn)))

x1(m(tn) − τ1(m(tn)))

= β(m(tn))e
−γ sx1(m(tn)−τ1(m(tn))). (3.11)

Letting n → +∞, (3.10) and (3.11) imply that

lim
n→+∞

β(m(tn))

α(m(tn))
= β∗

α∗ ≤ 1,

which contradicts with (3.3). Hence, (3.6) holds. It follows that there exists a T1 > 0
such that x1(t) > k1

2 for all t > T1, which combing with the second equation of system
(1.3) leads to

x′
2(t) ≥ −λsx2 + bi k1

2
, for all t > T1.
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Applying the first part of Lemma 2.1 into the above inequality, it follows that

lim inf
t→+∞ x2(t) ≥ bi k1

2

λs
:= k2. (3.12)

This completes the proof of Theorem 3.2. �

4 Examples and remarks

In this section, we give two examples to demonstrate the results obtained in previous
sections.

Example 4.1 Consider the following Nicholson’s Blowflies model with feedback
control and multiple time-varying delays:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′
1(t) = −(10 + cos2 t + | sin t |)x1(t)

+ (1 + cos4 t)x1(t − e| arctan t |)e−x1(t−e2| arctan t |)

− (100 + cos2 t + | sin t |)x1(t)x2(t − e3| arctan t |),
x′

2(t) = −(1 + cos4 t + | sin t |)x2(t)

+ (1000 + cos2 t + | sin t |)x1(t − e3| arctan t |).

(4.1)

Then, τ1(t) = e| arctan t |, τ2(t) = e2| arctan t |, η(t) = e3| arctan t |, δ(t) = e3| arctan t |, r =
r1 = r2 = e

3π
2 , αi ≥ 10 > 3 ≥ βs . It follows that the Nicholson’s Blowflies model

(4.1) satisfies all the conditions in Theorem 3.1. Hence, from Theorem 3.1, for system
(4.1), if ϕ ∈ {ϕ ∈ C+ : ϕ1(0) > 0, ϕ2(0) > 0}, then x(t; t0, ϕ) converges exponentially
to (0,0) as t → +∞.

Remark 4.1 It is clear that system (4.1) is a Nicholson’s Blowflies model with feed-
back control and multiple time-varying delays, and the time-varying in this system
are not constants. Therefore, all the results in [7, 9] and the references therein cannot
be applicable to prove that all the solutions of (4.1) with admissible initial conditions
converge exponentially to (0,0). This implies that the results of this paper are new
and they complement previously known results.

Example 4.2 Consider the following Nicholson’s Blowflies model with feedback
control and multiple time-varying delays:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x′
1(t) = −(1 + cos2 t + | sin t |)x1(t)

+ (21 + cos4 t)x1(t − e2| arctan t |)e−x1(t−e2| arctan t |)

− 1 + t2

10 + t4
x1(t)x2(t − e3| arctan t |),

x′
2(t) = −(1 + cos4 t + | sin t |)x2(t) + (1000 + cos2 t + | sin t |)x1(t − e3| arctan t |).

(4.2)
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Then, τ1(t) = τ2(t) = e2| arctan t |, r = r1 = r2 = e
3π
2 ,

inf
t∈R

β(t)

α(t)
= inf

t∈R

21 + cos4 t

1 + cos2 t + | sin t | ≥ 7 > 1, lim
t→+∞ c(t) = lim

t→+∞
1 + t2

10 + t4
= 0,

which imply that the Nicholson’s Blowflies model (4.2) satisfies all the conditions in
Theorem 3.2. Hence, from Theorem 3.2, the system (4.2)–(1.4) is permanent.

Remark 4.2 Since [8] did not investigate the persistent property of the system (1.2).
Moreover, (1.2) is a special case of (1.3). This implies that Theorem 3.2 extends and
improves the corresponding results in [8].
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