J Appl Math Comput (2012) 38:389-406
DOI 10.1007/s12190-011-0485-0 JAMC

Implicit peer methods for large stiff ODE systems

Steffen Beck - Riidiger Weiner -
Helmut Podhaisky - Bernhard A. Schmitt

Received: 11 October 2010 / Published online: 15 May 2011
© Korean Society for Computational and Applied Mathematics 2011

Abstract Implicit two-step peer methods are introduced for the solution of large
stiff systems. Although these methods compute s-stage approximations in each time
step one-by-one like diagonally-implicit Runge-Kutta methods the order of all stages
is the same due to the two-step structure. The nonlinear stage equations are solved
by an inexact Newton method using the Krylov solver FOM (Arnoldi’s method).
The methods are zero-stable for arbitrary step size sequences. We construct different
methods having order p = s in the multi-implicit case and order p = s — 1 in the
singly-implicit case with arbitrary step sizes and s < 5. Numerical tests in MATLAB
for several semi-discretized partial differential equations show the efficiency of the
methods compared to other Krylov codes.
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390 S. Beck et al.

1 Introduction

In [8] two of the authors introduced the class of linearly-implicit parallel peer meth-
ods for the solution of stiff initial value problems

Y (@)= f(t,y(), teln,tel, y(to) = o, 1)

f:R x R" — R". These methods are characterized by the fact that the stage values
share same accuracy and stability properties. Later the methods were generalized in
several directions, in [10] implicit parallel methods were considered, in [7] sequential
linearly-implicit methods were introduced. In [9] linearly-implicit parallel peer meth-
ods were combined with the full orthogonalization method (FOM) and were used for
the solution of large stiff systems of ordinary differential equations resulting from the
semidiscretization of partial differential equations with the method of lines (MOL).
In this paper we will combine these approaches and consider s-stage sequential
implicit peer methods for large stiff systems. This means that Newton’s method will
be used for the solution of the nonlinear stage equations. The solutions of the lin-
earized systems, however, will be approximated by FOM in order to keep the compu-
tational effort low for large dimensions. The proposed class of peer methods has the
form
s i
Yoi= Y bijYm1j+hm Y gijFnj. i=12.. 5. )
j=1 Jj=1

~

In each time step from ¢, to t,4+1 = t, + h,, it computes stage solutions Y, ;
y(tm,i), i =1,2,..., s, as approximations at the points

tm,i = =1tnm +hyc, i=1,2,...,5s.
In this paper we consider methods with
O<ci<ecp<---<c=1.

The stage derivatives are denoted by Fy, ; = f(ty + hmci, Yini), i =1,2,...,5. In-
troducing stacked vectors

Ym,l f(tm'i‘clhms Ym,l)

Ym,2 f(tm + c2hy, Ym,2)
Yin = . , F(tma Ym) = :

Ym,s f(tm + cshm, Ym,s)

a compact form of the scheme (2) is
sz(Bm®I)Ym—l+hm(Gm®1)F(tmv Yi). (3)

Here the coefficients are collected in the matrix B,, = (b; j)ff =1 and the lower trian-
gular matrix G,, = (gi;); =1 which may depend on the step size ratio o, defined by
hm = ophm—1.
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Implicit peer methods for large stiff ODE systems 391

Remark 1 1Tt is possible to include also f(#,—1, Ym—1) in (2). However, in this case
L-stability (M (oco) = 0, cf. (13)) is not possible. Furthermore the stability investiga-
tions become much more delicate. For explicit methods it is more suitable to consider
this extension [13]. Calvo et al. [2] construct explicit peer methods of this type of or-
der 2s — 1.

When direct solvers are used for the solution of the linear equations, the singly-
implicit choice

Gn=yIl+Gy 4)

with a strictly lower triangular matrix G is advantageous, since only one LU decom-
position per time step is needed. In combination with Krylov solvers, however, the
multi-implicit choice with

Gm = dlag(Vl, )/25 ] VA) + GO’

can be used and the additional parameters may be used to improve the properties of
the method.

The order and stage order of an s-stage peer method are limited to p =s — 1, in
general. For special nodes and constant step size methods of order of convergence
p = s were constructed in [7]. In this paper we consider different choices for G,,.
In the most general case, choosing G, multi-implicit and o -dependent, we construct
methods of order of consistency and convergence p = s. If G, does not depend on
o the order of consistency p = s can be ensured for constant 4 only. Even when
using Krylov solvers singly-implicit methods with (4) are of interest if precondition-
ing is considered. For this case we derive order conditions ensuring only order of
consistency p = s — 1 but order of convergence p = s for constant step sizes.

As the methods have a two-step character, zero-stability is a crucial point for peer
methods. In Sect. 2 we derive the order conditions and present a construction prin-
ciple that ensures zero-stability for all step size sequences. In Sect. 3 we use some
remaining degrees of freedom to increase the order of the methods. Different types of
methods with constant and variable matrix G, are discussed. In Sect. 4 we present
special methods with good stability and accuracy properties for s = 3, 4, 5. Further-
more, we discuss implementation issues like the choice of starting approximations for
the Newton process, error estimation and stopping criteria for the iterative methods.
Finally, in Sect. 5 numerical results for several MOL problems are given. We com-
pare the MATLAB implementation of our methods with the Krylov one-step codes
ROWMAP [12] and EXP4 [3].

2 Order conditions and linear stability
The order conditions for peer methods can be derived by replacing Y, ; and Y1 ;
in (3) by values of the solution y(¢) and using f (i, Y(fm.i)) = ¥ (tm.i)- Since this

is done simultaneously for all stages, there is no difference between order and stage
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392 S. Beck et al.

order and hence no order reduction for stiff problems. Taylor series expansion gives

p

Y(tm +ciohy_1) = Z
=0

z s — Dhp—1)!
Y(tm—1+ cihm—1) = ZM

(Ciamhm—l)l

TR A CORRIUARE

1
yOtw) + ORPTY),

|
P I
P -1
(ciomhm—1) 1
O‘mhm—ly/(l‘m + CiOmhm—1) = Zamhm—l %y(l)(lm) + O(h,[:,—tl)
=1 ’
For a compact notation, we use the node vector ¢ = (cy, ¢3, . . ., cs)T and the operator

z2:=hpy_1 % in the following definition.
Definition 1 For z — 0 and o;, > 0 let the peer method (3) satisfy
exp(omcz) = By exp((c — D2) + Guomzexp(ome) + O, (5)

with p € Ny and the exponentials of the vectors are defined componentwise. Then,
the method is preconsistent if p > 0 and consistent of order p if p > 1.

For constant step sizes, (5) simplifies to
exp(cz) = Bexp((c — 1)z) + Gzexp(cz) + OPTh, z—0. (6)

Let the nodes c; be pairwise distinct. Then, by the order conditions for p =s — 1 in
(5), one of the matrices B,, or G, is uniquely determined by the other. Solving for

B,, we re-write (5) in matrix form collecting the coefficients of % in columns. This
gives

VoS = By Vi + G VoDF, S 7
and hence
By =(Vo—GuVoDFJ SV, ®)

where the matrices are given by

i—1 i
Vo)ij=c ' (Vij=(ci— D/,

1 i=j+1,

9
0 i#j+1, ®

(F0)i,j =6ij+1 = {

S =diag(l, 0,02, ...,05"") and D =diag(1,2,...,s).

Besides consistency, convergence of the methods requires zero-stability, at least. This
problem will be discussed now.
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Implicit peer methods for large stiff ODE systems 393

Definition 2 A peer method (3) is zero-stable, if
||Bm+le+l—1 T Bm+1 By, ” <K

holds for some constant K < oo and for all m and [ > 0.

The uniform boundedness of arbitrary matrix products required in Definition 2 is
a very difficult theoretical question. It is easily verified for special matrix families,
only. Our construction of the methods in the next section uses such a family. Now,
convergence for variable grids with 0 < omin < 0y, < omax follows analogously to [7].

Theorem 1 Zero stability and order p of consistency guarantee convergence of or-
der p.

Since linearly-implicit peer methods with the stronger property of optimal zero-
stability have been shown to be very efficient in [7] we require this property also for
implicit methods. Optimal zero-stability means that for all step size ratios By, has one
eigenvalue equal to one (this follows from preconsistency) and all other eigenvalues
are zero. For that we consider the transformed matrix Q,, = Vlem Vi. By (8), we
obtain

Om =PI —V;'GuVoDF,)S, (10)
. . i—1 -1 .
where P is the Pascal matrix defined by P = (({_1))1.‘],:1’2 .... .=V Vo. We require
Om — elelT to be strictly upper triangular. Introducing tril(-) as the lower triangular
part of a matrix including the diagonal, i.e.

s

N
tril(X) := Z Z elTXejeie;-r,

j=li=j
this condition can be written in the form
tril(Q — ere] ) =0. (11)

Obviously, the condition (11) is not affected by the diagonal matrix S which can be
omitted. Now, with (10) the condition (11) can be written as a linear system for the
matrix G, in the form

tril(V; ' G VoD Fy ) = tril(P) — ere] =1 —eje]. (12)

Since the first column on both sides of (12) is zero the condition represents effec-
tively only s(s — 1)/2 constraints. The remaining degrees of freedom are used in the
following sections to construct methods of higher order of convergence p = s.

Applying the peer methods (2) with constant step size & to the test equation y’ =
Ay leads to a recursion Y, = M(z)Y,,—1 with the stability matrix

M(z)=( —zG)"'B, (13)
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394 S. Beck et al.

where z = hA. A-stability and A(w)-stability can now be defined using the set
{z:p(M(2)) <1:2z€C}

as stability domain [7]. Note that diag(G) > 0 implies lim;_, o, M (z) =0, i.e. A(x)-
stable methods are also L(«)-stable.

3 Construction of optimally zero-stable methods of order p =s
3.1 Construction of multi-implicit methods

In order to obtain optimally zero-stable methods of the maximum order p = s we
use all degrees of freedom in the method by using a lower triangular matrix G,
with a general diagonal. This is appropriate from a computational point of view in
the case when the stage equations are solved by iterative methods. We start with the
representation (8), giving order of consistency p = s — 1. Since optimal zero-stability
(12) implies only s(s — 1)/2 conditions for the s(s + 1)/2 coefficients g;; of the
matrix G, we use the remaining s parameters to obtain order p = s of consistency.
The additional condition (5) for z* reads

CSZO',;SBm(C—l)S'i‘SGmCS_ly (14)

where 1=(1,...,)T. Together with (12) this gives a complete set of s(s + 1)/2
linear equations for the elements of G,,. Theoretically, this system can be singular
for special values of ¢;. However, in our numerical search where we considered 0 <
¢; <1 this did not occur.

The construction is summarized in the following theorem.

Theorem 2 Let the matrix By, be defined by (8), where the coefficients of the lower
triangular matrix G, are the solutions of (12) and (14). Then the peer method is op-
timally zero-stable and has order of consistency p = s for variable step sizes. Hence,
it is convergent of order p = s for arbitrary step size sequences.

Unfortunately, (12) and (14) imply that G, depends on o, and has to be recom-
puted after step size changes during the integration process. In order to avoid this
computation, especially for methods with many stages, we also consider methods
with a frozen coefficient G, independent of m. Practical advantages of this choice
will be seen in the numerical tests. Of course, in this case order of consistency p = s
is achieved for constant step sizes only.

Theorem 3 Let the matrix B, be defined by (8), where the coefficients of the con-
stant lower triangular matrix G are the solutions of (12) and (14) for o,,, = 1. Then
the peer method is optimally zero-stable and is convergent of order p =s — 1 for
arbitrary step size sequences and of order p = s for constant step sizes.

If the step sizes are not varying too strongly, we can expect a better performance
of these methods compared to methods of order p =5 — 1.
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Implicit peer methods for large stiff ODE systems 395

3.2 Construction of superconvergent singly-implicit methods

In singly-implicit methods the elements in the diagonal of the matrix G are all equal
to y. We also use a constant matrix G,, = G. This choice has the advantage that the
coefficient matrix (I — hyT) with T ~ f, is the same for all the implicit stages.
Hence, some computational work can be saved if a direct solver is used for the linear
systems or if preconditioning is used in iterative solvers.

The second advantage is that the derivation of the methods simplifies considerably
as the matrices G and B depend only linearly on y. This can be seen immediately by
substituting G = G + y [ into (8). For constant step sizes this yields B = By + y By
with

Bo=(Vo—GoVoDF))V;! and By =-VoDF) V"

Also, the condition (12) for zero-stability simplifies since it is independent of y due
to

til(V, 'GVoDF, ) = tril(V; 'GoVoDF, +yPDFy)
=tril(V, 'GoVoDFy ) =1 —ee] .

Hence, the matrices By, B; and G are uniquely determined by the nodes (c;). In the
second step y has to be chosen in a certain way, which is discussed now.

Unfortunately, singly-implicit methods with s stages do not have enough free pa-
rameters to satisfy the consistency conditions (6) up to order s even for constant step
sizes. However, if the residual in the order condition (6) has a certain structure, we can
still obtain methods which converge with order p = s. This concept is well-known
and named quasi-consistency [6, 11], superconvergence [13] or effective order [1].
In [7], superconvergent linearly-implicit methods with Chebyshev nodes have been
constructed. Here we generalize the construction to implicit methods and arbitrary
nodes. The principal idea is to determine a constant vector £ € R® with

Yo = Y(tm + ch) — ER* Y (1) + O ). (15)
Substituting (15) into (3) leads to the modified order condition
exp(cz) — Ez* =B (exp((c —1Dz) — Ezs) +zGexp(cz) + O . (16)

The modification with E has no influence on the lower order terms, but only on the
z® term which is now

ic‘—E=B<l(c—1)‘Y—E)+ LG, (17)
s! s! (s—1D!
So, E must satisfy the rank-deficient linear system
(I —By—yB)E=ry+yr, (18)
with
ro=$c5—ﬁc;oc~?—‘ —%Bo(c—l)s, (19)
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396 S. Beck et al.

R
-1

1
s=1_ = Bi(c—1)". (20)
S!

Of course, (18) has a solution E if and only if the right hand side ro 4 yr; lies in the
image of (I — By — y By). This finally leads to a polynomial condition for y.

Theorem 4 A singly-implicit peer method (3), (4) with c; # cj for i # j and c; =1
that is consistent of order s — 1 and satisfies (11) is convergent of order s for constant
step sizes if and only if y is a root of the polynomial

p(y) =det(I — By —y Bi + (ro + yri)e)). @D
Proof Multiplying (18) from the left by Vl_1 yields the system

V' a - BWViViTE= V] o+ yr). (22)

Due to preconsistency the first column of Vfl (I — B)V vanishes. Hence, we may
move the last column Vl_1 (ro + yr1) of the augmented system matrix to this place
and consider the square matrix

M=V ro+yrel + V' - BV
instead. Now, (22) has a solution if and only if Vl_l(ro +yr)) € image(Vl_l(I —
B)V1). This is equivalent to M being singular since rank(Vl_l(I —-B)V)=s5s-1
by (11), and we arrive at
0= det(M) = det((ro + yr1)e; +1 —Bo—yB1)=p(y).

Here, the identity er Vl_l = esT due to ¢ = 1 has been used. O

The condition p(y) = det(My + y M) = 0 with (21) corresponds to a generalized
eigenvalue problem with the matrices

My = V()e;r + I — By,
M| =r; e;r — Bj.
Since M is always nonsingular we have
p(y)=det(My+yM;) = det(—MoMl_1 —ylI)det(—My) (23)
and a method satisfying the assumptions of Theorem 4 is convergent of order s if
and only if y is an eigenvalue of the matrix —MoM ! Of course, only real positive

eigenvalues are of practical interest.
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Table 1 Multi-implicit methods of order p =s — 1 with constant G

s=3
s3

s=4
s4

c1
)
€3
c4
cs

811
821
831
841
851

822
832
842
852

843
853

844
8s4

855

err

0.2965111264167650
0.6591161332612843
1.0000000000000000

0.1683093491913489
0.3628778211882157
0.3787524476457439

0.1680365348476524
0.3189836517418485

0.1740621233869913

86.3°
0.16

0.1541463935325966
0.4910074678586249
0.7436397609359440
1.0000000000000000

0.0874788583307741
0.2831819427066078
0.3078491242818127
0.3229398435452924

0.1411579899501929
0.2371881675120290
0.2358273071856336

0.1319349339402774
0.2402981159278471

0.1342671981394014

82.0°
0.20

0.1899099193591592
0.3939885651937762
0.6590663408302807
0.8872164547257527
1.0000000000000000

0.0786811387072333
0.1977990264420529
0.1911249255439913
0.1795911264673902
0.1755057541315561

0.0849607580997951
0.2463905827322347
0.2806687099884024
0.2847696294285085

0.1103220519021229
0.2026225925156643
0.2330254931701668

0.1131052451023614
0.1019794066232285

0.0934909359946043

73.7°
0.19

4 Special methods and implementation issues

In the construction of the different types of methods described in Sect. 3 only the
coefficients of the matrices B and G are fixed. The choice of the off-step nodes c; is
still free. To find good numerical schemes of the form (3), we perform a random walk
search by varying the nodes ¢; in the interval [0, 1] in order to obtain large angles «
of L(a)-stability and a small norm of the O(h?*!) error term in (5) (for o, = 1)

which we denote by err

1 1
err = PH - ——B(c— P - —=GcP
p:

1
H P+ T (prl

2

We present three types of methods:
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398 S. Beck et al.
Table 2 Multi-implicit methods of order p = s

s=3 s=4 s=5

s3-sigma s4-sigma s5-sigma
1 0.3652686026916057 0.1184401720706515 0.1599044788394790
) 0.6887542583756895 0.3837335049954883 0.3886810267030429
c3 1.0000000000000000 0.6844465289234397 0.5836944109189660
cy 1.0000000000000000 0.8256259438802006
cs 1.0000000000000000
a 85.4° 82.1° 67.9°
err 0.15 0.18 0.17

Matrix G (o) of s3-sigma:
0.121756200897201952 4+ 0.31532571297756830 + 0.1802850861272289
02 4 1.7265415677886560 + 0.4935685268285777
_ 0.300045628959945003 4+ 0.79277523805138380°2 + 0.62403787350736100 + 0.1556348476255093
2= 03 +2.32486960150563202 + 1.5266067482141900 + 0.2953158861619276
_ 0.317928943444616003 + 0.82482592068209890°2 + 0.63489215958999170 + 0.1562144929255245
8§31 = 03 +2.32486960150563202 + 1.5266067482141900 + 0.2953158861619276

_0.14519622762134060 + 0.09677526815055233
2= o +0.5983280337169764

_0.28089579827219610 +0.1874938170231784
2= o +0.5983280337169764

833 =0.1576628564887841

811 =

1. Multi-implicit methods with the matrix G being independent of o,
The methods are of order p = s — 1 for general step sizes and of order p = s for
constant ones. The coefficient matrix G, = diag(y1, y2, ..., ¥s) + Go for g, = 1
is computed by (12) and (14) at the start. So G, = G is fixed during the integration
process. The nodes, « and err of the methods used in our tests are given in Table 1.

2. Multi-implicit methods with matrix G depending on oy,
These methods have order of consistency p = s also for variable step sizes. The
coefficient matrix G, = diag(y1, 2, ..., ¥s) + Gy for every o, is computed by
(12) and (14). So G, changes during the integration process and has to be recom-
puted with the actual step size ratio o,. The nodes, « and err of the methods used
in our tests are given in Table 2. For s = 3 the table shows also G (oy,).

3. Superconvergent singly-implicit methods
These methods are of order p = s — 1 for general step sizes and of order of conver-
gence p = s for constant ones. The coefficient matrix G, = yI + G for 5, = 1
is computed by (12) and (23). The nodes, « and err of the methods used in our
tests are given in Table 3.

For all types of methods the matrix B,, is defined by (8).
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Table 3 Superconvergent singly-implicit methods of order p =s

s=3 s=4 s=35

s3-single s4-single s5-single
1 0.4385371847140350 0.1661225026730741 0.2068377401453823
) 0.8743710492192502 0.4145497896735533 0.3951241118982431
c3 1.0000000000000000 0.7042604619720084 0.6199266734460809
cy 1.0000000000000000 0.8406000177315648
cs 1.0000000000000000
811 0.1869928069686800 0.1205215848722439 0.0947726533677875
821 0.4358338645052150 0.2484272870004789 0.1882863717528655
831 0.4805420905198220 0.2243553795746857 0.1664873086357274
841 0.2112962998724116 0.1510411365150871
851 0.1531895778101022
82 0.1869928069686800 0.1205215848722439 0.0947726533677875
832 0.0809207247661426 0.3137825797242480 0.2466016246649778
842 0.3138914292536178 0.2590889022811201
852 0.2234013037887930
833 0.1869928069686800 0.1205215848722439 0.0947726533677875
843 0.3086897682008952 0.2236322387899814
853 0.2999378263874648
844 0.1205215848722439 0.0947726533677875
854 0.1166335518682632
855 0.0947726533677875
o 86.1° 83.2° 75.7°
err 0.06 0.05 0.05

We now describe details of the implementation. The computation of each stage
approximation Yy, ; of the peer method requires the solution of the nonlinear system

K i—1
Yini —hm8iiFm,i = Zbij Yin—1,j +hm Zgij Fu,j. 24
=1 =1

The terms on the right hand side are known and we denote them by w;. So we have
to solve the equation

0=Yni—hm&iFmi—wi=:8Ymi). (25)
Newton’s method applied to (25) gives a sequence of linear systems of the form
(1= 8T AYE, =i~ ¥, +5,£(¥E)

2
Yyl — vk 4 AYE k=0,1,2 2o
i = Tm,i m,i’ =V L.,

m,i
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400 S. Beck et al.

T
o & s4 ykstart (Ym-1)
10 " | |-©-s4 ykstart (Ym-1,i ... Ym,i-1 b
o~
107 b 1
Q\
5 ®,
S 0¢ ) i
Q.
10-8 | 4
10’ 10°
time in sec

Fig.1 Comparison of two initial guess strategies

where T; = of (tm.;, Y,fl )/0y and 8; = hy,g;;. The value Y,f” is accepted as Y, ;
when

[(AY} )]
max
j=1.2,..n atol +rtol|(Y;—1,;)

holds. If this stopping criterion is not satisfied after 10 iterations we nevertheless set
Yii= lez(,)i and leave it for the step size selection to decide whether this value is
accurate enough.

The linear systems in (26) are solved iteratively by the Krylov method FOM with
the maximal dimension of 20 for the Krylov space. The Krylov solution is accepted
if the residual in (26) satisfies res < ktol - atol. Here, atol is the absolute tolerance for
the step size control of the integration method. We use ktol = 0.1 for peer-methods
with 3 stages and ktol = 0.01 for peer-methods with 4 and 5 stages.

A crucial point is the computation of the initial guess Yr(r)l, ; for Newton’s method.
We observe the best results in our tests when the initial guess is computed by an
interpolation polynomial based on the s most recent stage values of the peer method.
In stage i this means that Yn(z’ ; is computed by the s — 1-degree polynomial fitted to
the subgrid

{tm—1 +hm_1ci, ... 1 +hm—1Cso tiy +hcr, ooty + hpcioy}

and with the use of the stage vectors Yy, —1;, ..., Yiu—1.5, Ym.1, .-, Yin,i—1. With this
initial guess the methods perform far better than with the approximation Y . com-
puted by the old stage values Y,,—; only. This can be seen in Fig. 1 where both
strategies. are compared for method s4 and problem Nilidi (cf. Sect. 5) of dimension
40000.
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Implicit peer methods for large stiff ODE systems 401

The starting values Yy ; for the first integration step are computed with ROWMAP.
The step size control is performed in the standard way, i.e. the new step size is com-
puted by

-1
Rnew = hyy min(2, max(0.2,0.8 - est @ )), 27)
where
| — (1, -, \2
est— | = Z Di( m+1,s) ( m+1,S)l . (28)
n i1 atol 4 rto”(Ym,s)il

The order is ¢ = s — 1 for the methods of types 1 and 3 and ¢ = s for the methods
of type 2. The error estimate (28) uses the vector interpolation polynomial p(t) =

[p1(0), p2(1), ..., pa(®)]T based on the points (hyti 1, Ymt1,1)s---s (bmsls—1,
Yin+1,s—1) for methods of types 1 and 3 and the points (fy,41, Yim.s), (tm+1,1, Yims1,1),
eooy (tmt1.9—=1, Ym+1,5—1) for type 2 methods.

We have implemented the peer methods in MATLAB.

5 Numerical tests

The implicit peer methods are compared with the MATLAB-codes ROWMAP (ver-
sion of May 2009, http://numerik.mathematik.uni-halle.de/forschung/software/) and
EXP4 (version of August 1998). ROWMAP [12] contains various ROW-methods
and uses a special multiple Arnoldi process for the solution of the linear systems.
We used the method GRK4T [5] (RM-GRKAT in the figures). EXP4 of Hochbruck,
Lubich and Selhofer [3] is an exponential W-method with Krylov approximation for

p1(hy A)v, p1(2) = (e* = 1)/z, A= fy(tm, um).

In our tests we use difference approximations for products Av. This may be a disad-
vantage for EXP4, where an exact Jacobian is recommended.
We present results for the following test problems:

Bruss2D: The 2-dimensional Brusselator [3] given by

u, =1+ u?v —4du + o (uxy +utyy)

v =3u— v+ e +uy), (x,y)eQ=[0,11%, 1€[0,1]

with Neumann boundary conditions. The diffusion constant is & = 0.02 and the
initial values are determined by

u0,x,y)=05+y, v(0,x,y)=1+5x.
Diffu2: The 2-dimensional diffusion equation [12]

ur=Au+ f(t,x,y), Q=017 +tel[0,1].
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Here the initial and the Dirichlet boundary values are taken from the exact solution
u(t,x,y)=sin(zx)sin(wy)(l +4xysint)

and f is determined appropriately.
Nilidi: The nonlinear diffusion equation [12]

ur=e"(Uxx +uyy) +u(18" —1), (x,y)eQ=]I0, 71/3]2, te[0,1]. (29)
The initial and the Dirichlet boundary values are taken from the exact solution:
u(t,x,y) =e "sin(3x) sin(3y).

Radiation: This problem is a system of two strongly nonlinear diffusion equations
with a highly stiff reaction term. The dependent variables E (¢, x, y) (radiation en-
ergy) and T (¢, x, y) (material temperature) are defined on the unit square for t > 0,
by means of

E, =V -(D\VE)+0o(T* - E)
(30
T,=V-(DVT) —o(T*— E)
with

Z opo— ' p_rt
=7 1= IVEL’ 2=
T 30 + T2

where

Zeyy = %0 if[x— 3 <tand|y— % <t
' 1 otherwise

with k =5-1073 and Zy =1 or Zy = 5. For Zy = 5 the nonlinear source term in

(30) has a jump which makes the problem computationally more difficult. The initial

values and details of the discretization can be found in [4].

For all problems we use central differences for semi-discretization and a grid res-
olution of m = 100 points in each space dimension (m = 200 for Nilidi), the
overall dimension is denoted by n. All problems are solved for seven tolerances
tol =1072,1073,..., 1078 with rtol = atol = tol. The marks in Figs. 2—6 show the
computing time (in seconds, logarithmic scale) plotted against the logarithm of the
error at the endpoint in the norm

1 < u; — uex; 2
= | = —— . 31
et nz(1+|uex,~|) Gh

i=1

The reference solutions uex are computed with high accuracy by standard integra-
tors. The new methods solve all problems reliably. For crude tolerances the 3-stage
methods are the best, for more strict tolerances the higher order methods are more
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Fig. 3 Results for Diffu2, n = 10000

efficient. Among the 3-stage peer methods s3-sigma of order of consistency 3 is the
best, for 4 and 5 stages the methods are comparable with advantages for the singly-
implicit methods. This means, for lower accuracy we would use the method s3-sigma,
for medium accuracy s4-single and for higher accuracy s5-single.

For the simple test problem Bruss2D and for Nilidi the performance of ROWMAP
and EXP4 is similar to that of the peer methods, but for the other problems the im-
plicit peer methods are clearly superior. Especially for the stiff Radiation problem
with Zg =5 and for the sharper tolerances the errors of all peer methods are at least
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Fig. 5 Results for Radiation with Zg = 1, n = 20000

2 magnitudes smaller than those of the linearly-implicit methods with the same run-
times. We assume that this advantage of the peer methods can be attributed to their
high stage order which prevents from order reduction.

The aim of using implicit methods is to improve the robustness of the methods
compared to linearly-implicit peer methods which use exactly one Newton iteration
in some sense. In further tests not shown here this improvement really could be ob-
served for crude tolerances. For instance, for the hard Radiation problem (Zp = 5)
the linearly implicit peer methods fail for tolerances 10~2 and 103 even with an in-
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Fig. 6 Results for Radiation with Zg =5, n = 20000

creased Krylov dimension of 50. For strict tolerances, however, the linearly-implicit
peer methods display similar results in the number of steps and accuracy, but they are
slightly faster due to their simpler structure.

The number of Newton steps depends mostly on the initial guess, if it is good
then few iteration steps must be done. We think our new strategy described in Sect. 4
is applicable. By using this strategy the number of iteration steps decrease with the
tolerance atol, because of the smaller step sizes.

6 Conclusions

We have constructed several s-stage optimally zero-stable implicit peer methods of
three different types with s € {3, 4, 5}. Their order of convergence is p = s for vari-
able step sizes (type 2) or p = s — 1 for variable step sizes and p = s for constant step
sizes (types 1 and 3). Methods with s = 3, 4, 5 stages have been implemented ‘matrix-
free’ by using the Krylov solver FOM for the linear systems inside the Newton iter-
ation. In numerical tests on high-dimensional MOL problems they work reliably and
efficiently with an advantage over linearly-implicit methods for crude tolerances. Due
to their high stage order, the implicit peer methods with s =4, 5 are superior to one-
step methods with Krylov techniques when high accuracy is required. The 3-stage
peer methods perform well for low accuracy demands.
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