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Abstract Implicit two-step peer methods are introduced for the solution of large
stiff systems. Although these methods compute s-stage approximations in each time
step one-by-one like diagonally-implicit Runge-Kutta methods the order of all stages
is the same due to the two-step structure. The nonlinear stage equations are solved
by an inexact Newton method using the Krylov solver FOM (Arnoldi’s method).
The methods are zero-stable for arbitrary step size sequences. We construct different
methods having order p = s in the multi-implicit case and order p = s − 1 in the
singly-implicit case with arbitrary step sizes and s ≤ 5. Numerical tests in MATLAB

for several semi-discretized partial differential equations show the efficiency of the
methods compared to other Krylov codes.
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1 Introduction

In [8] two of the authors introduced the class of linearly-implicit parallel peer meth-
ods for the solution of stiff initial value problems

y′(t) = f (t, y(t)), t ∈ [t0, te], y(t0) = y0, (1)

f : R × R
n → R

n. These methods are characterized by the fact that the stage values
share same accuracy and stability properties. Later the methods were generalized in
several directions, in [10] implicit parallel methods were considered, in [7] sequential
linearly-implicit methods were introduced. In [9] linearly-implicit parallel peer meth-
ods were combined with the full orthogonalization method (FOM) and were used for
the solution of large stiff systems of ordinary differential equations resulting from the
semidiscretization of partial differential equations with the method of lines (MOL).

In this paper we will combine these approaches and consider s-stage sequential
implicit peer methods for large stiff systems. This means that Newton’s method will
be used for the solution of the nonlinear stage equations. The solutions of the lin-
earized systems, however, will be approximated by FOM in order to keep the compu-
tational effort low for large dimensions. The proposed class of peer methods has the
form

Ym,i =
s∑

j=1

bijYm−1,j + hm

i∑

j=1

gijFm,j , i = 1,2, . . . , s. (2)

In each time step from tm to tm+1 = tm + hm it computes stage solutions Ym,i
∼=

y(tm,i), i = 1,2, . . . , s, as approximations at the points

tm,i := tm + hmci, i = 1,2, . . . , s.

In this paper we consider methods with

0 ≤ c1 < c2 < · · · < cs = 1.

The stage derivatives are denoted by Fm,i = f (tm + hmci, Ym,i), i = 1,2, . . . , s. In-
troducing stacked vectors

Ym =

⎛

⎜⎜⎜⎝

Ym,1
Ym,2

...

Ym,s

⎞

⎟⎟⎟⎠ , F (tm,Ym) =

⎛

⎜⎜⎜⎝

f (tm + c1hm,Ym,1)

f (tm + c2hm,Ym,2)
...

f (tm + cshm,Ym,s)

⎞

⎟⎟⎟⎠

a compact form of the scheme (2) is

Ym = (Bm ⊗ I )Ym−1 + hm(Gm ⊗ I )F (tm,Ym). (3)

Here the coefficients are collected in the matrix Bm = (bij )
s
i,j=1 and the lower trian-

gular matrix Gm = (gij )
s
i,j=1 which may depend on the step size ratio σm defined by

hm = σmhm−1.
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Remark 1 It is possible to include also f (tm−1, Ym−1) in (2). However, in this case
L-stability (M(∞) = 0, cf. (13)) is not possible. Furthermore the stability investiga-
tions become much more delicate. For explicit methods it is more suitable to consider
this extension [13]. Calvo et al. [2] construct explicit peer methods of this type of or-
der 2s − 1.

When direct solvers are used for the solution of the linear equations, the singly-
implicit choice

Gm = γ I + G0 (4)

with a strictly lower triangular matrix G0 is advantageous, since only one LU decom-
position per time step is needed. In combination with Krylov solvers, however, the
multi-implicit choice with

Gm = diag(γ1, γ2, . . . , γs) + G0,

can be used and the additional parameters may be used to improve the properties of
the method.

The order and stage order of an s-stage peer method are limited to p = s − 1, in
general. For special nodes and constant step size methods of order of convergence
p = s were constructed in [7]. In this paper we consider different choices for Gm.
In the most general case, choosing Gm multi-implicit and σ -dependent, we construct
methods of order of consistency and convergence p = s. If Gm does not depend on
σm the order of consistency p = s can be ensured for constant h only. Even when
using Krylov solvers singly-implicit methods with (4) are of interest if precondition-
ing is considered. For this case we derive order conditions ensuring only order of
consistency p = s − 1 but order of convergence p = s for constant step sizes.

As the methods have a two-step character, zero-stability is a crucial point for peer
methods. In Sect. 2 we derive the order conditions and present a construction prin-
ciple that ensures zero-stability for all step size sequences. In Sect. 3 we use some
remaining degrees of freedom to increase the order of the methods. Different types of
methods with constant and variable matrix Gm are discussed. In Sect. 4 we present
special methods with good stability and accuracy properties for s = 3,4,5. Further-
more, we discuss implementation issues like the choice of starting approximations for
the Newton process, error estimation and stopping criteria for the iterative methods.
Finally, in Sect. 5 numerical results for several MOL problems are given. We com-
pare the MATLAB implementation of our methods with the Krylov one-step codes
ROWMAP [12] and EXP4 [3].

2 Order conditions and linear stability

The order conditions for peer methods can be derived by replacing Ym,i and Ym−1,i

in (3) by values of the solution y(t) and using f (tm,i , y(tm,i)) = y′(tm,i). Since this
is done simultaneously for all stages, there is no difference between order and stage
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order and hence no order reduction for stiff problems. Taylor series expansion gives

y(tm + ciσhm−1) =
p∑

l=0

(ciσmhm−1)
l

l! y(l)(tm) + O(h
p+1
m−1),

y(tm−1 + cihm−1) =
p∑

l=0

((ci − 1)hm−1)
l

l! y(l)(tm) + O(h
p+1
m−1),

σmhm−1y
′(tm + ciσmhm−1) =

p∑

l=1

σmhm−1
(ciσmhm−1)

l−1

(l − 1)! y(l)(tm) + O(h
p+1
m−1).

For a compact notation, we use the node vector c = (c1, c2, . . . , cs)
	 and the operator

z := hm−1
d
dt

in the following definition.

Definition 1 For z → 0 and σm > 0 let the peer method (3) satisfy

exp(σmcz) = Bm exp((c − 1)z) + Gmσmz exp(σmcz) + O(zp+1), (5)

with p ∈ N0 and the exponentials of the vectors are defined componentwise. Then,
the method is preconsistent if p ≥ 0 and consistent of order p if p ≥ 1.

For constant step sizes, (5) simplifies to

exp(cz) = B exp((c − 1)z) + Gz exp(cz) + O(zp+1), z → 0. (6)

Let the nodes ci be pairwise distinct. Then, by the order conditions for p = s − 1 in
(5), one of the matrices Bm or Gm is uniquely determined by the other. Solving for

Bm we re-write (5) in matrix form collecting the coefficients of zl

l! in columns. This
gives

V0S = BmV1 + GmV0DF	
0 S (7)

and hence

Bm = (V0 − GmV0DF	
0 )SV −1

1 , (8)

where the matrices are given by

(V0)i,j = c
j−1
i , (V1)i,j = (ci − 1)j−1,

(F0)i,j = δi,j+1 =
{

1 i = j + 1,

0 i �= j + 1,

S = diag(1, σm,σ 2
m, . . . , σ s−1

m ) and D = diag(1,2, . . . , s).

(9)

Besides consistency, convergence of the methods requires zero-stability, at least. This
problem will be discussed now.
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Definition 2 A peer method (3) is zero-stable, if

‖Bm+lBm+l−1 · · ·Bm+1Bm‖ ≤ K

holds for some constant K < ∞ and for all m and l ≥ 0.

The uniform boundedness of arbitrary matrix products required in Definition 2 is
a very difficult theoretical question. It is easily verified for special matrix families,
only. Our construction of the methods in the next section uses such a family. Now,
convergence for variable grids with 0 < σmin < σm < σmax follows analogously to [7].

Theorem 1 Zero stability and order p of consistency guarantee convergence of or-
der p.

Since linearly-implicit peer methods with the stronger property of optimal zero-
stability have been shown to be very efficient in [7] we require this property also for
implicit methods. Optimal zero-stability means that for all step size ratios Bm has one
eigenvalue equal to one (this follows from preconsistency) and all other eigenvalues
are zero. For that we consider the transformed matrix Qm = V −1

1 BmV1. By (8), we
obtain

Qm = P(I − V −1
0 GmV0DF	

0 )S, (10)

where P is the Pascal matrix defined by P = ((
j−1
i−1

))
i,j=1,2,...,s

= V −1
1 V0. We require

Qm − e1e
	
1 to be strictly upper triangular. Introducing tril(·) as the lower triangular

part of a matrix including the diagonal, i.e.

tril(X) :=
s∑

j=1

s∑

i=j

e	
i Xej eie

	
j ,

this condition can be written in the form

tril(Qm − e1e
	
1 ) = 0. (11)

Obviously, the condition (11) is not affected by the diagonal matrix S which can be
omitted. Now, with (10) the condition (11) can be written as a linear system for the
matrix Gm in the form

tril(V −1
1 GmV0DF	

0 ) = tril(P ) − e1e
	
1 = I − e1e

	
1 . (12)

Since the first column on both sides of (12) is zero the condition represents effec-
tively only s(s − 1)/2 constraints. The remaining degrees of freedom are used in the
following sections to construct methods of higher order of convergence p = s.

Applying the peer methods (2) with constant step size h to the test equation y′ =
λy leads to a recursion Ym = M(z)Ym−1 with the stability matrix

M(z) = (I − zG)−1B, (13)



394 S. Beck et al.

where z = hλ. A-stability and A(α)-stability can now be defined using the set

{z : ρ(M(z)) < 1 : z ∈ C}
as stability domain [7]. Note that diag(G) > 0 implies limz→∞ M(z) = 0, i.e. A(α)-
stable methods are also L(α)-stable.

3 Construction of optimally zero-stable methods of order p = s

3.1 Construction of multi-implicit methods

In order to obtain optimally zero-stable methods of the maximum order p = s we
use all degrees of freedom in the method by using a lower triangular matrix Gm

with a general diagonal. This is appropriate from a computational point of view in
the case when the stage equations are solved by iterative methods. We start with the
representation (8), giving order of consistency p = s −1. Since optimal zero-stability
(12) implies only s(s − 1)/2 conditions for the s(s + 1)/2 coefficients gij of the
matrix Gm we use the remaining s parameters to obtain order p = s of consistency.
The additional condition (5) for zs reads

cs = σ−s
m Bm(c − 1)s + sGmcs−1, (14)

where 1 = (1, . . . ,1)	. Together with (12) this gives a complete set of s(s + 1)/2
linear equations for the elements of Gm. Theoretically, this system can be singular
for special values of ci . However, in our numerical search where we considered 0 ≤
ci ≤ 1 this did not occur.

The construction is summarized in the following theorem.

Theorem 2 Let the matrix Bm be defined by (8), where the coefficients of the lower
triangular matrix Gm are the solutions of (12) and (14). Then the peer method is op-
timally zero-stable and has order of consistency p = s for variable step sizes. Hence,
it is convergent of order p = s for arbitrary step size sequences.

Unfortunately, (12) and (14) imply that Gm depends on σm and has to be recom-
puted after step size changes during the integration process. In order to avoid this
computation, especially for methods with many stages, we also consider methods
with a frozen coefficient G, independent of m. Practical advantages of this choice
will be seen in the numerical tests. Of course, in this case order of consistency p = s

is achieved for constant step sizes only.

Theorem 3 Let the matrix Bm be defined by (8), where the coefficients of the con-
stant lower triangular matrix G are the solutions of (12) and (14) for σm = 1. Then
the peer method is optimally zero-stable and is convergent of order p = s − 1 for
arbitrary step size sequences and of order p = s for constant step sizes.

If the step sizes are not varying too strongly, we can expect a better performance
of these methods compared to methods of order p = s − 1.
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3.2 Construction of superconvergent singly-implicit methods

In singly-implicit methods the elements in the diagonal of the matrix G are all equal
to γ . We also use a constant matrix Gm = G. This choice has the advantage that the
coefficient matrix (I − hγ T ) with T ≈ fy is the same for all the implicit stages.
Hence, some computational work can be saved if a direct solver is used for the linear
systems or if preconditioning is used in iterative solvers.

The second advantage is that the derivation of the methods simplifies considerably
as the matrices G and B depend only linearly on γ . This can be seen immediately by
substituting G = G0 + γ I into (8). For constant step sizes this yields B = B0 + γB1
with

B0 = (V0 − G0V0DF	
0 )V −1

1 and B1 = −V0DF	
0 V −1

1 .

Also, the condition (12) for zero-stability simplifies since it is independent of γ due
to

tril(V −1
1 GV0DF	

0 ) = tril(V −1
1 G0V0DF	

0 + γPDF	
0 )

= tril(V −1
1 G0V0DF	

0 ) = I − e1e
	
1 .

Hence, the matrices B0, B1 and G0 are uniquely determined by the nodes (ci). In the
second step γ has to be chosen in a certain way, which is discussed now.

Unfortunately, singly-implicit methods with s stages do not have enough free pa-
rameters to satisfy the consistency conditions (6) up to order s even for constant step
sizes. However, if the residual in the order condition (6) has a certain structure, we can
still obtain methods which converge with order p = s. This concept is well-known
and named quasi-consistency [6, 11], superconvergence [13] or effective order [1].
In [7], superconvergent linearly-implicit methods with Chebyshev nodes have been
constructed. Here we generalize the construction to implicit methods and arbitrary
nodes. The principal idea is to determine a constant vector E ∈ R

s with

Ym = y(tm + ch) − Ehsy(s)(tm) + O(hs+1). (15)

Substituting (15) into (3) leads to the modified order condition

exp(cz) − Ezs = B
(
exp((c − 1)z) − Ezs

) + zG exp(cz) + O(zs+1). (16)

The modification with E has no influence on the lower order terms, but only on the
zs term which is now

1

s!c
s − E = B

(
1

s! (c − 1)s − E

)
+ 1

(s − 1)!Gcs−1. (17)

So, E must satisfy the rank-deficient linear system

(I − B0 − γB1)E = r0 + γ r1, (18)

with

r0 = 1

s!c
s − 1

(s − 1)!G0c
s−1 − 1

s!B0(c − 1)s, (19)
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r1 = − 1

(s − 1)!c
s−1 − 1

s!B1(c − 1)s . (20)

Of course, (18) has a solution E if and only if the right hand side r0 + γ r1 lies in the
image of (I − B0 − γB1). This finally leads to a polynomial condition for γ .

Theorem 4 A singly-implicit peer method (3), (4) with ci �= cj for i �= j and cs = 1
that is consistent of order s −1 and satisfies (11) is convergent of order s for constant
step sizes if and only if γ is a root of the polynomial

p(γ ) = det(I − B0 − γB1 + (r0 + γ r1)e
	
s ). (21)

Proof Multiplying (18) from the left by V −1
1 yields the system

V −1
1 (I − B)V1V

−1
1 E = V −1

1 (r0 + γ r1). (22)

Due to preconsistency the first column of V −1
1 (I − B)V1 vanishes. Hence, we may

move the last column V −1
1 (r0 + γ r1) of the augmented system matrix to this place

and consider the square matrix

M := V −1
1 (r0 + γ r1)e

	
1 + V −1

1 (I − B)V1

instead. Now, (22) has a solution if and only if V −1
1 (r0 + γ r1) ∈ image(V −1

1 (I −
B)V1). This is equivalent to M being singular since rank(V −1

1 (I − B)V1) = s − 1
by (11), and we arrive at

0 = det(M) = det((r0 + γ r1)e
	
s + I − B0 − γB1) = p(γ ).

Here, the identity e	
1 V −1

1 = e	
s due to cs = 1 has been used. �

The condition p(γ ) = det(M0 +γM1) = 0 with (21) corresponds to a generalized
eigenvalue problem with the matrices

M0 = r0e
	
s + I − B0,

M1 = r1e
	
s − B1.

Since M1 is always nonsingular we have

p(γ ) = det(M0 + γM1) = det(−M0M
−1
1 − γ I)det(−M1) (23)

and a method satisfying the assumptions of Theorem 4 is convergent of order s if
and only if γ is an eigenvalue of the matrix −M0M

−1
1 . Of course, only real positive

eigenvalues are of practical interest.
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Table 1 Multi-implicit methods of order p = s − 1 with constant G

s = 3 s = 4 s = 5
s3 s4 s5

c1 0.2965111264167650 0.1541463935325966 0.1899099193591592

c2 0.6591161332612843 0.4910074678586249 0.3939885651937762

c3 1.0000000000000000 0.7436397609359440 0.6590663408302807

c4 1.0000000000000000 0.8872164547257527

c5 1.0000000000000000

g11 0.1683093491913489 0.0874788583307741 0.0786811387072333

g21 0.3628778211882157 0.2831819427066078 0.1977990264420529

g31 0.3787524476457439 0.3078491242818127 0.1911249255439913

g41 0.3229398435452924 0.1795911264673902

g51 0.1755057541315561

g22 0.1680365348476524 0.1411579899501929 0.0849607580997951

g32 0.3189836517418485 0.2371881675120290 0.2463905827322347

g42 0.2358273071856336 0.2806687099884024

g52 0.2847696294285085

g33 0.1740621233869913 0.1319349339402774 0.1103220519021229

g43 0.2402981159278471 0.2026225925156643

g53 0.2330254931701668

g44 0.1342671981394014 0.1131052451023614

g54 0.1019794066232285

g55 0.0934909359946043

α 86.3° 82.0° 73.7°

err 0.16 0.20 0.19

4 Special methods and implementation issues

In the construction of the different types of methods described in Sect. 3 only the
coefficients of the matrices B and G are fixed. The choice of the off-step nodes ci is
still free. To find good numerical schemes of the form (3), we perform a random walk
search by varying the nodes ci in the interval [0,1] in order to obtain large angles α

of L(α)-stability and a small norm of the O(hp+1) error term in (5) (for σm = 1)
which we denote by err

err =
∥∥∥∥

1

(p + 1)!c
p+1 − 1

(p + 1)!B(c − 1)p+1 − 1

p!Gcp

∥∥∥∥
2
.

We present three types of methods:
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Table 2 Multi-implicit methods of order p = s

s = 3 s = 4 s = 5
s3-sigma s4-sigma s5-sigma

c1 0.3652686026916057 0.1184401720706515 0.1599044788394790

c2 0.6887542583756895 0.3837335049954883 0.3886810267030429

c3 1.0000000000000000 0.6844465289234397 0.5836944109189660

c4 1.0000000000000000 0.8256259438802006

c5 1.0000000000000000

α 85.4° 82.1° 67.9°

err 0.15 0.18 0.17

Matrix G(σ) of s3-sigma:

g11 = 0.1217562008972019σ 2 + 0.3153257129775683σ + 0.1802850861272289

σ 2 + 1.726541567788656σ + 0.4935685268285777

g21 = 0.3000456289599450σ 3 + 0.7927752380513838σ 2 + 0.6240378735073610σ + 0.1556348476255093

σ 3 + 2.324869601505632σ 2 + 1.526606748214190σ + 0.2953158861619276

g31 = 0.3179289434446160σ 3 + 0.8248259206820989σ 2 + 0.6348921595899917σ + 0.1562144929255245

σ 3 + 2.324869601505632σ 2 + 1.526606748214190σ + 0.2953158861619276

g22 = 0.1451962276213406σ + 0.09677526815055233

σ + 0.5983280337169764

g32 = 0.2808957982721961σ + 0.1874938170231784

σ + 0.5983280337169764

g33 = 0.1576628564887841

1. Multi-implicit methods with the matrix G being independent of σm

The methods are of order p = s − 1 for general step sizes and of order p = s for
constant ones. The coefficient matrix Gm = diag(γ1, γ2, . . . , γs) + G0 for σm = 1
is computed by (12) and (14) at the start. So Gm = G is fixed during the integration
process. The nodes, α and err of the methods used in our tests are given in Table 1.

2. Multi-implicit methods with matrix G depending on σm

These methods have order of consistency p = s also for variable step sizes. The
coefficient matrix Gm = diag(γ1, γ2, . . . , γs) + G0 for every σm is computed by
(12) and (14). So Gm changes during the integration process and has to be recom-
puted with the actual step size ratio σm. The nodes, α and err of the methods used
in our tests are given in Table 2. For s = 3 the table shows also G(σm).

3. Superconvergent singly-implicit methods
These methods are of order p = s −1 for general step sizes and of order of conver-
gence p = s for constant ones. The coefficient matrix Gm = γ I + G0 for σm = 1
is computed by (12) and (23). The nodes, α and err of the methods used in our
tests are given in Table 3.

For all types of methods the matrix Bm is defined by (8).
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Table 3 Superconvergent singly-implicit methods of order p = s

s = 3 s = 4 s = 5
s3-single s4-single s5-single

c1 0.4385371847140350 0.1661225026730741 0.2068377401453823

c2 0.8743710492192502 0.4145497896735533 0.3951241118982431

c3 1.0000000000000000 0.7042604619720084 0.6199266734460809

c4 1.0000000000000000 0.8406000177315648

c5 1.0000000000000000

g11 0.1869928069686800 0.1205215848722439 0.0947726533677875

g21 0.4358338645052150 0.2484272870004789 0.1882863717528655

g31 0.4805420905198220 0.2243553795746857 0.1664873086357274

g41 0.2112962998724116 0.1510411365150871

g51 0.1531895778101022

g22 0.1869928069686800 0.1205215848722439 0.0947726533677875

g32 0.0809207247661426 0.3137825797242480 0.2466016246649778

g42 0.3138914292536178 0.2590889022811201

g52 0.2234013037887930

g33 0.1869928069686800 0.1205215848722439 0.0947726533677875

g43 0.3086897682008952 0.2236322387899814

g53 0.2999378263874648

g44 0.1205215848722439 0.0947726533677875

g54 0.1166335518682632

g55 0.0947726533677875

α 86.1° 83.2° 75.7°

err 0.06 0.05 0.05

We now describe details of the implementation. The computation of each stage
approximation Ym,i of the peer method requires the solution of the nonlinear system

Ym,i − hmgiiFm,i =
s∑

j=1

bijYm−1,j + hm

i−1∑

j=1

gijFm,j . (24)

The terms on the right hand side are known and we denote them by wi . So we have
to solve the equation

0 = Ym,i − hmgiiFm,i − wi =: g(Ym,i). (25)

Newton’s method applied to (25) gives a sequence of linear systems of the form

(I − δiTi)�Y k
m,i = wi − Y k

m,i + δif
(
Y k

m,i

)

Y k+1
m,i = Y k

m,i + �Yk
m,i, k = 0,1,2, . . . ,

(26)
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Fig. 1 Comparison of two initial guess strategies

where Ti = ∂f (tm,i , Y
k
m,i)/∂y and δi = hmgii . The value Y k

m,i is accepted as Ym,i

when

max
j=1,2,...,n

|(�Yk
m,i)j |

atol + rtol|(Ym−1,i )j | ≤ 0.1

holds. If this stopping criterion is not satisfied after 10 iterations we nevertheless set
Ym,i = Y 10

m,i and leave it for the step size selection to decide whether this value is
accurate enough.

The linear systems in (26) are solved iteratively by the Krylov method FOM with
the maximal dimension of 20 for the Krylov space. The Krylov solution is accepted
if the residual in (26) satisfies res ≤ ktol · atol. Here, atol is the absolute tolerance for
the step size control of the integration method. We use ktol = 0.1 for peer-methods
with 3 stages and ktol = 0.01 for peer-methods with 4 and 5 stages.

A crucial point is the computation of the initial guess Y 0
m,i for Newton’s method.

We observe the best results in our tests when the initial guess is computed by an
interpolation polynomial based on the s most recent stage values of the peer method.
In stage i this means that Y 0

m,i is computed by the s − 1-degree polynomial fitted to
the subgrid

{tm−1 + hm−1ci, . . . , tm−1 + hm−1cs, tm + hmc1, . . . , tm + hmci−1}

and with the use of the stage vectors Ym−1,i , . . . , Ym−1,s , Ym,1, . . . , Ym,i−1. With this
initial guess the methods perform far better than with the approximation Y 0

m,i com-
puted by the old stage values Ym−1 only. This can be seen in Fig. 1 where both
strategies. are compared for method s4 and problem Nilidi (cf. Sect. 5) of dimension
40000.
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The starting values Y0,i for the first integration step are computed with ROWMAP.
The step size control is performed in the standard way, i.e. the new step size is com-
puted by

hnew = hm min
(
2,max(0.2,0.8 · est

−1
q )

)
, (27)

where

est =
√√√√1

n

n∑

i=1

(
pi(tm+1,s) − (Ym+1,s )i

atol + rtol|(Ym,s)i |
)2

. (28)

The order is q = s − 1 for the methods of types 1 and 3 and q = s for the methods
of type 2. The error estimate (28) uses the vector interpolation polynomial p(t) =
[p1(t),p2(t), . . . , pn(t)]	 based on the points (tm+1,1, Ym+1,1), . . . , (tm+1,s−1,

Ym+1,s−1) for methods of types 1 and 3 and the points (tm+1, Ym,s), (tm+1,1, Ym+1,1),

. . . , (tm+1,s−1, Ym+1,s−1) for type 2 methods.
We have implemented the peer methods in MATLAB.

5 Numerical tests

The implicit peer methods are compared with the MATLAB-codes ROWMAP (ver-
sion of May 2009, http://numerik.mathematik.uni-halle.de/forschung/software/) and
EXP4 (version of August 1998). ROWMAP [12] contains various ROW-methods
and uses a special multiple Arnoldi process for the solution of the linear systems.
We used the method GRK4T [5] (RM-GRK4T in the figures). EXP4 of Hochbruck,
Lubich and Selhofer [3] is an exponential W-method with Krylov approximation for

ϕ1(hγA)v, ϕ1(z) = (ez − 1)/z, A = fy(tm,um).

In our tests we use difference approximations for products Av. This may be a disad-
vantage for EXP4, where an exact Jacobian is recommended.

We present results for the following test problems:

Bruss2D: The 2-dimensional Brusselator [3] given by

ut = 1 + u2v − 4u + α(uxx + uyy)

vt = 3u − u2v + α(uxx + uyy), (x, y) ∈ � = [0,1]2, t ∈ [0,1]
with Neumann boundary conditions. The diffusion constant is α = 0.02 and the
initial values are determined by

u(0, x, y) = 0.5 + y, v(0, x, y) = 1 + 5x.

Diffu2: The 2-dimensional diffusion equation [12]

ut = �u + f (t, x, y), � = [0,1]2, t ∈ [0,1].

http://numerik.mathematik.uni-halle.de/forschung/software/
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Here the initial and the Dirichlet boundary values are taken from the exact solution

u(t, x, y) = sin(πx) sin(πy)(1 + 4xy sin t)

and f is determined appropriately.
Nilidi: The nonlinear diffusion equation [12]

ut = eu(uxx + uyy) + u(18eu − 1), (x, y) ∈ � = [0,π/3]2, t ∈ [0,1]. (29)

The initial and the Dirichlet boundary values are taken from the exact solution:

u(t, x, y) = e−t sin(3x) sin(3y).

Radiation: This problem is a system of two strongly nonlinear diffusion equations
with a highly stiff reaction term. The dependent variables E(t, x, y) (radiation en-
ergy) and T (t, x, y) (material temperature) are defined on the unit square for t > 0,
by means of

Et = ∇ · (D1∇E) + σ(T 4 − E)

Tt = ∇ · (D2∇T ) − σ(T 4 − E)
(30)

with

σ = Z3

T 3
, D1 = 1

3σ + ‖∇E‖2
E

, D2 = kT
5
2

where

Z(x, y) =
{

Z0 if |x − 1
2 | ≤ 1

6 and |y − 1
2 | ≤ 1

6

1 otherwise

with k = 5 · 10−5 and Z0 = 1 or Z0 = 5. For Z0 = 5 the nonlinear source term in
(30) has a jump which makes the problem computationally more difficult. The initial
values and details of the discretization can be found in [4].

For all problems we use central differences for semi-discretization and a grid res-
olution of m = 100 points in each space dimension (m = 200 for Nilidi), the
overall dimension is denoted by n. All problems are solved for seven tolerances
tol = 10−2,10−3, . . . ,10−8 with rtol = atol = tol. The marks in Figs. 2–6 show the
computing time (in seconds, logarithmic scale) plotted against the logarithm of the
error at the endpoint in the norm

error =
√√√√1

n

n∑

i=1

(
ui − uexi

1 + |uexi |
)2

. (31)

The reference solutions uex are computed with high accuracy by standard integra-
tors. The new methods solve all problems reliably. For crude tolerances the 3-stage
methods are the best, for more strict tolerances the higher order methods are more
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Fig. 2 Results for Bruss2D, n = 20000

Fig. 3 Results for Diffu2, n = 10000

efficient. Among the 3-stage peer methods s3-sigma of order of consistency 3 is the
best, for 4 and 5 stages the methods are comparable with advantages for the singly-
implicit methods. This means, for lower accuracy we would use the method s3-sigma,
for medium accuracy s4-single and for higher accuracy s5-single.

For the simple test problem Bruss2D and for Nilidi the performance of ROWMAP
and EXP4 is similar to that of the peer methods, but for the other problems the im-
plicit peer methods are clearly superior. Especially for the stiff Radiation problem
with Z0 = 5 and for the sharper tolerances the errors of all peer methods are at least
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Fig. 4 Results for Nilidi, n = 40000

Fig. 5 Results for Radiation with Z0 = 1, n = 20000

2 magnitudes smaller than those of the linearly-implicit methods with the same run-
times. We assume that this advantage of the peer methods can be attributed to their
high stage order which prevents from order reduction.

The aim of using implicit methods is to improve the robustness of the methods
compared to linearly-implicit peer methods which use exactly one Newton iteration
in some sense. In further tests not shown here this improvement really could be ob-
served for crude tolerances. For instance, for the hard Radiation problem (Z0 = 5)
the linearly implicit peer methods fail for tolerances 10−2 and 10−3 even with an in-
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Fig. 6 Results for Radiation with Z0 = 5, n = 20000

creased Krylov dimension of 50. For strict tolerances, however, the linearly-implicit
peer methods display similar results in the number of steps and accuracy, but they are
slightly faster due to their simpler structure.

The number of Newton steps depends mostly on the initial guess, if it is good
then few iteration steps must be done. We think our new strategy described in Sect. 4
is applicable. By using this strategy the number of iteration steps decrease with the
tolerance atol, because of the smaller step sizes.

6 Conclusions

We have constructed several s-stage optimally zero-stable implicit peer methods of
three different types with s ∈ {3,4,5}. Their order of convergence is p = s for vari-
able step sizes (type 2) or p = s −1 for variable step sizes and p = s for constant step
sizes (types 1 and 3). Methods with s = 3,4,5 stages have been implemented ‘matrix-
free’ by using the Krylov solver FOM for the linear systems inside the Newton iter-
ation. In numerical tests on high-dimensional MOL problems they work reliably and
efficiently with an advantage over linearly-implicit methods for crude tolerances. Due
to their high stage order, the implicit peer methods with s = 4,5 are superior to one-
step methods with Krylov techniques when high accuracy is required. The 3-stage
peer methods perform well for low accuracy demands.
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