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Abstract In this paper, we consider the following nonlinear fractional m-point
boundary value problem

Dα
0+u(t) + f (t, u(t)) = 0, 0 < t < 1, 2 < α ≤ 3,

u(0) = u′(0) = 0, u′(1) =
m−2∑

i=1

βiu
′(ξi),

where Dα
0+ is the standard Riemann-Liouville fractional derivative. By the properties

of the Green function, the lower and upper solution method and fixed-point theorem
in partially ordered sets, some new existence and uniqueness of positive solutions
to the above boundary value problem are established. As applications, examples are
presented to illustrate the main results.
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1 Introduction

Recently, an increasing interest in studying the existence of solutions for boundary
value problems of fractional order functional differential equations has been observed
[4, 10, 21]. Fractional differential equations describe many phenomena in various
fields of science and engineering such as physics, mechanics, chemistry, control, en-
gineering, etc. For an extensive collection of such results, we refer the readers to the
monographs by Samko et al. [19], Podlubny [17] and Kilbas et al. [9].

On the other hand, some basic theory for the initial value problems of fractional
differential equations involving Riemann-Liouville differential operator has been dis-
cussed by Lakshmikantham [10–12], Z. Bai and H. Lü [3], A. M. A. El-Sayed et al.
[6, 7] and C. Bai [1, 2], S. Zhang [20], etc.

El-Shahed [7] considered the following nonlinear fractional boundary value prob-
lem

Dα
0+u(t) + λa(t)f (u(t)) = 0, 0 < t < 1, 2 < α ≤ 3,

u(0) = u′(0) = u′(1) = 0,

where Dα
0+ is the standard Riemann-Liouville fractional derivative. They used the

Krasnoselskii’s fixed-point theorem on cone expansion and compression to show the
existence and non-existence of positive solutions for the above fractional boundary
value problem.

Liang and Zhang [13] considered the following nonlinear fractional boundary
value problem

Dα
0+u(t) + f (t, u(t)) = 0, 0 < t < 1, 3 < α ≤ 4,

u(0) = u′(0) = u′′(0) = u′′(1) = 0,

where Dα
0+ is the standard Riemann-Liouville fractional derivative. By means of

lower and upper solution method and fixed-point theorems, some results on the ex-
istence of positive solutions to the above boundary value problems are obtained. But
the uniqueness is not treated.

Li, Luo and Zhou [14] considered the following three point boundary value prob-
lems of fractional order differential equation

Dα
0+u(t) + f (t, u(t)) = 0, 0 < t < 1, 1 < α ≤ 2,

u(0) = 0, D
β

0+u(1) = aD
β

0+u(ξ),

where Dα
0+ is the standard Riemann-Liouville fractional derivative. The existence

and multiplicity results of positive solutions by using some fixed-point theorems. But
the uniqueness is not treated.

In this paper, we deal with the following m-point boundary value problem

Dα
0+u(t) + f (t, u(t)) = 0, 0 < t < 1, 2 < α ≤ 3, (1.1)

u(0) = u′(0) = 0, u′(1) =
m−2∑

i=1

βiu
′(ξi), (1.2)
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where Dα
0+ is the standard Riemann-Liouville fractional derivative. 0 < ξ1 < ξ2

< · · · < ξm−2 < 1 satisfies 0 <
∑m−2

i=1 βiξ
α−2
i < 1.

From the above works, we can see a fact, although the fractional boundary value
problems have been investigated by some authors, we note that the results dealing
with the existence of positive solutions of multi-point boundary value problems of
fractional order differential equations are relatively scarce. Motivated by all the works
above, in this paper we discuss the boundary value problem (1.1) and (1.2). Using
lower and upper solution method and a fixed point theorem in partially ordered sets,
we give some new existence and uniqueness criteria for boundary value problem (1.1)
and (1.2). Finally, we present some examples to demonstrate our results. Existence of
fixed point in partially ordered sets has been considered recently in [5, 8, 15, 16, 18].
This work is motivated by papers [5, 13].

2 Preliminaries

We need the following definitions and lemmas that will be used to prove our the main
results.

Definition 2.1 Let (E, ‖ · ‖) be a real Banach space. A nonempty, closed, convex set
P ⊂ E is said to be a cone provided the following are satisfied:

(a) if y ∈ P and λ ≥ 0, then λy ∈ P ;
(b) if y ∈ P and −y ∈ P , then y = 0.

If P ⊂ E is a cone, we denote the order induced by P on E by ≤, that is, x ≤ y if
and only if y − x ∈ P .

Definition 2.2 [17] The integral

I s
0+f (x) = 1

�(s)

∫ x

0

f (t)

(x − t)1−s
dt, x > 0,

where s > 0, is called Riemann-Liouville fractional integral of order s and �(s) is
the Euler gamma function defined by

�(s) =
∫ +∞

0
t s−1e−t dt, s > 0.

Definition 2.3 [9] For a function f (x) given in the interval [0,∞), the expression

Ds
0+f (x) = 1

�(n − s)

(
d

dx

)n ∫ x

0

f (t)

(x − t)s−n+1
dt,

where n = [s] + 1, [s] denotes the integer part of number s, is called the Riemann-
Liouville fractional derivative of order s.

The following two lemmas can be found in [3, 9] which are crucial in finding an
integral representation of fractional boundary value problem (1.1) and (1.2).
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Lemma 2.1 [3, 9] Let α > 0 and u ∈ C(0,1) ∩ L(0,1). Then fractional differential
equation

Dα
0+u(t) = 0

has

u(t) = c1t
α−1 + c2t

α−2 + · · · + cnt
α−n, ci ∈ R, i = 0,1, . . . , n, n = [α] + 1

as unique solutions.

Lemma 2.2 [3, 9] Assume that u ∈ C(0,1) ∩ L(0,1) with a fractional derivative of
order α > 0 that belongs to C(0,1) ∩ L(0,1). Then

Iα
0+Dα

0+u(t) = u(t) + c1t
α−1 + c2t

α−2 + · · · + cnt
α−n,

for some ci ∈ R, i = 0,1, . . . , n, n = [α] + 1.

The following fixed-point theorems in partially ordered sets are fundamental and
important to the proofs of our main results.

Theorem 2.1 [8] Let (E,≤) be a partially ordered set and suppose that there exists
a metric d in E such that (E,d) is a complete metric space. Assume that E satisfies
the following condition

if {xn} is a nondecreasing sequence in E such that xn → x,

then xn ≤ x, ∀ n ∈ N. (2.1)

Let T : E → E be nondecreasing mapping such that

d(T x,T y) ≤ d(x, y) − ψ(d(x, y)), for x ≥ y,

where ψ : [0,+∞) → [0,+∞) is a continuous and nondecreasing function such that
ψ is positive in (0,+∞), ψ(0) = 0 and limt→∞ ψ(t) = ∞. If there exists x0 ∈ E with
x0 ≤ T (x0), then T has a fixed point.

If we consider that (E,≤) satisfies the following condition

for x, y ∈ E there exists z ∈ E which is comparable to x and y, (2.2)

then we have the following result.

Theorem 2.2 [15] Adding condition (2.2) to the hypotheses of Theorem 2.1, we ob-
tain uniqueness of the fixed point.
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3 Related lemmas

Lemma 3.1 Let
∑m−2

i=1 βiξ
α−2
i �= 1. If h ∈ C[0,1], then the boundary value problem

Dα
0+u(t) + h(t) = 0, 0 < t < 1, 2 < α ≤ 3, (3.1)

u(0) = u′(0) = 0, u′(1) =
m−2∑

i=1

βiu
′(ξi), (3.2)

has a unique solution

u(t) =
∫ 1

0
G(t, s)h(s)ds + tα−1 ∑m−2

i=1 βi

(α − 1)
(
1 − ∑m−2

i=1 βiξ
α−2
i

)
∫ 1

0
H(ξi, s)h(s)ds, (3.3)

where

G(t, s) = 1

�(α)

{
tα−1(1 − s)α−2 − (t − s)α−1, 0 ≤ s ≤ t ≤ 1,

tα−1(1 − s)α−2, 0 ≤ t ≤ s ≤ 1,
(3.4)

H(t, s) = ∂G(t, s)

∂t
= α − 1

�(α)

{
tα−2(1 − s)α−2 − (t − s)α−2, 0 ≤ s ≤ t ≤ 1,

tα−2(1 − s)α−2, 0 ≤ t ≤ s ≤ 1.

(3.5)

Proof By Lemma 2.2, the solution of (3.1) can be written as

u(t) = c1t
α−1 + c2t

α−2 + c3t
α−3 −

∫ t

0

(t − s)α−1

�(α)
h(s)ds.

From (3.2), we know that c2 = c3 = 0 and

c1 = 1

�(α)
(
1 − ∑m−2

i=1 βiξ
α−2
i

)
[∫ 1

0
(1 − s)α−2h(s)ds

−
m−2∑

i=1

βi

∫ ξi

0
(ξi − s)α−2h(s)ds

]
.

Therefore, the unique solution of boundary value problem (3.1), (3.2) is

u(t) = −
∫ t

0

(t − s)α−1

�(α)
h(s)ds

+ tα−1

�(α)
(
1 − ∑m−2

i=1 βiξ
α−2
i

)

[∫ 1

0
(1 − s)α−2h(s)ds

−
m−2∑

i=1

βi

∫ ξi

0
(ξi − s)α−2h(s)ds

]
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= −
∫ t

0

(t − s)α−1

�(α)
h(s)ds

+
(

tα−1

�(α)
+ tα−1 ∑m−2

i=1 βiξ
α−2
i

�(α)
(
1 − ∑m−2

i=1 βiξ
α−2
i

)

)∫ 1

0
(1 − s)α−2h(s)ds

− tα−1 ∑m−2
i=1 βi

�(α)
(
1 − ∑m−2

i=1 βiξ
α−2
i

)
∫ ξi

0
(ξi − s)α−2h(s)ds

= 1

�(α)

∫ t

0
(tα−1(1 − s)α−2 − (t − s)α−1)h(s)ds

+ 1

�(α)

∫ 1

t

tα−1(1 − s)α−2h(s)ds

+ tα−1 ∑m−2
i=1 βi

�(α)
(
1 − ∑m−2

i=1 βiξ
α−2
i

)
[∫ ξi

0
ξα−2
i (1 − s)α−2h(s)ds

−
∫ ξi

0
(ξi − s)α−2h(s)ds

]

+ tα−1 ∑m−2
i=1 βi

�(α)
(
1 − ∑m−2

i=1 βiξ
α−2
i

)
∫ 1

ξi

ξα−2
i (1 − s)α−2h(s)ds

=
∫ 1

0
G(t, s)h(s)ds + tα−1 ∑m−2

i=1 βi

(α − 1)
(
1 − ∑m−2

i=1 βiξ
α−2
i

)
∫ 1

0
H(ξi, s)h(s)ds.

The proof is complete. �

Lemma 3.2 G is a continuous function and G(t, s) ≥ 0.

Proof The continuity of G is easily checked. On the other hand, for 0 ≤ t ≤ s ≤ 1 it
is obvious that

G(t, s) = tα−1(1 − s)α−2

�(α)
≥ 0.

In the case 0 ≤ s ≤ t ≤ 1 (s �= 1), we have

G(t, s) = 1

�(α)

[
tα−1(1 − s)α−1

1 − s
− (t − s)α−1

]

≥ 1

�(α)

[
tα−1(1 − s)α−1 − (t − s)α−1

]

= 1

�(α)

[
(t − ts)α−1 − (t − s)α−1

]

≥ 0.
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Moreover, as G(t,1) = 0, then we conclude that G(t, s) ≥ 0 for all (t, s) ∈ [0,1] ×
[0,1]. The proof is complete. �

Remark 3.1 Obviously, by Lemmas 3.1 and 3.2, we have u(t) ≥ 0 if h(t) ≥ 0 on
t ∈ [0,1].

Lemma 3.3

sup
t∈[0,1]

∫ 1

0
G(t, s)ds = 1

(α − 1)�(α + 1)
,

∫ 1

0
H(η, s)ds = ηα−2 − ηα−1

�(α)
.

Proof Since

∫ 1

0
G(t, s)ds =

∫ t

0
G(t, s)ds +

∫ 1

t

G(t, s)ds

= 1

�(α)

∫ t

0
(tα−1(1 − s)α−2 − (t − s)α−1)ds

+ 1

�(α)

∫ 1

t

tα−1(1 − s)α−2ds

= 1

�(α)

(
tα−1

α − 1
− tα

α

)
.

On the other hand, let

φ(t) =
∫ 1

0
G(t, s)ds = 1

�(α)

(
tα−1

α − 1
− tα

α

)
,

then, as

φ′(t) = 1

�(α)

(
tα−2 − tα−1

)
> 0, for t > 0,

the function φ(t) is strictly increasing and, consequently,

sup
t∈[0,1]

φ(t) = sup
t∈[0,1]

∫ 1

0
G(t, s)ds = φ(1) = 1

�(α)

(
1

α − 1
− 1

α

)

= 1

α(α − 1)�(α)
= 1

(α − 1)�(α + 1)
.

By direct computation, we have

∫ 1

0
H(η, s)ds = ηα−2 − ηα−1

�(α)
.

The proof is complete. �
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Remark 3.2 From Lemma 3.3, we have

L = sup
t∈[0,1]

∫ 1

0
G(t, s)ds +

∑m−2
i=1 βi

(α − 1)
(
1 − ∑m−2

i=1 βiξ
α−2
i

)
∫ 1

0
H(ξi, s)ds

= 1

α(α − 1)�(α)
+

∑m−2
i=1 βi(ξ

α−2
i − ξα−1

i )

�(α)(α − 1)
(
1 − ∑m−2

i=1 βiξ
α−2
i

) . (3.6)

Lemma 3.4 G(t, s) is strictly increasing in the first variable.

Proof For s fixed, we let

g1(t) = 1

�(α)

(
tα−1(1 − s)α−2 − (t − s)α−1

)
, for s ≤ t,

g2(t) = 1

�(α)
tα−1(1 − s)α−1, for t ≤ s.

It is easy to check that g1(t) is strictly increasing on [s,1] and g2(t) is strictly in-
creasing on [0, s]. Then we have the following cases:

Case 1: t1, t2 ≤ s and t1 < t2. In this case, we have g2(t1) < g2(t2), i.e. G(t1, s) <

G(t2, s).
Case 2: s ≤ t1, t2 and t1 < t2. In this case, we have g1(t1) < g1(t2), i.e. G(t1, s) <

G(t2, s).
Case 3: t1 ≤ s ≤ t2 and t1 < t2. In this case, we have g2(t1) ≤ g2(s) = g1(s) ≤ g1(t2).

We claim that g2(t1) < g1(t2). In fact, if g2(t1) = g1(t2), then g2(t1) = g2(s) =
g1(s) = g1(t2), from the monotone of g1 and g2, we have t1 = s = t2, which contra-
dicts with t1 < t2. This fact implies that G(t1, s) < G(t2, s). The proof is complete. �

4 Uniqueness of a positive and nondecreasing solution for the boundary value
problems (1.1)–(1.2)

In this section, we establish the existence and uniqueness of a positive and nonde-
creasing solution for the boundary value problems (1.1)–(1.2) by using a fixed point
theorem in partially ordered sets. The basic space used in this section is E = C[0,1].
Then E is a real Banach space with the norm ‖u‖ = max0≤t≤1 |u(t)|. Note that this
space can be equipped with a partial order given by

x, y ∈ C[0,1], x ≤ y ⇔ x(t) ≤ y(t), t ∈ [0,1].
In [15] it is proved that (C[0,1],≤) with the classic metric given by

d(x, y) = sup
0≤t≤1

{|x(t) − y(t)|}

satisfied condition (2.1) of Theorem 2.1. Moreover, for x, y ∈ C[0,1] as the function
max{x, y} ∈ C[0,1], (C[0,1],≤), satisfies condition (2.2).

The main result of this paper is the following.
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Theorem 4.1 The boundary value problem (1.1)–(1.2) has a unique positive and
strictly increasing solution u(t) if the following conditions are satisfied:

(i) f : [0,1] × [0,+∞) → [0,+∞) is continuous and nondecreasing respect to the
second variable and f (t, u(t)) �≡ 0 for t ∈ Z ⊂ [0,1] with μ(Z) > 0 (μ denotes
the Lebesgue measure);

(ii) There exists 0 < λ < L−1 such that for u,v ∈ [0,+∞) with u ≥ v and t ∈ [0,1]
f (t, u) − f (t, v) ≤ λ · ln(u − v + 1).

Proof Consider the cone

K = {u ∈ C[0,1] : u(t) ≥ 0} .

As K is a closed set of C[0,1], K is a complete metric space with the distance given
by d(u, v) = supt∈[0,1] |u(t) − v(t)|.

Now, we consider the operator T defined by

T u(t) =
∫ 1

0
G(t, s)f (s, u(s))ds

+ tα−1 ∑m−2
i=1 βi

(α − 1)
(
1 − ∑m−2

i=1 βiξ
α−2
i

)
∫ 1

0
H(ξi, s)f (s, u(s))ds,

by Lemma 3.2 and condition (i), we have that T (K) ⊂ K .
We now show that all the conditions of Theorems 2.1 and 2.2 are satisfied.
Firstly, by condition (i), for u,v ∈ K and u ≥ v, we have

T u(t) =
∫ 1

0
G(t, s)f (s, u(s))ds

+ tα−1 ∑m−2
i=1 βi

(α − 1)
(
1 − ∑m−2

i=1 βiξ
α−2
i

)
∫ 1

0
H(ξi, s)f (s, u(s))ds

≥
∫ 1

0
G(t, s)f (s, v(s))ds

+ tα−1 ∑m−2
i=1 βi

(α − 1)
(
1 − ∑m−2

i=1 βiξ
α−2
i

)
∫ 1

0
H(ξi, s)f (s, v(s))ds

= T v(t).

This proves that T is a nondecreasing operator.
On the other hand, for u ≥ v and by condition (ii) we have

d(T u,T v) = sup
0≤t≤1

|(T u)(t) − (T v)(t)| = sup
0≤t≤1

((T u)(t) − (T v)(t))

≤ sup
0≤t≤1

∫ 1

0
G(t, s)(f (s, u(s)) − f (s, v(s)))ds
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+
∑m−2

i=1 βi

(α − 1)
(
1 − ∑m−2

i=1 βiξ
α−2
i

)

×
∫ 1

0
H(ξi, s)(f (s, u(s)) − f (s, v(s)))ds

≤ sup
0≤t≤1

∫ 1

0
G(t, s)λ · ln(u(s) − v(s) + 1)ds

+
∑m−2

i=1 βi

(α − 1)
(
1 − ∑m−2

i=1 βiξ
α−2
i

)

×
∫ 1

0
H(ξi, s)λ · ln(u(s) − v(s) + 1)ds.

Since the function h(x) = ln(x + 1) is nondecreasing, by Lemma 3.3 and condition
(ii), then we have

d(T u,T v)

≤ λ ln(‖u − v‖ + 1)

(
sup

0≤t≤1

∫ 1

0
G(t, s)ds

+
∑m−2

i=1 βi

(α − 1)
(
1 − ∑m−2

i=1 βiξ
α−2
i

)
∫ 1

0
H(ξi, s)ds

)

= λ ln(‖u − v‖ + 1) · L
≤ ‖u − v‖ − (‖u − v‖ − ln(‖u − v‖ + 1)).

Let ψ(x) = x − ln(x + 1). Obviously ψ : [0,+∞) → [0,+∞) is continuous, nonde-
creasing, positive in (0,+∞), ψ(0) = 0 and limx→+∞ ψ(x) = +∞. Thus, for u ≥ v,
we have

d(T u,T v) ≤ d(u, v) − ψ(d(u, v)).

As G(t, s) ≥ 0 and f ≥ 0,

(T 0)(t) =
∫ 1

0
G(t, s)f (s,0)ds

+ tα−1 ∑m−2
i=1 βi

(α − 1)
(
1 − ∑m−2

i=1 βiξ
α−2
i

)
∫ 1

0
H(ξi, s)f (s,0)ds ≥ 0

and by Theorem 2.1 we know that problem (1.1)–(1.2) has at least one nonnegative
solution. As (K,≤) satisfies condition (2.2), thus, Theorem 2.2 implies that unique-
ness of the solution.

Finally, we will prove that this solution u(t) is strictly increasing function. As
u(0) = ∫ 1

0 G(0, s)f (s, u(s))ds and G(0, s) = 0 we have u(0) = 0.



Existence and uniqueness of positive solutions to m-point boundary 235

Moreover, if we take t1, t2 ∈ [0,1] with t1 < t2, we can consider the following
cases.
Case 1: t1 = 0. In this case, u(t1) = 0 and, as u(t) ≥ 0, suppose that u(t2) = 0. Then

0 = u(t2) =
∫ 1

0
G(t2, s)f (s, u(s))ds

+ tα−1
2

∑m−2
i=1 βi

(α − 1)
(
1 − ∑m−2

i=1 βiξ
α−2
i

)
∫ 1

0
H(ξi, s)f (s, u)ds.

This implies that

G(t2, s) · f (s,u(s)) = 0, a.e. (s)

and as G(t2, s) �= 0 a.e. (s) we get f (s,u(s)) = 0 a.e. (s).
On the other hand, f is nondecreasing respect to the second variable, then we have

f (s,0) ≤ f (s,u(s)) = 0, a.e. (s)

which contradicts the condition (i) f (t,0) �= 0 for t ∈ Z ⊂ [0,1](μ(Z) �= 0). Thus
u(t1) = 0 < u(t2).
Case 2: 0 < t1. In this case, let us take t2, t1 ∈ [0,1] with t1 < t2, then

u(t2) − u(t1) = (T u)(t2) − (T u)(t1)

=
∫ 1

0
(G(t2, s) − G(t1, s))f (s, u(s))ds

+ (tα−1
2 − tα−1

1 )
∑m−2

i=1 βi

(α − 1)
(
1 − ∑m−2

i=1 βiξ
α−2
i

)
∫ 1

0
H(ξi, s)f (s, u(s))ds.

Taking into account Lemma 3.4 and the fact that f ≥ 0, we get u(t2) − u(t1) ≥ 0.
Suppose that u(t2) = u(t1) then

∫ 1

0
(G(t2, s) − G(t1, s))f (s, u(s))ds = 0

and this implies

(G(t2, s) − G(t1, s))f (s, u(s)) = 0 a.e. (s).

Again, Lemma 3.4 gives us

f (s,u(s)) = 0 a.e. (s)

and using the same reasoning as above we have that this contradicts condition
(i) f (t,0) �= 0 for t ∈ Z ⊂ [0,1] (μ(Z) �= 0). Thus u(t1) = 0 < u(t2). The proof
is complete. �
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5 Single positive solution of the boundary value problems (1.1)–(1.2)

In this section, we establish the existence of single positive solution for boundary
value problem (1.1) and (1.2) by lower and upper solution method. We assume that
f : [0,1] × [0,+∞) → [0,+∞) is continuous in this section.

Lemma 5.1 If u(t) ∈ C[0,1] and is a positive solution of (1.1) and (1.2), then
mρ(t) ≤ u(t) ≤ Mρ(t), where

ρ(t) =
∫ 1

0
G(t, s)ds + tα−1 ∑m−2

i=1 βi

(α − 1)
(
1 − ∑m−2

i=1 βiξ
α−2
i

)
∫ 1

0
H(ξi, s)ds,

and m,M are two constants.

Proof Since u(t) ∈ C[0,1], there exists M ′ > 0 so that |u(t)| ≤ M ′ for t ∈ [0,1].
Taking

m := min
(t,u)∈[0,1]×[0,M ′]

f (t, u(t)), M := max
(t,u)∈[0,1]×[0,M ′]

f (t, u(t)).

By view of Lemma 3.1, we have

mρ(t) ≤ u(t) ≤ Mρ(t).

Thus we finished the proof of Lemma 5.1. �

Now we introduce the following two definitions about the upper and lower solu-
tions of fractional boundary value problem (1.1) and (1.2).

Definition 5.1 A function θ(t) is called a lower solution of fractional boundary value
problem (1.1) and (1.2) if θ(t) ∈ C[0,1] and θ(t) satisfies

−Dα
0+θ(t) ≤ f (t, θ(t)), 0 < t < 1, 2 < α ≤ 3,

θ(0) ≤ 0, θ ′(0) ≤ 0, θ ′(1) ≤
m−2∑

i=1

βiθ
′(ξi).

Definition 5.2 A function γ (t) is called an upper solution of fractional boundary
value problem (1.1) and (1.2) if γ (t) ∈ C[0,1] and γ (t) satisfies

−Dα
0+γ (t) ≥ f (t, γ (t)), 0 < t < 1, 2 < α ≤ 3,

γ (0) ≥ 0, γ ′(0) ≥ 0, γ ′(1) ≥
m−2∑

i=1

βiγ
′(ξi).

The main result of this paper is the following.
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Theorem 5.1 The fractional boundary value problem (1.1) and (1.2) has a positive
solution u(t) if the following conditions are satisfied:
(Hf ) f (t, u) ∈ C([0,1]× [0,+∞),R

+) is nondecreasing relative to u, f (t, ρ(t)) �≡
0 for t ∈ (0,1) and there exists a positive constant μ < 1 such that

kμf (t, u) ≤ f (t, ku), ∀ 0 ≤ k ≤ 1.

Proof At first, we will prove that the functions θ(t) = k1g(t), γ (t) = k2g(t) are lower

and upper solutions of (1.1) and (1.2), respectively, where 0 < k1 ≤ min{ 1
a2

, (a1)
μ

1−μ },
k2 ≥ max{ 1

a1
, (a2)

μ
1−μ } and

a1 = min

{
1, inf

t∈[0,1]f (t, ρ(t))

}
> 0, a2 = max

{
1, sup

t∈[0,1]
f (t, ρ(t))

}

and

g(t) =
∫ 1

0
G(t, s)f (s, ρ(s))ds

+ tα−1 ∑m−2
i=1 βi

(α − 1)
(
1 − ∑m−2

i=1 βiξ
α−2
i

)
∫ 1

0
H(ξi, s)f (s, ρ(s))ds.

By view of Lemma 3.1, we know that g(t) is a positive solution of the following
equations

Dα
0+u(t) = f (t, ρ(t)), 0 < t < 1, 2 < α ≤ 3,

u(0) = u′(0) = 0, u′(1) =
m−2∑

i=1

βiu
′(ξi).

(5.1)

From the conclusion of Lemma 5.1, we know that

a1ρ(t) ≤ g(t) ≤ a2ρ(t), ∀ t ∈ [0,1]. (5.2)

Thus, by virtue of the assumption of the Theorem 5.1, shows that

k1a1 ≤ θ(t)

ρ(t)
≤ k1a2 ≤ 1,

1

k2a2
≤ ρ(t)

γ (t)
≤ 1

k2a1
≤ 1,

(k1a1)
μ ≥ k1, (k2a2)

μ ≤ k2.

Therefore, we have

f (t, θ(t)) = f

(
t,

θ(t)

ρ(t)
ρ(t)

)
≥

(
θ(t)

ρ(t)

)μ

f (t, ρ(t))

≥ (k1a1)
μf (t, ρ(t)) ≥ k1f (t, ρ(t)),
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k2f (t, ρ(t)) = k2f

(
t,

ρ(t)

γ (t)
γ (t)

)
≥ k2

(
ρ(t)

γ (t)

)μ

f (t, γ (t))

≥ k2(k2a2)
−μf (t, γ (t)) ≥ f (t, γ (t)).

It implies that

−Dα
0+θ(t) = k1f (t, ρ(t)) ≤ f (t, θ(t)), 0 < t < 1, 2 < α ≤ 3,

−Dα
0+γ (t) = k2f (t, ρ(t)) ≥ f (t, γ (t)), 0 < t < 1, 2 < α ≤ 3.

(5.3)

Obviously, θ(t) = k1g(t), γ (t) = k2g(t) satisfies the boundary conditions (1.2). So,
α(t) = k1g(t), β(t) = k2g(t) are lower and upper solutions of (1.1) and (1.2) respec-
tively.

Next, we will prove fractional boundary value problem

−Dα
0+u(t) = g(t, u(t)), 0 < t < 1, 2 < α ≤ 3,

u(0) = u′(0) = 0, u′(1) = ∑m−2
i=1 βiu

′(ξi)
(5.4)

has a solution, where

g(t, u(t)) =

⎧
⎪⎪⎨

⎪⎪⎩

f (t, θ(t)), if u(t) ≤ θ(t),

f (t, u(t)), if θ(t) ≤ u(t) ≤ γ (t),

f (t, γ (t)), if γ (t) ≤ u(t).

Thus, we consider the operator A : C[0,1] → C[0,1] define as follows

Au(t) =
∫ 1

0
G(t, s)g(s, u(s))ds

+ tα−1 ∑m−2
i=1 βi

(α − 1)
(
1 − ∑m−2

i=1 βiξ
α−2
i

)
∫ 1

0
H(ξi, s)g(s, u(s))ds,

where G(t, s) and H(t, s) are defined in Lemma 3.1. It is clear that A is continuous
in C[0,1]. Since the function f (t, u) in nondecreasing in u, this shows that, for any
u ∈ C[0,1],

f (t, θ(t)) ≤ g(t, u(t)) ≤ f (t, γ (t)) for t ∈ [0,1].
The operator A : C[0,1] → C[0,1] is continuous in view of continuity of G(t, s)

and g(t, u(t)). By means of Arzela-Ascoli theorem, A is a compact operator. There-
fore, from Leray-Schauder fixed point theorem, the operator A has a fixed point, i.e.,
fractional boundary value problem (5.4) has a solution.

Finally, we will prove that fractional boundary value problem (1.1) and (1.2) has
a positive solution.

Suppose u∗(t) is a solution of fractional boundary value problem (5.4). Since the
function f (t, u) is nondecreasing in u, we know that

f (t, θ(t)) ≤ g(t, u∗(t)) ≤ f (t, γ (t)) for t ∈ [0,1].
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Thus

−Dα
0+z(t) ≥ f (t, γ (t)) − g(t, u∗(t)) ≥ 0,

z(0) = z′(0) = 0, z′(1) =
m−2∑

i=1

βiz
′(ξi),

(5.5)

where z(t) = γ (t) − u∗(t). By virtue of Remark 3.1, z(t) ≥ 0, i.e., u∗(t) ≤ γ (t) for
t ∈ [0,1]. Similarly, θ(t) ≤ u∗(t) for t ∈ [0,1]. Therefore, u∗(t) is a positive solution
of fractional boundary value problem (1.1) and (1.2). We have finished the proof of
Theorem 3.1. �

6 Example

Example 6.1 The fractional boundary value problem

⎧
⎪⎨

⎪⎩

D
5
2
0+u(t) + (t2 + 1) ln(2 + u(t)) = 0, 0 < t < 1,

u(0) = u′(0) = 0, u′(1) = 1
2u′( 1

4 )

(6.1)

has a unique and strictly increasing solution.

Proof In this case, f (t, u) = (t2 +1) ln(2+u) for (t, u) ∈ [0,1]×[0,∞). Note that f

is a continuous function and f (t, u) �= 0 for t ∈ [0,1]. Moreover, f is nondecreasing
respect to the second variable since ∂f

∂u
= 1

u+2 (t2 + 1) > 0. On the other hand, for
u ≥ v and t ∈ [0,1], we have

f (t, u) − f (t, v) = (t2 + 1) ln(2 + u) − (t2 + 1) ln(2 + v) = (t2 + 1) ln

(
2 + u

2 + v

)

= (t2 + 1) ln

(
2 + v + u − v

2 + v

)
= (t2 + 1) ln

(
1 + u − v

2 + v

)

≤ (t2 + 1) ln (1 + (u − v)) ≤ 2 ln(1 + u − v).

In this case, λ = 2, ξ1 = 1
4 , β1 = 1

2 , α = 5
2 because

L = 1

α(α − 1)�(α)
+ β1(ξ

α−2
1 − ξα−1

1 )

�(α)(α − 1)(1 − β1ξ
α−2
1 )

<
1

2
= 1

λ
.

Thus Theorem 4.1 implies that boundary value problem (1.1)–(1.2) has a unique and
strictly increasing solution. �
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Example 6.2 As an example we mention the following fractional boundary value
problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

D
5
2
0+u(t) + f (t, u(t)) = 0, 0 < t < 1,

u(0) = u′(0) = 0, u′(1) =
m−2∑

i=1

βiu
′(ξi)

(6.2)

where Dα
0+ is the standard Riemann-Liouville fractional derivative and

f (t, u) = t + uμ, 0 < μ < 1.

Proof Since kμ ≤ 1 for 0 < μ < 1 and 0 ≤ k ≤ 1. It is easy to check that

kμf (t, u) = kμt + kμuμ ≤ t + (ku)μ = f (t, ku).

Thus, by Theorem 5.1 we know that the boundary value problem (6.2) has a positive
solution u(t). �
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