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Abstract In this paper, we study boundary value problems for fractional differential
equations involving Caputo derivative in Banach spaces. A generalized singular type
Gronwall inequality is given to obtain an important priori bounds. Some sufficient
conditions for the existence of solutions are established by virtue of fractional calcu-
lus and fixed point method under some mild conditions. Two examples are given to
illustrate the results.
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1 Introduction

Fractional differential equations have recently been proved to be valuable tools in
the modelling of many phenomena in various fields of engineering, physics and eco-
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nomics. We can find numerous applications in viscoelasticity, electrochemistry, con-
trol and electromagnetic. There has been a significant development in fractional dif-
ferential equations. One can see the monographs of Kilbas et al. [10], Miller and Ross
[11], Lakshmikantham et al. [13], Podlubny [14]. Particulary, Agarwal et al. [1] es-
tablish sufficient conditions for the existence and uniqueness of solutions for various
classes of initial and boundary value problem for fractional differential equations and
inclusions involving the Caputo fractional derivative in finite dimensional spaces. Re-
cently, some fractional differential equations and optimal controls in Banach spaces
are studied by Balachandran et al. [3, 4], Benchohra et al. [5], El-Borai [6], Hender-
son and Ouahab [8], Hernández et al. [9], Mophou and N’Guérékata [12], Wang et
al. [17–22], Zhou et al. [23–27].

To our knowledge, boundary value problems for fractional differential equations
involving the Caputo derivative in infinite dimensional spaces has not been studied
extensively. In this paper, we extend the earlier work [5] on first order boundary value
problem (BVP for short), for fractional differential equations in finite dimensional
spaces to infinite dimensional spaces of the type

{
cDαy(t) = f (t, y(t)), 0 < α < 1, t ∈ J = [0, T ],
ay(0) + by(T ) = c,

(1)

where cDα is the Caputo fractional derivative of order α, f : J ×X → X where X is
a Banach spaces and a, b, c are real constants with a + b �= 0.

We present existence and uniqueness results for the fractional BVP (1) by virtue of
fractional calculus and fixed point method. Compared with the results appeared in [5],
there are at least three differences: (i) the work space is not R but the Banach spaces
X; (ii) the assumptions are more general and easy to check; (iii) a priori bounds is
established by a new singular type Gronwall inequality (Lemma 3.2) given by us.

The rest of this paper is organized as follows. In Sect. 2, we give some notations
and recall some concepts and preparation results. In Sect. 3, we give a generalized
singular type Gronwall inequality which can be used to establish the estimate of fixed
point set {y = λFy,λ ∈ (0,1)}. In Sect. 4, we give three main results (Theorems 4.1–
4.3), the first result based on Banach contraction principle, the second result based
on Schaefer’s fixed point theorem, the third result based on nonlinear alternative of
Leray-Schauder type. Two examples are given in Sect. 5 to demonstrate the appli-
cation of our main results. These results can be considered as a contribution to this
emerging field.

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are
used throughout this paper. We denote C(J,X) the Banach space of all continuous
functions from J into X with the norm ‖y‖∞ := sup{‖y(t)‖ : t ∈ J }. For measurable
functions m : J → R, define the norm ‖m‖Lp(J,R) = (∫

J
|m(t)|pdt

)1/p
, 1 ≤ p < ∞.

We denote Lp(J,R) the Banach space of all Lebesgue measurable functions m with
‖m‖Lp(J,R) < ∞.

We need some basic definitions and properties of the fractional calculus theory
which are used further in this paper. For more details, see [10].
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Definition 2.1 The fractional order integral of the function h ∈ L1([a, b],R) of order
α ∈ R+ is defined by

Iα
a h(t) =

∫ t

a

(t − s)α−1

�(α)
h(s)ds

where � is the Gamma function.

Definition 2.2 For a function h given on the interval [a, b], the αth Riemann-
Liouville fractional order derivative of h, is defined by

(Dα
a+h)(t) = 1

�(n − α)

(
d

dt

)n ∫ t

a

(t − s)n−α−1h(s)ds,

here n = [α] + 1 and [α] denotes the integer part of α.

Definition 2.3 For a function h given on the interval [a, b], the Caputo fractional
order derivative of h, is defined by

(cDα
a+h)(t) = 1

�(n − α)

∫ t

a

(t − s)n−α−1h(n)(s)ds,

where n = [α] + 1 and [α] denotes the integer part of α.

Lemma 2.4 Let α > 0, then the differential equation cDαh(t) = 0 has solutions

h(t) = c0 + c1t + c2t
2 + · · · + cn−1t

n−1,

where ci ∈ R, i = 0,1,2, . . . , n, n = [α] + 1.

Lemma 2.5 Let α > 0, then

Iα(cDαh)(t) = h(t) + c0 + c1t + c2t
2 + · · · + cn−1t

n−1,

for some ci ∈ R, i = 0,1,2, . . . , n, n = [α] + 1.

Now, let us recall the definition of a solution of the fractional BVP (1).

Definition 2.6 (Definition 3.1, [1]) A function y ∈ C1(J,X) is said to be a solution
of the fractional BVP (1) if y satisfies the equation cDαy(t) = f (t, y(t)) a.e. on J ,
and the condition ay(0) + by(T ) = c.

For the existence of solutions for the fractional BVP (1), we need the following
auxiliary lemma.

Lemma 2.7 (Lemma 3.2, [1]) A function y ∈ C(J,X) is a solution of the fractional
integral equation

y(t) = 1

�(α)

∫ t

0
(t − s)α−1f (s)ds − 1

a + b

[
b

�(α)

∫ T

0
(T − s)α−1f (s)ds − c

]
,
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if and only if y is a solution of the following fractional BVP
{

cDαy(t) = f (t), 0 < α < 1, t ∈ J,

ay(0) + by(T ) = c.
(2)

As a consequence of Lemma 2.7, we have the following result which is useful in
what follows.

Lemma 2.8 A function y ∈ C(J,X) is a solution of the fractional integral equation

y(t) = 1

�(α)

∫ t

0
(t − s)α−1f (s, y(s))ds

− 1

a + b

[
b

�(α)

∫ T

0
(T − s)α−1f (s, y(s))ds − c

]
,

if and only if y is a solution of the fractional BVP (1).

Lemma 2.9 (Bochner theorem, [2]) A measurable function f : J → X is Bochner
integrable if ‖f ‖ is Lebesbuge integrable.

Lemma 2.10 (Mazur lemma, [2]) If K is a compact subset of X, then its convex
closure convK is compact.

Lemma 2.11 (Ascoli-Arzela theorem, [15]) Let S = {s(t)} is a function family of
continuous mappings s : [a, b] → X. If S is uniformly bounded and equicontinuous,
and for any t∗ ∈ [a, b], the set {s(t∗)} is relatively compact, then there exists a uni-
formly convergent function sequence {sn(t)} (n = 1,2, . . . , t ∈ [a, b]) in S .

Theorem 2.12 (Schaefer’s fixed point theorem, [15]) Let F : X → X completely
continuous operator. If the set

E(F) = {x ∈ X : x = λFx f or some λ ∈ [0,1]}
is bounded, then F has fixed points.

Theorem 2.13 (Nonlinear alternative of Leray-Schauder type, [7]) Let C a nonempty
convex subset of X. Let U a nonempty open subset of C with 0 ∈ U and F : U → C
compact and continuous operators. Then either

(i) F has fixed points.
(ii) There exist y ∈ ∂U and λ ∈ [0,1] with y = λF(y).

3 A generalized singular type Gronwall’s inequality

In order to apply the Schaefer fixed point theorem to show the existence of solutions,
we need a new generalized singular type Gronwall inequality with mixed type singu-
lar integral operator. It will play an essential role in the study of BVP for fractional
differential equations.
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We first collect a generalized Gronwall inequality which appeared in our earlier
work [16].

Lemma 3.1 (Lemma 3.2, [16]) Let y ∈ C(J,X) satisfy the following inequality:

‖y(t)‖ ≤ a + b

∫ t

0
‖y(θ)‖λ1dθ + c

∫ T

0
‖y(θ)‖λ2dθ + d

∫ t

0
‖yθ‖λ3

B dθ

+ e

∫ T

0
‖yθ‖λ4

B dθ, t ∈ J,

where λ1, λ3 ∈ [0,1], λ2, λ4 ∈ [0,1), a, b, c, d, e ≥ 0 are constants and ‖yθ‖B =
sup0≤s≤θ ‖y(s)‖. Then there exists a constant M∗ > 0 such that

‖y(t)‖ ≤ M∗.

Using the above generalized Gronwall inequality, we can obtain the following new
generalized singular type Gronwall inequality.

Lemma 3.2 Let y ∈ C(J,X) satisfy the following inequality:

‖y(t)‖ ≤ a + b

∫ t

0
(t − s)α−1‖y(s)‖λds + c

∫ T

0
(T − s)α−1‖y(s)‖λds, (3)

where α ∈ (0,1), λ ∈ [0,1 − 1
p
) for some 1 < p < 1

1−α
, a, b, c ≥ 0 are constants.

Then there exists a constant M∗ > 0 such that

‖y(t)‖ ≤ M∗.

Proof Let

x(t) =
{

1, ‖y(t)‖ ≤ 1,
y(t), ‖y(t)‖ > 1.

It follows from condition (3) and Hölder inequality that

‖x(t)‖λ ≤ ‖x(t)‖

≤ (a + 1) + b

∫ t

0
(t − s)α−1‖x(s)‖λds + c

∫ T

0
(T − s)α−1‖x(s)‖λds

≤ (a + 1) + b

(∫ t

0
(t − s)p(α−1)ds

) 1
p
(∫ t

0
‖x(s)‖ λp

p−1 ds

) p−1
p

+ c

(∫ T

0
(T − s)p(α−1)ds

) 1
p
(∫ T

0
‖x(s)‖ λp

p−1 ds

) p−1
p

≤ (a + 1) + b

[
T p(α−1)+1

p(α − 1) + 1

] 1
p

∫ t

0
‖x(s)‖ λp

p−1 ds
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+ c

[
T p(α−1)+1

p(α − 1) + 1

] 1
p

∫ T

0
‖x(s)‖ λp

p−1 ds.

This implies that

‖x(t)‖ ≤ (a + 1) + b

[
T p(α−1)+1

p(α − 1) + 1

] 1
p

∫ t

0
‖x(s)‖ λp

p−1 ds

+ c

[
T p(α−1)+1

p(α − 1) + 1

] 1
p

∫ T

0
‖x(s)‖ λp

p−1 ds,

where 0 <
λp

p−1 < 1.
By Lemma 3.1, one can complete the rest proof immediately. �

4 Main results

Before stating and proving the main results, we introduce the following hypotheses.

(H1) The function f : J × X → X is strongly measurable with respect to t on J .

(H2) There exists a constant α1 ∈ (0, α) and real-valued function m(t) ∈ L
1
α1 (J,R)

such that

‖f (t, u1)−f (t, u2)‖ ≤ m(t)‖u1 −u2‖, for each t ∈ J, and all u1, u2 ∈ X.

(H3) There exists a constant α2 ∈ (0, α) and real-valued function h(t) ∈ L
1
α2 (J,R)

such that

‖f (t, y)‖ ≤ h(t), for each t ∈ J, and all y ∈ X.

For brevity, let M = ‖m‖
L

1
α1 (J,R)

, H = ‖h‖
L

1
α2 (J,R)

.

Our first result is based on Banach contraction principle.

Theorem 4.1 Assume that (H1)–(H3) hold. If

�α,T = MT α−α1

�(α)(α−α1
1−α1

)1−α1

(
1 + |b|

|a + b|
)

< 1, (4)

then the system (1) has a unique solution on J .

Proof For each t ∈ J , we have

∫ t

0

∥∥(t − s)α−1f (s, y(s))
∥∥ds ≤

(∫ t

0
(t − s)

α−1
1−α2 ds

)1−α2
(∫ t

0
(h(s))

1
α2 ds

)α2

≤ T α−α2H

(α−α2
1−α2

)1−α2
.
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Thus, ‖(t − s)α−1f (s, y(s))‖ is Lebesgue integrable with respect to s ∈ [0, t] for all
t ∈ J and y ∈ C(J,X). Then (t − s)α−1f (s, y(s)) is Bochner integrable with respect
to s ∈ [0, t] for all t ∈ J due to Lemma 2.9.

Hence, the fractional BVP (1) is equivalent to the following fractional integral
equation

y(t) = 1

�(α)

∫ t

0
(t − s)α−1f (s, y(s))ds

− 1

a + b

[
b

�(α)

∫ T

0
(T − s)α−1f (s, y(s))ds − c

]
, t ∈ J.

Let

r ≥ T α−α2H

�(α)(α−α2
1−α2

)1−α2
+ |b|

|a + b| × T α−α2H

�(α)(α−α2
1−α2

)1−α2
+ |c|

|a + b| .

Now we define the operator F on Br := {y ∈ C(J,X) : ‖y‖ ≤ r} as follows

(Fy)(t) = 1

�(α)

∫ t

0
(t − s)α−1f (s, y(s))ds

− 1

a + b

[
b

�(α)

∫ T

0
(T − s)α−1f (s, y(s))ds − c

]
, t ∈ J. (5)

Therefore, the existence of a solution of the fractional BVP (1) is equivalent to that
the operator F has a fixed point on Br . We shall use the Banach contraction principle
to prove that F has a fixed point. The proof is divided into two steps.

Step 1. Fy ∈ Br for every y ∈ Br

For every y ∈ Br and any δ > 0, by (H3) and Hölder inequality, we get

‖(Fy)(t + δ) − (Fy)(t)‖

≤
∥∥∥∥ 1

�(α)

∫ t

0
[(t + δ − s)α−1 − (t − s)α−1]f (s, y(s))ds

∥∥∥∥
+

∥∥∥∥ 1

�(α)

∫ t+δ

t

(t + δ − s)α−1f (s, y(s))ds

∥∥∥∥
≤ 1

�(α)

∫ t

0
[(t − s)α−1 − (t + δ − s)α−1]‖f (s, y(s))‖ds

+ 1

�(α)

∫ t+δ

t

(t + δ − s)α−1‖f (s, y(s))‖ds

≤ 1

�(α)

∫ t

0
[(t − s)α−1 − (t + δ − s)α−1]h(s)ds

+ 1

�(α)

∫ t+δ

t

(t + δ − s)α−1h(s)ds
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≤ 1

�(α)

(∫ t

0
[(t − s)

α−1
1−α2 − (t + δ − s)

α−1
1−α2 ]ds

)1−α2
(∫ t

0
(h(s))

1
α2 ds

)α2

+ 1

�(α)

(∫ t+δ

t

(t + δ − s)
α−1

1−α2 ds

)1−α2
(∫ t+δ

t

(h(s))
1
α2 ds

)α2

≤ H

�(α)

(
t

α−α2
1−α2

α−α2
1−α2

+ δ
α−α2
1−α2

α−α2
1−α2

− (t + δ)
α−α2
1−α2

α−α2
1−α2

)1−α2

+ H

�(α)

(
δ

α−α2
1−α2

α−α2
1−α2

)1−α2

≤ H

�(α)(α−α2
1−α2

)1−α2

[(
t

α−α2
1−α2 − (t + δ)

α−α2
1−α2 + δ

α−α2
1−α2

)1−α2 + δα−α2
]

≤ 2Hδα−α2

�(α)(α−α2
1−α2

)1−α2
.

As δ → 0, the right-hand side of the above inequality tends to zero. Therefore, F is
continuous on J , i.e., Fy ∈ C(J,X).

Moreover, for y ∈ Br and all t ∈ J , we get

‖(Fy)(t)‖

≤ 1

�(α)

∫ t

0
(t − s)α−1‖f (s, y(s))‖ds

+ |b|
|a + b|�(α)

∫ T

0
(T − s)α−1‖f (s, y(s))‖ds + |c|

|a + b|

≤ 1

�(α)

∫ t

0
(t − s)α−1h(s)ds

+ |b|
|a + b|�(α)

∫ T

0
(T − s)α−1h(s)ds + |c|

|a + b|

≤ 1

�(α)

(∫ t

0
(t − s)

α−1
1−α2 ds

)1−α2
(∫ t

0
(h(s))

1
α2 ds

)α2

+ |b|
|a + b|�(α)

(∫ T

0
(T − s)

α−1
1−α2 ds

)1−α2
(∫ T

0
(h(s))

1
α2 ds

)α2

+ |c|
|a + b|

≤ T α−α2H

�(α)(α−α2
1−α2

)1−α2
+ |b|

|a + b| × T α−α2H

�(α)(α−α2
1−α2

)1−α2
+ |c|

|a + b|
≤ r,

which implies that ‖Fy‖∞ ≤ r . Thus, we can conclude that for all y ∈ Br , Fy ∈ Br .
i.e., F : Br → Br .

Step 2. F is a contraction mapping on Br .
For x, y ∈ Br and any t ∈ J , using (H2) and Hölder inequality, we get
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‖(Fx)(t) − (Fy)(t)‖

≤ 1

�(α)

∫ t

0
(t − s)α−1‖f (s, x(s)) − f (s, y(s))‖ds

+ |b|
|a + b|�(α)

∫ T

0
(T − s)α−1‖f (s, x(s)) − f (s, y(s))‖ds

≤ 1

�(α)

∫ t

0
(t − s)α−1m(s)‖x(s) − y(s)‖ds

+ |b|
|a + b|�(α)

∫ T

0
(T − s)α−1m(s)‖x(s) − y(s)‖ds

≤ ‖x − y‖∞
�(α)

∫ t

0
(t − s)α−1m(s)ds

+ |b|‖x − y‖∞
|a + b|�(α)

∫ T

0
(T − s)α−1m(s)ds

≤ ‖x − y‖∞
�(α)

(∫ t

0
(t − s)

α−1
1−α1 ds

)1−α1
(∫ t

0
(m(s))

1
α1 ds

)α1

+ |b| ‖x − y‖∞
|a + b|�(α)

(∫ T

0
(T − s)

α−1
1−α1 ds

)1−α1
(∫ T

0
(m(s))

1
α1 ds

)α1

≤ ‖x − y‖∞
�(α)

T α−α1

(α−α1
1−α1

)1−α1
‖m‖

L
1
α1 (J,R+)

+ |b|‖x − y‖∞
|a + b|�(α)

T α−α1

(α−α1
1−α1

)1−α1
‖m‖

L
1
α1 (J,R+)

≤
[

MT α−α1

�(α)(α−α1
1−α1

)1−α1

(
1 + |b|

|a + b|
)]

‖x − y‖∞.

So we obtain

‖Fx − Fy‖∞ ≤ �α,T ‖x − y‖∞.

Thus, F is a contraction due to the condition (4).
By Banach contraction principle, we can deduce that F has an unique fixed point

which is just the unique solution of the fractional BVP (1). �

Our second result is based on the well known Schaefer’s fixed point theorem.
We make the following assumptions:

(H4) The function f : J × X → X is continuous.
(H5) There exist constants λ ∈ [0,1 − 1

p
) for some 1 < p < 1

1−α
and N > 0 such

that

‖f (t, u)‖ ≤ N(1 + ‖u‖λ) for each t ∈ J and all u ∈ X.
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(H6) For every t ∈ J , the set K = {(t − s)α−1f (s, y(s)) : y ∈ C(J,X), s ∈ [0, t])} is
relatively compact.

Theorem 4.2 Assume that (H4)–(H6) hold. Then the fractional BVP (1) has at least
one solution on J .

Proof Transform the fractional BVP (1) into a fixed point problem. Consider the
operator F : C(J,X) → C(J,X) defined as (5). It is obvious that F is well defined
due to (H4).

For the sake of convenience, we subdivide the proof into several steps.
Step 1. F is continuous.
Let {yn} be a sequence such that yn → y in C(J,X). Then for each t ∈ J , we have

‖(Fyn)(t) − (Fy)(t)‖

≤ 1

�(α)

∫ t

0
(t − s)α−1‖f (s, yn(s)) − f (s, y(s))‖ds

+ |b|
|a + b|�(α)

∫ T

0
(T − s)α−1‖f (s, yn(s)) − f (s, y(s))‖ds

≤ ‖f (·, yn(·)) − f (·, y(·))‖∞
�(α)

[∫ t

0
(t − s)α−1ds + |b|

|a + b|
∫ T

0
(T − s)α−1ds

]

≤ T α

�(α + 1)

(
1 + |b|

|a + b|
)

‖f (·, yn(·)) − f (·, y(·))‖∞.

Since f is continuous, we have

‖Fyn − Fy‖∞

≤ T α

�(α + 1)

(
1 + |b|

|a + b|
)

‖f (·, yn(·)) − f (·, y(·))‖∞ → 0 as n → ∞.

Step 2. F maps bounded sets into bounded sets in C(J,X).
Indeed, it is enough to show that for any η∗ > 0, there exists a 
 > 0 such that for

each y ∈ Bη∗ = {y ∈ C(J,X) : ‖y‖∞ ≤ η∗}, we have ‖Fy‖∞ ≤ 
.
For each t ∈ J , we get

‖(Fy)(t)‖

≤ 1

�(α)

∫ t

0
(t − s)α−1‖f (s, y(s))‖ds

+ |b|
|a + b|�(α)

∫ T

0
(T − s)α−1‖f (s, y(s))‖ds + |c|

|a + b|

≤ N

�(α)

∫ t

0
(t − s)α−1(1 + ‖y(s)‖λ)ds

+ |b|N
|a + b|�(α)

∫ T

0
(T − s)α−1(1 + ‖y(s)‖λ)ds + |c|

|a + b|
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≤ N

�(α)

∫ t

0
(t − s)α−1ds + |b|N

|a + b|�(α)

∫ T

0
(T − s)α−1ds + |c|

|a + b|

+ N

�(α)

∫ t

0
(t − s)α−1‖y(s)‖λds + |b|N

|a + b|�(α)

∫ T

0
(T − s)α−1‖y(s)‖λds

≤ NT α

�(α + 1)
+ |b|NT α

|a + b|�(α + 1)
+ |c|

|a + b| + NT α(η∗)λ

�(α + 1)
+ |b|NT α(η∗)λ

|a + b|�(α + 1)
,

which implies that

‖Fy‖∞ ≤ NT α

�(α + 1)

(
1 + |b|

|a + b|
)

+ |c|
|a + b| + NT α(η∗)λ

�(α + 1)

(
1 + |b|

|a + b|
)

:= 
.

Step 3. F maps bounded sets into equicontinuous sets of C(J,X).
Let 0 ≤ t1 < t2 ≤ T , y ∈ Bη∗ . Using (H5), we have

‖(Fy)(t2) − (Fy)(t1)‖

≤ 1

�(α)

∫ t1

0
[(t1 − s)α−1 − (t2 − s)α−1]‖f (s, y(s))‖ds

+ 1

�(α)

∫ t2

t1

(t2 − s)α−1‖f (s, y(s))‖ds

≤ N

�(α)

∫ t1

0
[(t1 − s)α−1 − (t2 − s)α−1](1 + ‖y(s)‖λ)ds

+ N

�(α)

∫ t2

t1

(t2 − s)α−1(1 + ‖y(s)‖λ)ds

≤ N(1 + (η∗)λ)
�(α)

∫ t1

0
[(t1 − s)α−1 − (t2 − s)α−1]ds

+ N(1 + (η∗)λ)
�(α)

∫ t2

t1

(t2 − s)α−1ds

≤ N(1 + (η∗)λ)
�(α + 1)

(|tα1 − tα2 | + 2(t2 − t1)
α)

≤ 3N(1 + (η∗)λ)(t2 − t1)
α

�(α + 1)
.

As t2 → t1, the right-hand side of the above inequality tends to zero, therefore F is
equicontinuous.

Now, let {yn}, n = 1,2, . . . be a sequence on Bη∗ , and

(Fyn)(t) = (F1yn)(t) + (F2yn)(T ), t ∈ J.

where
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(F1yn)(t) = 1

�(α)

∫ t

0
(t − s)α−1f (s, yn(s))ds, t ∈ J,

(F2yn)(T ) = − 1

a + b

[
b

�(α)

∫ T

0
(T − s)α−1f (s, yn(s))ds − c

]
.

In view of the condition (H6) and Lemma 2.10, we know that convK is compact.
For any t∗ ∈ J ,

(F1yn)(t
∗) = 1

�(α)

∫ t∗

0
(t∗ − s)α−1f (s, yn(s))ds

= 1

�(α)
lim

k→∞

k∑
i=1

t∗

k

(
t∗ − it∗

k

)α−1

f

(
it∗

k
, yn

(
it∗

k

))

= t∗

�(α)
ξ̃n,

where

ξ̃n = lim
k→∞

k∑
i=1

1

k

(
t∗ − it∗

k

)α−1

f

(
it∗

k
, yn

(
it∗

k

))
.

Since convK is convex and compact, we know that ξ̃n ∈ convK . Hence, for any t∗ ∈
J , the set {(F1yn)(t

∗)} is relatively compact. From Lemma 2.11, every {(F1yn)(t)}
contains a uniformly convergent subsequence {(F1ynk

)(t)}, k = 1,2, . . . on J . Thus,
the set {F1y : y ∈ Bη∗} is relatively compact. Similarly, one can obtain {(F2yn)(T )}
contains a uniformly convergent subsequence {(F2ynk

)(T )}, k = 1,2, . . . . Thus, the
set {F2y : y ∈ Bη∗} is relatively compact. As a result, the set {Fy,y ∈ Bη∗} is rela-
tively compact.

As a consequence of Steps 1–3, we can conclude that F is continuous and com-
pletely continuous.

Step 4. A priori bounds.
Now it remains to show that the set

E(F) = {y ∈ C(J,X) : y = λFy, for some λ ∈ (0,1)}

is bounded.
Let y ∈ E(F), then y = λFy for some λ ∈ (0,1). Thus, for each t ∈ J , we have

y(t) = λ

(
1

�(α)

∫ t

0
(t − s)α−1f (s, y(s))ds

− 1

a + b

[
b

�(α)

∫ T

0
(T − s)α−1f (s, y(s))ds − c

])
.

For each t ∈ J , we have
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‖y(t)‖ ≤ NT α

�(α + 1)
+ |b|NT α

|a + b|�(α + 1)
+ |c|

|a + b|

+ N

�(α)

∫ t

0
(t − s)α−1‖y(s)‖λds

+ |b|N
|a + b|�(α)

∫ T

0
(T − s)α−1‖y(s)‖λds.

By Lemma 3.2, there exists a M∗ > 0 such that

‖y(t)‖ ≤ M∗, t ∈ J.

Thus for every t ∈ J , we have

‖y‖∞ ≤ M∗.

This shows that the set E(F) is bounded. As a consequence of Schaefer’s fixed point
theorem, we deduce that F has a fixed point which is a solution of the fractional
BVP (1). �

In the following theorem we apply the nonlinear alternative of Leray-Schauder
type in which the condition (H5) is weakened.

(H5′) There exist a λ ∈ [0,1 − 1
p
) for some 1 < p < 1

1−α
and a function N(t) ∈

L
1
α3 (J,R), α3 ∈ (0, α) such that

‖f (t, u)‖ ≤ N(t)(1 + ‖u‖λ) for each t ∈ J and all u ∈ X.

Theorem 4.3 Assume that (H4), (H5′), (H6) hold. Then the fractional BVP (1) has
at least one solution on J .

Proof Consider the operator F defined in Theorem 4.2. It can be easily shown that
F is continuous and completely continuous. Repeating the same process in Step 4 in
Theorem 4.2, using (H5′) and Hölder inequality again, we have for each t ∈ J , there
exists a M∗ > 0 such that ‖y‖∞ ≤ M∗.

Let

U = {y ∈ C(J,X) : ‖y‖∞ < M∗ + 1}.
The operator F : U → C(J,X) is continuous and completely continuous. From the
choice of U , there is no y ∈ ∂U such that y = λF(y), λ ∈ (0,1). As a consequence
of the nonlinear alternative of Leray-Schauder type, we deduce that F has a fixed
point y ∈ U , which implies that the fractional BVP (1) has at least one solution y ∈
C(J,X). �

5 Examples

In this section we give two examples to illustrate the usefulness of our main results.
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Example 5.1 Let us consider the following fractional boundary value problem,

{
cDαy(t) = e−vt |y(t)|

(1+et )(1+|y(t)|) , α ∈ (0,1), t ∈ J1 := [0,1],
y(0) + y(1) = 0,

(6)

where v > 0 is a constant.
Set

f (t, y) = e−vty

(1 + et )(1 + y)
, (t, y) ∈ J1 × [0,∞).

Let y1, y2 ∈ [0,∞) and t ∈ J1. Then we have

|f (t, y1) − f (t, y2)| = e−vt

(1 + et )

∣∣∣∣ y1

1 + y1
− y2

1 + y2

∣∣∣∣
= e−vt |y1 − y2|

(1 + et )(1 + y1)(1 + y2)

≤ e−vt

1 + et
|y1 − y2|

≤ e−vt

2
|y1 − y2|.

Obviously, for all y ∈ [0,∞) and each t ∈ J1,

|f (t, y)| = e−vt

1 + et

∣∣∣∣ y

1 + y

∣∣∣∣
≤ e−vt

1 + et

≤ e−vt

2
.

For t ∈ J1, β ∈ (0, α), let m(t) = h(t) = e−vt

2 ∈ L
1
β (J1,R), M = ‖ e−vt

2 ‖
L

1
β (J1,R)

.

Choosing some v > 0 large enough and suitable β ∈ (0, α), one can arrive at the
following inequality

�α,1 = M1α−β

�(α)(
α−β
1−β

)1−β
× 3

2
< 1.

Thus all the assumptions in Theorem 4.1 are satisfied, our results can be applied to
the problem (6).

Example 5.2 Let us consider another fractional boundary value problem,

{
cDαy(t) = tϑ |y(t)|λ

(1+et )(1+|y(t)|) , α ∈ (0,1), ϑ > −α, t ∈ J1,

y(0) + y(1) = 0.
(7)



Boundary value problems for fractional differential equations involving 223

Set

f1(t, x) = tϑxλ

(1 + et )(1 + x)
, (t, x) ∈ J1 × [1,2].

Obviously, for all y ∈ [1,2] and each t ∈ J1,

|f1(t, y)| = tϑ

(1 + et )

∣∣∣∣ yλ

1 + y

∣∣∣∣ ≤ 1

(1 + et )
× |y|λ

2

≤ 1

4
|y|λ.

Since ϑ > −α, it is not difficult to see

∫ t

0
(t − s)α−1 sϑ |y(s)|λ

(1 + es)(1 + |y(s)|)ds ≤
∫ t

0
(t − s)α−1sϑds

≤ �(α)�(ϑ + 1)

�(α + ϑ + 1)
tα+ϑ

≤ �(α)�(ϑ + 1)

�(α + ϑ + 1)
.

As a result, the set K1 = {(t − s)α−1 sϑ |y(s)|λ
(1+es )(1+|y(s)|) : y ∈ C(J1, [1,2]), s ∈ [0, t]} is

bounded and closed which implies that K1 is compact. Thus, all the assumptions in
Theorem 4.2 are satisfied, our results can be applied to the problem (7).
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