On the existence of solutions for fractional differential inclusions with anti-periodic boundary conditions

Aurelian Cernea

Received: 18 June 2010 / Published online: 17 December 2010 © Korean Society for Computational and Applied Mathematics 2010

Abstract The existence of solutions of an anti-periodic boundary value problem for fractional differential inclusions of order $\alpha \in (2, 3]$ is investigated. Several results are obtained by using suitable fixed point theorems when the right hand side has convex or non convex values.

Keywords Fractional differential inclusion · Anti-periodic boundary conditions · Fixed point

Mathematics Subject Classification (2000) 34A60 · 34A12 · 34A40

1 Introduction

Differential equations with fractional order have recently proved to be strong tools in the modelling of many physical phenomena. As a consequence there was an intensive development of the theory of differential equations of fractional order ([\[4](#page-10-0), [21](#page-10-1), [23,](#page-10-2) [26\]](#page-10-3) etc.). The study of fractional differential inclusions was initiated by El-Sayed and Ibrahim [\[17](#page-10-4)]. Very recently several qualitative results for fractional differential inclusions were obtained in [[5,](#page-10-5) [9](#page-10-6)[–12](#page-10-7), [19](#page-10-8), [25\]](#page-10-9) etc. Applied problems require definitions of fractional derivative allowing the utilization of physically interpretable initial or boundary conditions. Caputo's fractional derivative, originally introduced in [\[7](#page-10-10)] and afterwards adopted in the theory of linear visco elasticity, satisfies this demand. For a consistent bibliography on this topic, historical remarks and examples we refer to [\[3](#page-10-11)].

Faculty of Mathematics and Informatics, University of Bucharest, Academiei 14, 010014 Bucharest, Romania

e-mail: acernea@fmi.unibuc.ro

A. Cernea (\boxtimes)

In this paper we study the following fractional differential inclusion

$$
D_c^{\alpha} x(t) \in F(t, x(t)) \quad \text{a.e. } ([0, T]), \tag{1.1}
$$

$$
x(0) = -x(T), \qquad x'(0) = -x'(T), \qquad x''(0) = -x''(T) \tag{1.2}
$$

where $\alpha \in (2, 3]$, D_c^{α} is the Caputo fractional derivative and $F: I \times \mathbf{R} \to \mathcal{P}(\mathbf{R})$ is a set-valued map.

The present paper is motivated by a recent paper of Ahmad [[1\]](#page-10-12), where it is considered problem [\(1.1\)](#page-1-0)–[\(1.2\)](#page-1-1) with *F(.,.)* single valued and several existence results are obtained by using fixed point techniques.

The aim of our paper is to extend the study in [\[1](#page-10-12)] to the set-valued framework and to present some existence results for problem (1.1) (1.1) (1.1) – (1.2) (1.2) (1.2) . Our results are essentially based on a nonlinear alternative of Leray-Schauder type, on Bressan-Colombo selection theorem for lower semicontinuous set-valued maps with decomposable values and on Covitz and Nadler set-valued contraction principle. The methods used are standard, however their exposition in the framework of problem (1.1) (1.1) (1.1) – (1.2) (1.2) (1.2) is new.

We note that the methods based on Leray-Schauder alternative have been used intensively for the study of differential equations during the last few years (e.g., $[13–15, 20]$ $[13–15, 20]$ $[13–15, 20]$ $[13–15, 20]$ etc.).

The paper is organized as follows: in Sect. [2](#page-1-2) we recall some preliminary facts that we need in the sequel and in Sect. [3](#page-4-0) we prove our main results.

2 Preliminaries

In this section we sum up some basic facts that we are going to use later.

Let (X, d) be a metric space with the corresponding norm |.| and let $I \subset \mathbf{R}$ be a compact interval. Denote by $L(I)$ the *σ*-algebra of all Lebesgue measurable subsets of *I*, by $\mathcal{P}(X)$ the family of all nonempty subsets of *X* and by $\mathcal{B}(X)$ the family of all Borel subsets of *X*. If $A \subset I$ then $\chi_A(.) : I \to \{0, 1\}$ denotes the characteristic function of *A*. For any subset $A \subset X$ we denote by *A* the closure of *A*.

Recall that the Pompeiu-Hausdorff distance of the closed subsets $A, B \subset X$ is defined by

$$
d_H(A, B) = \max\{d^*(A, B), d^*(B, A)\}, \qquad d^*(A, B) = \sup\{d(a, B); a \in A\},
$$

where $d(x, B) = \inf_{y \in B} d(x, y)$.

As usual, we denote by $C(I, X)$ the Banach space of all continuous functions *x*(.) : *I* → *X* endowed with the norm $|x(.)|_C = \sup_{t \in I} |x(t)|$ and by $L^1(I, X)$ the Banach space of all (Bochner) integrable functions $x(.) : I \rightarrow X$ endowed with the norm $|x(.)|_1 = \int_I |x(t)| dt$.

A subset $D \subset L^1(I, X)$ is said to be *decomposable* if for any $u(\cdot), v(\cdot) \in D$ and any subset $A \in \mathcal{L}(I)$ one has $u \chi_A + v \chi_B \in D$, where $B = I \backslash A$.

Consider $T: X \to \mathcal{P}(X)$ a set-valued map. A point $x \in X$ is called a fixed point for *T*(.) if $x \in T(x)$. *T*(.) is said to be bounded on bounded sets if $T(B) := \bigcup_{x \in B} T(x)$ is a bounded subset of *X* for all bounded sets *B* in *X*. *T (.)* is said to be compact if

T (B) is relatively compact for any bounded sets *B* in *X*. *T (.)* is said to be totally compact if $\overline{T(X)}$ is a compact subset of *X*. $T(.)$ is said to be upper semicontinuous if for any open set *D* ⊂ *X*, the set { $x \in X$; $T(x)$ ⊂ *D*} is open in *X*. *T*(.) is called completely continuous if it is upper semicontinuous and totally bounded on *X*.

It is well known that a compact set-valued map *T (.)* with nonempty compact values is upper semicontinuous if and only if *T (.)* has a closed graph.

We recall the following nonlinear alternative of Leray-Schauder type and its consequences.

Theorem 2.1 [[24\]](#page-10-16) Let D and \overline{D} be the open and closed subsets in a normed linear *space X such that* $0 \in D$ *and let* $T : \overline{D} \to \mathcal{P}(X)$ *be a completely continuous setvalued map with compact convex values*. *Then either*

- (i) *the inclusion* $x \in T(x)$ *has a solution, or*
- (ii) *there exists* $x \in \partial D$ (*the boundary of D*) *such that* $\lambda x \in T(x)$ *for some* $\lambda > 1$.

Corollary 2.2 Let $B_r(0)$ and $\overline{B_r(0)}$ be the open and closed balls in a normed lin*ear space X centered at the origin and of radius r and let* $T : \overline{B_r(0)} \to \mathcal{P}(X)$ *be a completely continuous set-valued map with compact convex values*. *Then either*

- (i) *the inclusion* $x \in T(x)$ *has a solution, or*
- (ii) *there exists* $x \in X$ *with* $|x| = r$ *and* $\lambda x \in T(x)$ *for some* $\lambda > 1$.

Corollary 2.3 *Let* $B_r(0)$ *and* $B_r(0)$ *be the open and closed balls in a normed linear space X centered at the origin and of radius r and let* $T : B_r(0) \rightarrow X$ *be a completely continuous single valued map with compact convex values*. *Then either*

- (i) *the equation* $x = T(x)$ *has a solution, or*
- (ii) *there exists* $x \in X$ *with* $|x| = r$ *and* $x = \lambda T(x)$ *for some* $\lambda < 1$ *.*

We recall that a multifunction $T(.) : X \rightarrow \mathcal{P}(X)$ is said to be lower semicontinuous if for any closed subset *C* ⊂ *X*, the subset {*s* ∈ *X*; *G(s)* ⊂ *C*} is closed.

If $F(.,.) : I \times \mathbf{R} \to \mathcal{P}(\mathbf{R})$ is a set-valued map with compact values and $x(.) \in$ $C(I, \mathbf{R})$ we define

$$
S_F(x) := \{ f \in L^1(I, \mathbf{R}); \ f(t) \in F(t, x(t)) \quad \text{a.e. (I)} \}.
$$

We say that $F(.,.)$ is of *lower semicontinuous type* if $S_F(.)$ is lower semicontinuous with closed and decomposable values.

Theorem 2.4 [\[6](#page-10-17)] *Let S be a separable metric space and* $G(.) : S \rightarrow \mathcal{P}(L^1(I, \mathbf{R}))$ *be a lower semicontinuous set-valued map with closed decomposable values*.

Then G(.) has a continuous selection (*i*.*e*., *there exists a continuous mapping g(.)* : $S \to L^1(I, \mathbf{R})$ *such that* $g(s) \in G(s)$ $\forall s \in S$).

A set-valued map $G: I \to \mathcal{P}(\mathbf{R})$ with nonempty compact convex values is said to be *measurable* if for any $x \in \mathbf{R}$ the function $t \to d(x, G(t))$ is measurable.

A set-valued map $F(.,.): I \times \mathbf{R} \to \mathcal{P}(\mathbf{R})$ is said to be *Carathéodory* if $t \to$ *F*(*t*, *x*) is measurable for any $x \in \mathbf{R}$ and $x \to F(t, x)$ is upper semicontinuous for almost all $t \in I$.

F(.,.) is said to be L^1 -*Carathéodory* if for any $l > 0$ there exists $h_l(.) \in L^1(I, \mathbb{R})$ such that $\sup\{|v|; v \in F(t, x)\} \leq h_l(t)$ a.e. $(I), \forall x \in \overline{B_l(0)}$.

Theorem 2.5 [\[22](#page-10-18)] *Let X be a Banach space, let* $F(.,.) : I \times X \rightarrow \mathcal{P}(X)$ *be a* L^1 -*Carathéodory set-valued map with* $S_F \neq \emptyset$ *and let* $\Gamma : L^1(I, X) \to C(I, X)$ *be a linear continuous mapping*.

Then the set-valued map $\Gamma \circ S_F : C(I, X) \rightarrow \mathcal{P}(C(I, X))$ *defined by*

$$
(\Gamma \circ S_F)(x) = \Gamma(S_F(x))
$$

has compact convex values and has a closed graph in $C(I, X) \times C(I, X)$.

Note that if $\dim X < \infty$, and $F(.,.)$ is as in Theorem [2.5](#page-3-0), then $S_F(x) \neq \emptyset$ for any $x(.)$ ∈ *C*(*I*, *X*) (e.g., [[22\]](#page-10-18)).

Let (X, d) be a metric space and consider a set valued map *T* on *X* with nonempty values in *X*. *T* is said to be a λ -contraction if there exists $0 < \lambda < 1$ such that:

$$
d_H(T(x), T(y)) \le \lambda d(x, y) \quad \forall x, y \in X,
$$

where $d_H(.)$, denotes the Pompeiu-Hausdorff distance.

The set-valued contraction principle [[16\]](#page-10-19) states that if *X* is complete, and $T : X \rightarrow$ $P(X)$ is a set valued contraction with nonempty closed values, then $T(.)$ has a fixed point, i.e. a point $z \in X$ such that $z \in T(z)$.

Definition 2.6 [[21\]](#page-10-1) (a) *The fractional integral of order* $\alpha > 0$ of a Lebesgue integrable function $f(.)$: $(0, \infty) \rightarrow \mathbf{R}$ is defined by

$$
I^{\alpha} f(t) = \int_0^t \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} f(s) ds,
$$

provided the right-hand side is pointwise defined on $(0, \infty)$ and $\Gamma(.)$ is the (Euler's) Gamma function defined by $\Gamma(\alpha) = \int_0^\infty t^{\alpha-1} e^{-t} dt$.

(b) *The Caputo fractional derivative of order* $\alpha > 0$ of a function $f(.)$: $[0, \infty) \rightarrow$ **R** is defined by

$$
D_c^{\alpha} f(t) = \frac{1}{\Gamma(n-\alpha)} \int_0^t (t-s)^{-\alpha+n-1} f^{(n)}(s) ds,
$$

where $n = [\alpha] + 1$. It is assumed implicitly that $f(.)$ is *n* times differentiable whose *n*-th derivative is absolutely continuous.

In what follows $I = [0, T]$. We recall (e.g., [\[20](#page-10-15)]) that if $\alpha > 0$ and $f(.) \in C(I, \mathbf{R})$ or $f(.) \in L^{\infty}(I, \mathbf{R})$ then $(D_c^{\alpha} I^{\alpha} f)(t) \equiv f(t)$.

Lemma 2.7 [[1\]](#page-10-12) *For any* $f(.) \in C(I, \mathbf{R})$ *the unique solution of the boundary value problem*

$$
D_c^{\alpha} x(t) = f(t)
$$
 a.e. ([0, T]), $\alpha \in (2, 3]$,
\n $x(0) = -x(T)$, $x'(0) = -x'(T)$, $x''(0) = -x''(T)$

is given by

$$
x(t) = \int_0^T G(t,s)f(s)ds,
$$

where $G(.,.): I \times I \rightarrow \mathbf{R}$ *is the Green function defined by*

$$
G(t,s) := \begin{cases} \frac{(t-s)^{\alpha-1} - \frac{1}{2}(T-s)^{\alpha-1}}{\Gamma(\alpha)} + \frac{(T-2t)(T-s)^{\alpha-2}}{4\Gamma(\alpha-1)} + \frac{t(T-t)(T-s)^{\alpha-3}}{4\Gamma(\alpha-2)},\\ \qquad \text{if } 0 \le s < t \le T, \\ -\frac{1}{2}\frac{(T-s)^{\alpha-1}}{\Gamma(\alpha)} + \frac{(T-2t)(T-s)^{\alpha-2}}{4\Gamma(\alpha-1)} + \frac{t(T-t)(T-s)^{\alpha-3}}{4\Gamma(\alpha-2)}, \quad \text{if } 0 \le t < s \le T. \end{cases}
$$

Note that $|G(t, s)| \leq \frac{T^{\alpha-1}}{2} \left(\frac{1}{\Gamma(\alpha)} + \frac{1}{2\Gamma(\alpha-1)} + \frac{1}{2\Gamma(\alpha-2)} \right) \forall t, s \in I$. Let $G_0 := \sup_{t \in I} |G(t, s)|$.

3 The main results

We are able now to present the existence results for problem (1.1) (1.1) (1.1) – (1.2) (1.2) . We consider first the case when $F(.,.)$ is convex valued.

Hypothesis 3.1 (i) $F(.,.) : I \times \mathbf{R} \rightarrow \mathcal{P}(\mathbf{R})$ has nonempty compact convex values and is Carathéodory.

(ii) There exist $\varphi(.) \in L^1(I, \mathbf{R})$ with $\varphi(t) > 0$ a.e. *(I)* and there exists a nondecreasing function ψ : $[0, \infty) \rightarrow (0, \infty)$ such that

$$
\sup\{|v|; v \in F(t, x)\} \le \varphi(t)\psi(|x|) \quad \text{a.e. (I),} \quad \forall x \in \mathbf{R}.
$$

Theorem 3.2 *Assume that Hypothesis* [3.1](#page-4-1) *is satisfied and there exists r >* 0 *such that*

$$
r > G_0 |\varphi|_1 \psi(r). \tag{3.1}
$$

Then problem ([1.1](#page-1-0))–([1.2](#page-1-1)) *has at least one solution* $x(.)$ *such that* $|x(.)|_C < r$.

Proof Let $X = C(I, \mathbf{R})$ and consider $r > 0$ as in ([3.1](#page-4-2)). It is obvious that the existence of solutions to problem (1.1) (1.1) (1.1) – (1.2) (1.2) reduces to the existence of the solutions of the integral inclusion

$$
x(t) \in \int_0^T G(t,s)F(s,x(s))ds, \quad t \in I.
$$
 (3.2)

 \otimes Springer

Consider the set-valued map $T : \overline{B_r(0)} \to \mathcal{P}(C(I, \mathbf{R}))$ defined by

$$
T(x) := \{v(.) \in C(I, \mathbf{R}); \ v(t) := \int_0^T G(t, s) f(s) ds, \ f \in \overline{S_F(x)}\}.
$$
 (3.3)

We show that *T*(.) satisfies the hypotheses of Corollary [2.2](#page-2-0).

First, we show that $T(x) \subset C(I, \mathbf{R})$ is convex for any $x \in C(I, \mathbf{R})$.

If $v_1, v_2 \in T(x)$ then there exist $f_1, f_2 \in S_F(x)$ such that for any $t \in I$ one has

$$
v_i(t) = \int_0^T G(t, s) f_i(s) ds, \quad i = 1, 2.
$$

Let $0 \le \alpha \le 1$. Then for any $t \in I$ we have

$$
(\alpha v_1 + (1 - \alpha)v_2)(t) = \int_0^T G(t, s)[\alpha f_1(s) + (1 - \alpha)f_2(s)]ds.
$$

The values of $F(.,.)$ are convex, thus $S_F(x)$ is a convex set and hence $\alpha v_1 + (1 \alpha)v_2 \in T(x)$.

Secondly, we show that $T(.)$ is bounded on bounded sets of $C(I, \mathbf{R})$.

Let *B* \subset *C*(*I*, **R**) be a bounded set. Then there exist *m* > 0 such that $|x|_C \leq m$ $∀x ∈ B$.

If $v \in T(x)$ there exists $f \in S_F(x)$ such that $v(t) = \int_0^T G(t, s) f(s) ds$. One may write for any $t \in I$

$$
|v(t)| \le \int_0^T |G(t,s)| \cdot |f(s)| ds \le \int_0^T |G(t,s)| \varphi(s) \psi(|x(t)|) ds
$$

and therefore

$$
|v|_C \le G_0 |\varphi|_1 \psi(m) \quad \forall v \in T(x),
$$

i.e., $T(B)$ is bounded.

We show next that $T(.)$ maps bounded sets into equi-continuous sets.

Let *B* \subset *C*(*I*, **R**) be a bounded set as before and $v \in T(x)$ for some $x \in B$. There exists $f \in S_F(x)$ such that $v(t) = \int_0^T G(t, s) f(s) ds$. Then for any $t, \tau \in I$ we have

> $\overline{}$ $\overline{}$ $\overline{}$ \overline{a}

$$
|v(t) - v(\tau)| \le \left| \int_0^T G(t, s) f(s) ds - \int_0^T G(\tau, s) f(s) ds \right|
$$

$$
\le \int_0^T |G(t, s) - G(\tau, s)| \cdot |f(s)| ds
$$

$$
\le \int_0^T |G(t, s) - G(\tau, s)| \varphi(s) \psi(m) ds.
$$

It follows that $|v(t) - v(\tau)| \to 0$ as $t \to \tau$. Therefore, $T(B)$ is an equi-continuous set in $C(I, \mathbf{R})$.

We apply now Arzela-Ascoli's theorem we deduce that $T(.)$ is completely continuous on $C(I, \mathbf{R})$.

In the next step of the proof we prove that $T(.)$ has a closed graph.

Let $x_n \in C(I, \mathbf{R})$ be a sequence such that $x_n \to x^*$ and $v_n \in T(x_n)$ $\forall n \in \mathbf{N}$ such that $v_n \to v^*$. We prove that $v^* \in T(x^*)$.

Since $v_n \in T(x_n)$, there exists $f_n \in S_F(x_n)$ such that $v_n(t) = \int_0^T G(t,s) f_n(s) ds$.

Define $\Gamma: L^1(I, \mathbf{R}) \to C(I, \mathbf{R})$ by $(\Gamma(f))(t) := \int_0^T G(t, s) f(s) ds$. One has $\max_{t \in I} |v_n(t) - v^*(t)| = |v_n(.) - v^*(.)|_C \to 0 \text{ as } n \to \infty.$

We apply Theorem [2.5](#page-3-0) to find that $\Gamma \circ S_F$ has closed graph and from the definition of Γ we get $v_n \in \Gamma \circ S_F(x_n)$. Since $x_n \to x^*$, $v_n \to v^*$ it follows the existence of *f*^{*} \in *S_F*(*x*^{*}) such that $v^*(t) = \int_0^T G(t, s) f^*(s) ds$.

Therefore, $T(.)$ is upper semicontinuous and compact on $\overline{B_r(0)}$. We apply Corol-lary [2.2](#page-2-0) to deduce that either (i) the inclusion $x \in T(x)$ has a solution in $\overline{B_r(0)}$, or (ii) there exists $x \in X$ with $|x|_C = r$ and $\lambda x \in T(x)$ for some $\lambda > 1$.

Assume that (ii) is true. With the same arguments as in the second step of our proof we get $r = |x(.)|_C \leq G_0 |\varphi|_1 \psi(r)$ which contradicts [\(3.1\)](#page-4-2). Hence only (i) is valid and theorem is proved. \Box

Example 3.3 Consider the set-valued map defined by $F(t, x) = \{v \in \mathbb{R}; f_1(t, x) \leq$ $v \leq f_2(t, x)$ } with $f_1, f_2 : I \times \mathbf{R} \to \mathbf{R}$ given measurable functions. We assume that for any $t \in I$, $f_1(t,.)$ is lower semicontinuous (i.e., the set $\{x \in \mathbb{R}; f_1(t,x) > a\}$ is open for all $a \in \mathbb{R}$) and we assume that for any $t \in I$, $f_2(t,.)$ is upper semicontinuous (i.e., the set $\{x \in \mathbf{R}; f_2(t, x) < a\}$ is open for all $a \in \mathbf{R}$). It is well known that $F(.,.)$ is compact convex valued and upper semicontinuous.

We take $T = 2\pi$, $\alpha = \frac{5}{2}$ and note that, since $\Gamma(\frac{1}{2}) = \sqrt{\pi}$, in this case $|G(t, s)| \le$ $G_0 = \frac{17\pi}{3\sqrt{2}} \ \forall s, t \in [0, 2\pi]$. We choose f_1, f_2 such that $\max\{|f_1(t, x)|, |f_2(t, x)|\}$; $(t, x) \in I \times \mathbf{R} \le \frac{t}{2G_0\pi^2}|x|$. Obviously, the hypotheses of Theorem [3.2](#page-4-3) are satisfied with $\psi(x) = x$, $\varphi(t) = \frac{t}{2G_0\pi^2}$ and any $r > 0$.

We consider now the case when $F(.,.)$ is not necessarily convex valued. Our first existence result in this case is based on the Leray-Schauder alternative for single valued maps and on Bressan Colombo selection theorem.

Hypothesis 3.4 (i) $F(.,.): I \times \mathbf{R} \to \mathcal{P}(\mathbf{R})$ has compact values, $F(.,.)$ is $\mathcal{L}(I) \otimes$ $\mathcal{B}(\mathbf{R})$ measurable and $x \to F(t, x)$ is lower semicontinuous for almost all $t \in I$.

(ii) There exist $\varphi(.) \in L^1(I, \mathbf{R})$ with $\varphi(t) > 0$ a.e. *(I)* and there exists a nondecreasing function ψ : $[0, \infty) \rightarrow (0, \infty)$ such that

$$
\sup\{|v|; v \in F(t, x)\} \le \varphi(t)\psi(|x|) \quad \text{a.e. (I),} \quad \forall x \in \mathbf{R}.
$$

Theorem 3.5 *Assume that Hypothesis* [3.4](#page-6-0) *is satisfied and there exists r >* 0 *such that Condition* [\(3.1\)](#page-4-2) *is satisfied*.

Then problem ([1.1](#page-1-0))*–*([1.2](#page-1-1)) *has at least one solution on I* .

Proof We note first that if Hypothesis [3.4](#page-6-0) is satisfied then $F(.,.)$ is of lower semicontinuous type (e.g., $[18]$ $[18]$). Therefore, we apply Theorem [2.4](#page-2-1) to deduce that there exists $f(.)$: $C(I, \mathbf{R}) \to L^1(I, \mathbf{R})$ such that $f(x) \in S_F(x)$ $\forall x \in C(I, \mathbf{R})$.

We consider the corresponding problem

$$
x(t) = \int_0^T G(t,s)f(x(s))ds, \quad t \in I
$$
\n(3.4)

in the space $X = C(I, \mathbf{R})$. It is clear that if $x(.) \in C(I, \mathbf{R})$ is a solution of the problem (3.4) then $x(.)$ is a solution to problem (1.1) .

Let $r > 0$ that satisfies condition ([3.1](#page-4-2)) and define the set-valued map $T : \overline{B_r(0)} \to$ $\mathcal{P}(C(I,\mathbf{R}))$ by

$$
(T(x))(t) := \int_0^T G(t,s)f(x(s))ds.
$$

Obviously, the integral equation (3.4) (3.4) is equivalent with the operator equation

$$
x(t) = (T(x))(t), \quad t \in I.
$$
 (3.5)

It remains to show that *T (.)* satisfies the hypotheses of Corollary [2.3.](#page-2-2) We show that $T(.)$ is continuous on $B_r(0)$. From Hypotheses [3.4\(](#page-6-0)ii) we have

$$
|f(x(t))| \le \varphi(t)\psi(|x(t)|) \quad \text{a.e. (I)}
$$

for all $x(.) \in C(I, \mathbf{R})$. Let $x_n, x \in \overline{B_r(0)}$ such that $x_n \to x$. Then

$$
|f(x_n(t))| \le \varphi(t)\psi(r) \quad \text{a.e. (I)}.
$$

From Lebesgue's dominated convergence theorem and the continuity of *f (.)* we obtain, for all $t \in I$

$$
\lim_{n \to \infty} (T(x_n))(t) = \lim_{n \to \infty} \int_0^T G(t, s) f(x_n(s)) ds
$$

$$
= \int_0^T G(t, s) f(x(s)) ds = (T(x))(t),
$$

i.e., $T(.)$ is continuous on $\overline{B_r(0)}$.

Repeating the arguments in the proof of Theorem [3.2](#page-4-3) with corresponding modifications it follows that *T*(.) is compact on $\overline{B_r(0)}$. We apply Corollary [2.3](#page-2-2) and we find that either (i) the equation $x = T(x)$ has a solution in $\overline{B_r(0)}$, or (ii) there exists $x \in X$ with $|x|_C = r$ and $x = \lambda T(x)$ for some $\lambda < 1$.

As in the proof of Theorem [3.2](#page-4-3) if the statement (ii) holds true, then we obtain a contradiction to (3.1) . Thus only the statement (i) is true and problem (1.1) (1.1) (1.1) has a solution $x(.) \in C(I, \mathbf{R})$ with $|x(.)|_C < r$.

In order to obtain an existence result for problem (1.1) (1.1) (1.1) – (1.2) (1.2) (1.2) by using the setvalued contraction principle we introduce the following hypothesis on *F*.

Hypothesis 3.6 (i) $F(.,.)$: $I \times \mathbf{R} \rightarrow \mathcal{P}(\mathbf{R})$ has nonempty compact values and, for every $x \in \mathbf{R}$, $F(x, x)$ is measurable.

(ii) There exists $L(.) \in L^1(I, \mathbf{R}_+)$ such that for almost all $t \in I$, $F(t, \cdot)$ is $L(t)$ -Lipschitz in the sense that

$$
d_H(F(t, x), F(t, y)) \le L(t)|x - y| \quad \forall x, y \in \mathbf{R}
$$

and $d(0, F(t, 0)) \leq L(t)$ a.e. (*I*). Denote $L_0 := \int_0^T L(s) ds$.

Theorem 3.7 Assume that Hypothesis [3.6](#page-7-1). is satisfied and $G_0L_0 < 1$. Then the prob*lem* [\(1.1](#page-1-0))*–*[\(1.2\)](#page-1-1) *has a solution*.

Proof We transform the problem (1.1) (1.1) (1.1) – (1.2) (1.2) (1.2) into a fixed point problem. Consider the set-valued map $T: C(I, \mathbf{R}) \to \mathcal{P}(C(I, \mathbf{R}))$ defined by

$$
T(x) := \left\{ v(.) \in C(I, \mathbf{R}); \ v(t) := \int_0^T G(t, s) f(s) ds, \ f \in S_{F, x} \right\}.
$$

Note that since the set-valued map $F(.,x(.))$ is measurable with the measurable selection theorem (e.g., Theorem III.6 in [[8\]](#page-10-21)) it admits a measurable selection $f(.)$: $I \rightarrow \mathbf{R}$. Moreover, from Hypothesis [3.6](#page-7-1)

$$
|f(t)| \le L(t) + L(t)|x(t)|,
$$

i.e., $f(.) \in L^1(I, \mathbf{R})$. Therefore, $S_{F,x} \neq \emptyset$.

It is clear that the fixed points of $T(.)$ are solutions of problem (1.1) (1.1) (1.1) – (1.2) (1.2) (1.2) . We shall prove that $T(.)$ fulfills the assumptions of Covitz Nadler contraction principle.

First, we note that since $S_{F,x} \neq \emptyset$, $T(x) \neq \emptyset$ for any $x(.) \in C(I, \mathbf{R})$.

Secondly, we prove that $T(x)$ is closed for any $x(.) \in C(I, \mathbf{R})$.

Let $\{x_n\}_{n>0} \in T(x)$ such that $x_n(.) \to x^*(.)$ in $C(I, \mathbf{R})$. Then $x^*(.) \in C(I, \mathbf{R})$ and there exists $f_n \in S_{F,x}$ such that

$$
x_n(t) = \int_0^T G(t,s) f_n(s) ds.
$$

Since $F(.,.)$ has compact values and Hypothesis 3.6 is satisfied we may pass to a subsequence (if necessary) to get that $f_n(.)$ converges to $f(.) \in L^1(I, \mathbf{R})$ in $L^1(I, \mathbf{R})$.

In particular, $f \in S_{F,x}$ and for any $t \in I$ we have

$$
x_n(t) \to x^*(t) = \int_0^T G(t,s)f(s)ds,
$$

i.e., $x^* \in T(x)$ and $T(x)$ is closed.

Finally, we show that $T(.)$ is a contraction on $C(I, \mathbf{R})$.

Let $x_1(.)$, $x_2(.) \in C(I, \mathbf{R})$ and $v_1 \in T(x_1)$. Then there exist $f_1 \in S_{F,x_1}$ such that

$$
v_1(t) = \int_0^T G(t,s) f_1(s) ds, \quad t \in I.
$$

 \otimes Springer

Consider the set-valued map

$$
H(t) := F(t, x_2(t)) \cap \{x \in \mathbf{R}; \ |f_1(t) - x| \le L(t)|x_1(t) - x_2(t)|\}, \quad t \in I.
$$

From Hypothesis [3.6](#page-7-1) one has

$$
d_H(F(t, x_1(t)), F(t, x_2(t))) \le L(t)|x_1(t) - x_2(t)|,
$$

hence $H(.)$ has nonempty closed values. Moreover, since $H(.)$ is measurable, there exists $f_2(.)$ a measurable selection of $H(.)$. It follows that $f_2 \in S_{F,x_2}$ and for any $t \in I$

$$
|f_1(t) - f_2(t)| \le L(t)|x_1(t) - x_2(t)|.
$$

Define

$$
v_2(t) = \int_0^T G(t,s) f_2(s) ds, \quad t \in I.
$$

and we have

$$
|v_1(t) - v_2(t)| \le \int_0^T |G(t, s)| \cdot |f_1(s) - f_2(s)| ds \le G_0 \int_0^T |f_1(s) - f_2(s)| ds
$$

$$
\le G_0 \int_0^T L(s) |x_1(s) - x_2(s)| ds \le G_0 L_0 |x_1 - x_2|_C.
$$

 $\text{So, } |v_1 - v_2|_C \leq G_0 L_0 |x_1 - x_2|_C.$

From an analogous reasoning by interchanging the roles of x_1 and x_2 it follows

$$
d_H(T(x_1), T(x_2)) \le G_0 L_0 |x_1 - x_2|_C.
$$

Therefore, $T(.)$ admits a fixed point which is a solution to problem (1.1) (1.1) (1.1) – (1.2) (1.2) (1.2) .

Example 3.8 Consider the following anti-periodic boundary value problem

$$
D_c^{\frac{5}{2}}x(t) \in \left[0, \frac{1}{G_0(t+3)^2} \cdot \frac{|x|}{1+|x|}\right], \quad t \in [0, 2\pi],
$$
 (3.6)

$$
x(0) = -x(2\pi), \qquad x'(0) = -x'(2\pi), \qquad x''(0) = -x''(2\pi) \tag{3.7}
$$

Here, $T = 2\pi$, $G_0 = \frac{17\pi}{3\sqrt{2}}$, $L(t) = \frac{1}{9G_0}$, $L_0 = \frac{2\pi}{9G_0}$. Obviously, $G_0L_0 = \frac{2\pi}{9} < 1$ and thus, by Theorem [3.7,](#page-8-0) problem (3.6) (3.6) (3.6) – (3.7) (3.7) (3.7) has a solution on [0, 2π].

Remark 3.9 If $\alpha \in (1, 2]$, then problem (1.1) (1.1) (1.1) – (1.2) (1.2) (1.2) reduces to problem

$$
D_c^{\alpha} x(t) \in F(t, x(t)) \quad \text{a.e. } ([0, T]), \tag{3.8}
$$

$$
x(0) = -x(T), \qquad x'(0) = -x'(T). \tag{3.9}
$$

A result similar to Theorem [3.2](#page-4-3) is obtained in $[2]$ $[2]$ for problem (3.8) (3.8) (3.8) – (3.9) (3.9) (3.9) . Obviously, similar results as in Theorem [3.5](#page-6-1) and Theorem [3.7](#page-8-0) may be obtained for problem (3.8) – (3.9) .

References

- 1. Ahmad, B.: Existence of solutions for fractional differential equations of order $q \in (2, 3]$ with antiperiodic boundary conditions. J. Appl. Math. Comput. doi[:10.1007/s12190-009-0328-4](http://dx.doi.org/10.1007/s12190-009-0328-4)
- 2. Ahmad, B., Otero-Espinar, V.: Existence of solutions for functional differential inclusions with antiperiodic boundary conditions. Bound. Value Probl. **2009**, 625347 (2009)
- 3. Ait Dads, E., Benchohra, M., Hamani, S.: Impulsive fractional differential inclusions involving Caputo fractional derivative. Fract. Calc. Appl. Anal. **12**, 15–38 (2009)
- 4. Benchohra, M., Henderson, J., Ntouyas, S.K., Ouahab, A.: Existence results for fractional order functional differential equations with infinite delay. J. Math. Anal. Appl. **338**, 1340–1350 (2008)
- 5. Benchohra, M., Henderson, J., Ntouyas, S.K., Ouahab, A.: Existence results for fractional order functional differential inclusions with infinite delay and applications to control theory. Fract. Calc. Appl. Anal. **11**, 35–56 (2008)
- 6. Bressan, A., Colombo, G.: Extensions and selections of maps with decomposable values. Stud. Math. **90**, 69–86 (1988)
- 7. Caputo, M.: Elasticità e Dissipazione. Zanichelli, Bologna (1969)
- 8. Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions. Springer, Berlin (1977)
- 9. Cernea, A.: On the existence of solutions for fractional differential inclusions with boundary conditions. Fract. Calc. Appl. Anal. **12**, 433–442 (2009)
- 10. Cernea, A.: Continuous version of Filippov's theorem for fractional differential inclusions. Nonlinear Anal. **72**, 204–208 (2010)
- 11. Cernea, A.: On the existence of solutions for nonconvex fractional hyperbolic differential inclusions. Commun. Math. Anal. **9**, 109–120 (2010)
- 12. Chang, Y.K., Nieto, J.J.: Some new existence results for fractional differential inclusions with boundary conditions. Math. Comput. Model. **49**, 605–609 (2009)
- 13. Chu, J., Li, M.: Positive periodic solutions of Hills equations with singular nonlinear perturbations. Nonlinear Anal. **69**, 276–286 (2008)
- 14. Chu, J., Nieto, J.J.: Impulsive periodic solutions of first-order singular differential equations. Bull. Lond. Math. Soc. **40**, 143–150 (2008)
- 15. Chu, J., Torres, P.J., Zhang, M.: Periodic solutions of second-order non-autonomous singular dynamical systems. J. Differ. Equ. **239**, 196–212 (2007)
- 16. Covitz, H., Nadler, S.B. Jr.: Multivalued contraction mapping in generalized metric spaces. Isr. J. Math. **8**, 5–11 (1970)
- 17. El-Sayed, A.M.A., Ibrahim, A.G.: Multivalued fractional differential equations of arbitrary orders. Appl. Math. Comput. **68**, 15–25 (1995)
- 18. Frignon, M., Granas, A.: Théorèmes d'existence pour les inclusions différentielles sans convexité. C. R. Acad. Sci. Paris, Ser. I **310**, 819–822 (1990)
- 19. Henderson, J., Ouahab, A.: Fractional functional differential inclusions with finite delay. Nonlinear Anal. **70**, 2091–2105 (2009)
- 20. Jiang, D., Chu, J., Zhang, M.: Multiplicity of positive periodic solutions to superlinear repulsive singular equations. J. Differ. Equ. **211**, 282–302 (2005)
- 21. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
- 22. Lasota, A., Opial, Z.: An application of the Kakutani-Ky-Fan theorem in the theory of ordinary differential equations. Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. **13**, 781–786 (1965)
- 23. Miller, K., Ross, B.: An Introduction to the Fractional Calculus and Differential Equations. Wiley, New York (1993)
- 24. O'Regan, D.: Fixed point theory for closed multifunctions. Arch. Math. (Brno) **34**, 191–197 (1998)
- 25. Ouahab, A.: Some results for fractional boundary value problem of differential inclusions. Nonlinear Anal. **69**, 3871–3896 (2009)
- 26. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)