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Abstract The existence of solutions of an anti-periodic boundary value problem for
fractional differential inclusions of order α ∈ (2,3] is investigated. Several results are
obtained by using suitable fixed point theorems when the right hand side has convex
or non convex values.
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1 Introduction

Differential equations with fractional order have recently proved to be strong tools in
the modelling of many physical phenomena. As a consequence there was an inten-
sive development of the theory of differential equations of fractional order ([4, 21,
23, 26] etc.). The study of fractional differential inclusions was initiated by El-Sayed
and Ibrahim [17]. Very recently several qualitative results for fractional differential
inclusions were obtained in [5, 9–12, 19, 25] etc. Applied problems require defini-
tions of fractional derivative allowing the utilization of physically interpretable initial
or boundary conditions. Caputo’s fractional derivative, originally introduced in [7]
and afterwards adopted in the theory of linear visco elasticity, satisfies this demand.
For a consistent bibliography on this topic, historical remarks and examples we refer
to [3].

A. Cernea (�)
Faculty of Mathematics and Informatics, University of Bucharest, Academiei 14, 010014 Bucharest,
Romania
e-mail: acernea@fmi.unibuc.ro

mailto:acernea@fmi.unibuc.ro


134 A. Cernea

In this paper we study the following fractional differential inclusion

Dα
c x(t) ∈ F(t, x(t)) a.e. ([0, T ]), (1.1)

x(0) = −x(T ), x′(0) = −x′(T ), x′′(0) = −x′′(T ) (1.2)

where α ∈ (2,3], Dα
c is the Caputo fractional derivative and F : I × R → P (R) is a

set-valued map.
The present paper is motivated by a recent paper of Ahmad [1], where it is consid-

ered problem (1.1)–(1.2) with F(., .) single valued and several existence results are
obtained by using fixed point techniques.

The aim of our paper is to extend the study in [1] to the set-valued framework
and to present some existence results for problem (1.1)–(1.2). Our results are essen-
tially based on a nonlinear alternative of Leray-Schauder type, on Bressan-Colombo
selection theorem for lower semicontinuous set-valued maps with decomposable val-
ues and on Covitz and Nadler set-valued contraction principle. The methods used are
standard, however their exposition in the framework of problem (1.1)–(1.2) is new.

We note that the methods based on Leray-Schauder alternative have been used
intensively for the study of differential equations during the last few years (e.g.,
[13–15, 20] etc.).

The paper is organized as follows: in Sect. 2 we recall some preliminary facts that
we need in the sequel and in Sect. 3 we prove our main results.

2 Preliminaries

In this section we sum up some basic facts that we are going to use later.
Let (X,d) be a metric space with the corresponding norm |.| and let I ⊂ R be a

compact interval. Denote by L(I ) the σ -algebra of all Lebesgue measurable subsets
of I , by P (X) the family of all nonempty subsets of X and by B(X) the family of
all Borel subsets of X. If A ⊂ I then χA(.) : I → {0,1} denotes the characteristic
function of A. For any subset A ⊂ X we denote by A the closure of A.

Recall that the Pompeiu-Hausdorff distance of the closed subsets A,B ⊂ X is
defined by

dH (A,B) = max{d∗(A,B), d∗(B,A)}, d∗(A,B) = sup{d(a,B);a ∈ A},
where d(x,B) = infy∈B d(x, y).

As usual, we denote by C(I,X) the Banach space of all continuous functions
x(.) : I → X endowed with the norm |x(.)|C = supt∈I |x(t)| and by L1(I,X) the
Banach space of all (Bochner) integrable functions x(.) : I → X endowed with the
norm |x(.)|1 = ∫

I
|x(t)|dt .

A subset D ⊂ L1(I,X) is said to be decomposable if for any u(·), v(·) ∈ D and
any subset A ∈ L(I ) one has uχA + vχB ∈ D, where B = I\A.

Consider T : X → P (X) a set-valued map. A point x ∈ X is called a fixed point for
T (.) if x ∈ T (x). T (.) is said to be bounded on bounded sets if T (B) := ⋃

x∈B T (x)

is a bounded subset of X for all bounded sets B in X. T (.) is said to be compact if
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T (B) is relatively compact for any bounded sets B in X. T (.) is said to be totally
compact if T (X) is a compact subset of X. T (.) is said to be upper semicontinuous
if for any open set D ⊂ X, the set {x ∈ X;T (x) ⊂ D} is open in X. T (.) is called
completely continuous if it is upper semicontinuous and totally bounded on X.

It is well known that a compact set-valued map T (.) with nonempty compact val-
ues is upper semicontinuous if and only if T (.) has a closed graph.

We recall the following nonlinear alternative of Leray-Schauder type and its con-
sequences.

Theorem 2.1 [24] Let D and D be the open and closed subsets in a normed linear
space X such that 0 ∈ D and let T : D → P (X) be a completely continuous set-
valued map with compact convex values. Then either

(i) the inclusion x ∈ T (x) has a solution, or
(ii) there exists x ∈ ∂D (the boundary of D) such that λx ∈ T (x) for some λ > 1.

Corollary 2.2 Let Br(0) and Br(0) be the open and closed balls in a normed lin-
ear space X centered at the origin and of radius r and let T : Br(0) → P (X) be a
completely continuous set-valued map with compact convex values. Then either

(i) the inclusion x ∈ T (x) has a solution, or
(ii) there exists x ∈ X with |x| = r and λx ∈ T (x) for some λ > 1.

Corollary 2.3 Let Br(0) and Br(0) be the open and closed balls in a normed linear
space X centered at the origin and of radius r and let T : Br(0) → X be a completely
continuous single valued map with compact convex values. Then either

(i) the equation x = T (x) has a solution, or
(ii) there exists x ∈ X with |x| = r and x = λT (x) for some λ < 1.

We recall that a multifunction T (.) : X → P (X) is said to be lower semicontinu-
ous if for any closed subset C ⊂ X, the subset {s ∈ X;G(s) ⊂ C} is closed.

If F(., .) : I × R → P (R) is a set-valued map with compact values and x(.) ∈
C(I,R) we define

SF (x) := {f ∈ L1(I,R); f (t) ∈ F(t, x(t)) a.e. (I )}.
We say that F(., .) is of lower semicontinuous type if SF (.) is lower semicontinuous
with closed and decomposable values.

Theorem 2.4 [6] Let S be a separable metric space and G(.) : S → P (L1(I,R)) be
a lower semicontinuous set-valued map with closed decomposable values.

Then G(.) has a continuous selection (i.e., there exists a continuous mapping g(.) :
S → L1(I,R) such that g(s) ∈ G(s) ∀s ∈ S).

A set-valued map G : I → P (R) with nonempty compact convex values is said to
be measurable if for any x ∈ R the function t → d(x,G(t)) is measurable.
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A set-valued map F(., .) : I × R → P (R) is said to be Carathéodory if t →
F(t, x) is measurable for any x ∈ R and x → F(t, x) is upper semicontinuous for
almost all t ∈ I .

F(., .) is said to be L1-Carathéodory if for any l > 0 there exists hl(.) ∈ L1(I,R)

such that sup{|v|;v ∈ F(t, x)} ≤ hl(t) a.e. (I ), ∀x ∈ Bl(0).

Theorem 2.5 [22] Let X be a Banach space, let F(., .) : I × X → P (X) be a L1-
Carathéodory set-valued map with SF 	= ∅ and let � : L1(I,X) → C(I,X) be a
linear continuous mapping.

Then the set-valued map � ◦ SF : C(I,X) → P (C(I,X)) defined by

(� ◦ SF )(x) = �(SF (x))

has compact convex values and has a closed graph in C(I,X) × C(I,X).

Note that if dimX < ∞, and F(., .) is as in Theorem 2.5, then SF (x) 	= ∅ for any
x(.) ∈ C(I,X) (e.g., [22]).

Let (X,d) be a metric space and consider a set valued map T on X with nonempty
values in X. T is said to be a λ-contraction if there exists 0 < λ < 1 such that:

dH (T (x), T (y)) ≤ λd(x, y) ∀x, y ∈ X,

where dH (., .) denotes the Pompeiu-Hausdorff distance.
The set-valued contraction principle [16] states that if X is complete, and T : X →

P (X) is a set valued contraction with nonempty closed values, then T (.) has a fixed
point, i.e. a point z ∈ X such that z ∈ T (z).

Definition 2.6 [21] (a) The fractional integral of order α > 0 of a Lebesgue inte-
grable function f (.) : (0,∞) → R is defined by

Iαf (t) =
∫ t

0

(t − s)α−1

�(α)
f (s)ds,

provided the right-hand side is pointwise defined on (0,∞) and �(.) is the (Euler’s)
Gamma function defined by �(α) = ∫ ∞

0 tα−1e−t dt .
(b) The Caputo fractional derivative of order α > 0 of a function f (.) : [0,∞) →

R is defined by

Dα
c f (t) = 1

�(n − α)

∫ t

0
(t − s)−α+n−1f (n)(s)ds,

where n = [α] + 1. It is assumed implicitly that f (.) is n times differentiable whose
n-th derivative is absolutely continuous.

In what follows I = [0, T ]. We recall (e.g., [20]) that if α > 0 and f (.) ∈ C(I,R)

or f (.) ∈ L∞(I,R) then (Dα
c Iαf )(t) ≡ f (t).
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Lemma 2.7 [1] For any f (.) ∈ C(I,R) the unique solution of the boundary value
problem

Dα
c x(t) = f (t) a.e. ([0, T ]), α ∈ (2,3],

x(0) = −x(T ), x′(0) = −x′(T ), x′′(0) = −x′′(T )

is given by

x(t) =
∫ T

0
G(t, s)f (s)ds,

where G(., .) : I × I → R is the Green function defined by

G(t, s) :=

⎧
⎪⎪⎨

⎪⎪⎩

(t−s)α−1− 1
2 (T −s)α−1

�(α)
+ (T −2t)(T −s)α−2

4�(α−1)
+ t (T −t)(T −s)α−3

4�(α−2)
,

if 0 ≤ s < t ≤ T ,

− 1
2

(T −s)α−1

�(α)
+ (T −2t)(T −s)α−2

4�(α−1)
+ t (T −t)(T −s)α−3

4�(α−2)
, if 0 ≤ t < s ≤ T .

Note that |G(t, s)| ≤ T α−1

2 ( 1
�(α)

+ 1
2�(α−1)

+ 1
2�(α−2)

) ∀t, s ∈ I .
Let G0 := supt,s∈I |G(t, s)|.

3 The main results

We are able now to present the existence results for problem (1.1)–(1.2). We consider
first the case when F(., .) is convex valued.

Hypothesis 3.1 (i) F(., .) : I × R → P (R) has nonempty compact convex values
and is Carathéodory.

(ii) There exist ϕ(.) ∈ L1(I,R) with ϕ(t) > 0 a.e. (I ) and there exists a nonde-
creasing function ψ : [0,∞) → (0,∞) such that

sup{|v|; v ∈ F(t, x)} ≤ ϕ(t)ψ(|x|) a.e. (I ), ∀x ∈ R.

Theorem 3.2 Assume that Hypothesis 3.1 is satisfied and there exists r > 0 such that

r > G0|ϕ|1ψ(r). (3.1)

Then problem (1.1)–(1.2) has at least one solution x(.) such that |x(.)|C < r .

Proof Let X = C(I,R) and consider r > 0 as in (3.1). It is obvious that the existence
of solutions to problem (1.1)–(1.2) reduces to the existence of the solutions of the
integral inclusion

x(t) ∈
∫ T

0
G(t, s)F (s, x(s))ds, t ∈ I. (3.2)
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Consider the set-valued map T : Br(0) → P (C(I,R)) defined by

T (x) := {v(.) ∈ C(I,R); v(t) :=
∫ T

0
G(t, s)f (s)ds, f ∈ SF (x)}. (3.3)

We show that T (.) satisfies the hypotheses of Corollary 2.2.
First, we show that T (x) ⊂ C(I,R) is convex for any x ∈ C(I,R).
If v1, v2 ∈ T (x) then there exist f1, f2 ∈ SF (x) such that for any t ∈ I one has

vi(t) =
∫ T

0
G(t, s)fi(s)ds, i = 1,2.

Let 0 ≤ α ≤ 1. Then for any t ∈ I we have

(αv1 + (1 − α)v2)(t) =
∫ T

0
G(t, s)[αf1(s) + (1 − α)f2(s)]ds.

The values of F(., .) are convex, thus SF (x) is a convex set and hence αv1 + (1 −
α)v2 ∈ T (x).

Secondly, we show that T (.) is bounded on bounded sets of C(I,R).
Let B ⊂ C(I,R) be a bounded set. Then there exist m > 0 such that |x|C ≤ m

∀x ∈ B .
If v ∈ T (x) there exists f ∈ SF (x) such that v(t) = ∫ T

0 G(t, s)f (s)ds. One may
write for any t ∈ I

|v(t)| ≤
∫ T

0
|G(t, s)|.|f (s)|ds ≤

∫ T

0
|G(t, s)|ϕ(s)ψ(|x(t)|)ds

and therefore

|v|C ≤ G0|ϕ|1ψ(m) ∀v ∈ T (x),

i.e., T (B) is bounded.
We show next that T (.) maps bounded sets into equi-continuous sets.
Let B ⊂ C(I,R) be a bounded set as before and v ∈ T (x) for some x ∈ B . There

exists f ∈ SF (x) such that v(t) = ∫ T

0 G(t, s)f (s)ds. Then for any t, τ ∈ I we have

|v(t) − v(τ)| ≤
∣
∣
∣
∣

∫ T

0
G(t, s)f (s)ds −

∫ T

0
G(τ, s)f (s)ds

∣
∣
∣
∣

≤
∫ T

0
|G(t, s) − G(τ, s)|.|f (s)|ds

≤
∫ T

0
|G(t, s) − G(τ, s)|ϕ(s)ψ(m)ds.

It follows that |v(t)− v(τ)| → 0 as t → τ . Therefore, T (B) is an equi-continuous
set in C(I,R).

We apply now Arzela-Ascoli’s theorem we deduce that T (.) is completely contin-
uous on C(I,R).
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In the next step of the proof we prove that T (.) has a closed graph.
Let xn ∈ C(I,R) be a sequence such that xn → x∗ and vn ∈ T (xn) ∀n ∈ N such

that vn → v∗. We prove that v∗ ∈ T (x∗).
Since vn ∈ T (xn), there exists fn ∈ SF (xn) such that vn(t) = ∫ T

0 G(t, s)fn(s)ds.

Define � : L1(I,R) → C(I,R) by (�(f ))(t) := ∫ T

0 G(t, s)f (s)ds. One has
maxt∈I |vn(t) − v∗(t)| = |vn(.) − v∗(.)|C → 0 as n → ∞.

We apply Theorem 2.5 to find that � ◦SF has closed graph and from the definition
of � we get vn ∈ � ◦ SF (xn). Since xn → x∗, vn → v∗ it follows the existence of
f ∗ ∈ SF (x∗) such that v∗(t) = ∫ T

0 G(t, s)f ∗(s)ds.
Therefore, T (.) is upper semicontinuous and compact on Br(0). We apply Corol-

lary 2.2 to deduce that either (i) the inclusion x ∈ T (x) has a solution in Br(0), or
(ii) there exists x ∈ X with |x|C = r and λx ∈ T (x) for some λ > 1.

Assume that (ii) is true. With the same arguments as in the second step of our proof
we get r = |x(.)|C ≤ G0|ϕ|1ψ(r) which contradicts (3.1). Hence only (i) is valid and
theorem is proved. �

Example 3.3 Consider the set-valued map defined by F(t, x) = {v ∈ R; f1(t, x) ≤
v ≤ f2(t, x)} with f1, f2 : I × R → R given measurable functions. We assume that
for any t ∈ I , f1(t, .) is lower semicontinuous (i.e., the set {x ∈ R; f1(t, x) > a} is
open for all a ∈ R) and we assume that for any t ∈ I , f2(t, .) is upper semicontinuous
(i.e., the set {x ∈ R; f2(t, x) < a} is open for all a ∈ R). It is well known that F(., .)

is compact convex valued and upper semicontinuous.
We take T = 2π , α = 5

2 and note that, since �( 1
2 ) = √

π , in this case |G(t, s)| ≤
G0 = 17π

3
√

2
∀s, t ∈ [0,2π]. We choose f1, f2 such that max{|f1(t, x)|, |f2(t, x)|;

(t, x) ∈ I × R} ≤ t

2G0π
2 |x|. Obviously, the hypotheses of Theorem 3.2 are satisfied

with ψ(x) = x, ϕ(t) = t

2G0π
2 and any r > 0.

We consider now the case when F(., .) is not necessarily convex valued. Our first
existence result in this case is based on the Leray-Schauder alternative for single
valued maps and on Bressan Colombo selection theorem.

Hypothesis 3.4 (i) F(., .) : I × R → P (R) has compact values, F(., .) is L(I ) ⊗
B(R) measurable and x → F(t, x) is lower semicontinuous for almost all t ∈ I .

(ii) There exist ϕ(.) ∈ L1(I,R) with ϕ(t) > 0 a.e. (I ) and there exists a nonde-
creasing function ψ : [0,∞) → (0,∞) such that

sup{|v|; v ∈ F(t, x)} ≤ ϕ(t)ψ(|x|) a.e. (I ), ∀x ∈ R.

Theorem 3.5 Assume that Hypothesis 3.4 is satisfied and there exists r > 0 such that
Condition (3.1) is satisfied.

Then problem (1.1)–(1.2) has at least one solution on I .

Proof We note first that if Hypothesis 3.4 is satisfied then F(., .) is of lower semi-
continuous type (e.g., [18]). Therefore, we apply Theorem 2.4 to deduce that there
exists f (.) : C(I,R) → L1(I,R) such that f (x) ∈ SF (x) ∀x ∈ C(I,R).
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We consider the corresponding problem

x(t) =
∫ T

0
G(t, s)f (x(s))ds, t ∈ I (3.4)

in the space X = C(I,R). It is clear that if x(.) ∈ C(I,R) is a solution of the problem
(3.4) then x(.) is a solution to problem (1.1).

Let r > 0 that satisfies condition (3.1) and define the set-valued map T : Br(0) →
P (C(I,R)) by

(T (x))(t) :=
∫ T

0
G(t, s)f (x(s))ds.

Obviously, the integral equation (3.4) is equivalent with the operator equation

x(t) = (T (x))(t), t ∈ I. (3.5)

It remains to show that T (.) satisfies the hypotheses of Corollary 2.3.
We show that T (.) is continuous on Br(0). From Hypotheses 3.4(ii) we have

|f (x(t))| ≤ ϕ(t)ψ(|x(t)|) a.e. (I )

for all x(.) ∈ C(I,R). Let xn, x ∈ Br(0) such that xn → x. Then

|f (xn(t))| ≤ ϕ(t)ψ(r) a.e. (I ).

From Lebesgue’s dominated convergence theorem and the continuity of f (.) we
obtain, for all t ∈ I

lim
n→∞(T (xn))(t) = lim

n→∞

∫ T

0
G(t, s)f (xn(s))ds

=
∫ T

0
G(t, s)f (x(s))ds = (T (x))(t),

i.e., T (.) is continuous on Br(0).
Repeating the arguments in the proof of Theorem 3.2 with corresponding modifi-

cations it follows that T (.) is compact on Br(0). We apply Corollary 2.3 and we find
that either (i) the equation x = T (x) has a solution in Br(0), or (ii) there exists x ∈ X

with |x|C = r and x = λT (x) for some λ < 1. �

As in the proof of Theorem 3.2 if the statement (ii) holds true, then we obtain
a contradiction to (3.1). Thus only the statement (i) is true and problem (1.1) has a
solution x(.) ∈ C(I,R) with |x(.)|C < r .

In order to obtain an existence result for problem (1.1)–(1.2) by using the set-
valued contraction principle we introduce the following hypothesis on F .

Hypothesis 3.6 (i) F(., .) : I × R → P (R) has nonempty compact values and, for
every x ∈ R, F(., x) is measurable.
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(ii) There exists L(.) ∈ L1(I,R+) such that for almost all t ∈ I,F (t, ·) is L(t)-
Lipschitz in the sense that

dH (F (t, x),F (t, y)) ≤ L(t)|x − y| ∀x, y ∈ R

and d(0,F (t,0)) ≤ L(t) a.e. (I ).
Denote L0 := ∫ T

0 L(s)ds.

Theorem 3.7 Assume that Hypothesis 3.6. is satisfied and G0L0 < 1. Then the prob-
lem (1.1)–(1.2) has a solution.

Proof We transform the problem (1.1)–(1.2) into a fixed point problem. Consider the
set-valued map T : C(I,R) → P (C(I,R)) defined by

T (x) :=
{

v(.) ∈ C(I,R); v(t) :=
∫ T

0
G(t, s)f (s)ds, f ∈ SF,x

}

.

Note that since the set-valued map F(., x(.)) is measurable with the measurable
selection theorem (e.g., Theorem III.6 in [8]) it admits a measurable selection f (.) :
I → R. Moreover, from Hypothesis 3.6

|f (t)| ≤ L(t) + L(t)|x(t)|,
i.e., f (.) ∈ L1(I,R). Therefore, SF,x 	= ∅.

It is clear that the fixed points of T (.) are solutions of problem (1.1)–(1.2). We
shall prove that T (.) fulfills the assumptions of Covitz Nadler contraction principle.

First, we note that since SF,x 	= ∅, T (x) 	= ∅ for any x(.) ∈ C(I,R).
Secondly, we prove that T (x) is closed for any x(.) ∈ C(I,R).
Let {xn}n≥0 ∈ T (x) such that xn(.) → x∗(.) in C(I,R). Then x∗(.) ∈ C(I,R) and

there exists fn ∈ SF,x such that

xn(t) =
∫ T

0
G(t, s)fn(s)ds.

Since F(., .) has compact values and Hypothesis 3.6 is satisfied we may pass to a
subsequence (if necessary) to get that fn(.) converges to f (.) ∈ L1(I,R) in L1(I,R).

In particular, f ∈ SF,x and for any t ∈ I we have

xn(t) → x∗(t) =
∫ T

0
G(t, s)f (s)ds,

i.e., x∗ ∈ T (x) and T (x) is closed.
Finally, we show that T (.) is a contraction on C(I,R).
Let x1(.), x2(.) ∈ C(I,R) and v1 ∈ T (x1). Then there exist f1 ∈ SF,x1 such that

v1(t) =
∫ T

0
G(t, s)f1(s)ds, t ∈ I.
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Consider the set-valued map

H(t) := F(t, x2(t)) ∩ {x ∈ R; |f1(t) − x| ≤ L(t)|x1(t) − x2(t)|}, t ∈ I.

From Hypothesis 3.6 one has

dH (F (t, x1(t)),F (t, x2(t))) ≤ L(t)|x1(t) − x2(t)|,
hence H(.) has nonempty closed values. Moreover, since H(.) is measurable, there
exists f2(.) a measurable selection of H(.). It follows that f2 ∈ SF,x2 and for any
t ∈ I

|f1(t) − f2(t)| ≤ L(t)|x1(t) − x2(t)|.
Define

v2(t) =
∫ T

0
G(t, s)f2(s)ds, t ∈ I.

and we have

|v1(t) − v2(t)| ≤
∫ T

0
|G(t, s)|.|f1(s) − f2(s)|ds ≤ G0

∫ T

0
|f1(s) − f2(s)|ds

≤ G0

∫ T

0
L(s)|x1(s) − x2(s)|ds ≤ G0L0|x1 − x2|C.

So, |v1 − v2|C ≤ G0L0|x1 − x2|C.

From an analogous reasoning by interchanging the roles of x1 and x2 it follows

dH (T (x1), T (x2)) ≤ G0L0|x1 − x2|C.

Therefore, T (.) admits a fixed point which is a solution to problem (1.1)–(1.2). �

Example 3.8 Consider the following anti-periodic boundary value problem

D
5
2
c x(t) ∈

[

0,
1

G0(t + 3)2
· |x|

1 + |x|
]

, t ∈ [0,2π], (3.6)

x(0) = −x(2π), x′(0) = −x′(2π), x′′(0) = −x′′(2π) (3.7)

Here, T = 2π , G0 = 17π

3
√

2
, L(t) = 1

9G0
, L0 = 2π

9G0
. Obviously, G0L0 = 2π

9 < 1
and thus, by Theorem 3.7, problem (3.6)–(3.7) has a solution on [0,2π].

Remark 3.9 If α ∈ (1,2], then problem (1.1)–(1.2) reduces to problem

Dα
c x(t) ∈ F(t, x(t)) a.e. ([0, T ]), (3.8)

x(0) = −x(T ), x′(0) = −x′(T ). (3.9)

A result similar to Theorem 3.2 is obtained in [2] for problem (3.8)–(3.9). Obviously,
similar results as in Theorem 3.5 and Theorem 3.7 may be obtained for problem
(3.8)–(3.9).
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