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Abstract This paper surveys and reviews papers of spline solution of singular bound-
ary value problems. Among a number of numerical methods used to solve two-point
singular boundary value problems, spline methods provide an efficient tool. Tech-
niques collected in this paper include cubic splines, non-polynomial splines, para-
metric splines, B-splines and TAGE method.
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1 Introduction

Consider a second-order linear differential equation

p0(x)y′′(x) + p1(x)y′(x) + p2(x)y(x) = 0 (1)

where p0,p1 and p2 are analytic at some point x = a0. Such a point is said to be
ordinary point if p0(a0) �= 0 and that the solution of (1) can be represented by a
power series in powers of (x − a0). If p0(a0) = 0, a0 is called a singular point of (1).
In such a case rewriting equation in the form

y′′(x) + P1(x)y′(x) + P2(x)y(x) = 0 (2)
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where Pi(x) = pi(x)/p0(x), i = 1,2. We see that the coefficients P1(x), P2(x) fail to
be analytic at x = a0. Singularities are divided into two kinds; regular singular points
and irregular singular points. The point x = a0 is said to be regular singular point,
if (x − a0)P1(x) and (x − a0)

2P2(x) are analytic at a0; otherwise it is an irregular
singularity.

Some classes of linear and non-linear singular boundary value problems (BVPs)
considered by different authors are

y′′ + f (x)y′ + g(x) = h(x), a < x ≤ b : y(a) = α, y(b) = β, (3)

x−α(xαu′)′ = f (x,u), 0 < x ≤ 1 : u(0) = A, u(1) = B, (4)

y′′(x) + α

x
y′(x) = f (x, y), y′(0) = 0, y(1) = β. (5)

These types of singular boundary value problems for ordinary differential equa-
tions arise very frequently in several areas of sciences and engineering such as analy-
sis of heat conduction through a solid with heat generation, Thomas–Fermi model in
atomic physics and in the study of generalized axially symmetric potentials after sep-
aration of variables. These problems also occur very frequently in the study of electro
hydrodynamics and the theory of thermal explosions. These also arise in physiology
for the study of various tumor problems, the study of steady states oxygen diffusion in
a spherical cell with Michaelis–Menten uptake kinetics and the study of heat sources
distribution in human head.

Keeping in view such a wide scope of singular boundary value problems, these
have been studied by several authors. Albasiny and Hoskins [5, 6] have obtained
spline solutions by solving a set of equations with a tridiagonal matrix of coeffi-
cients. Bickley [8] has considered the use of cubic spline for solving linear two point
boundary value problems. Fyfe [26] discussed the application of deferred corrections
to the method suggested by Bickley, by considering linear boundary value problems.
For α ∈ (0,1), (4) has been extensively discussed. In the linear case, Jamet [35] con-
sidered a standard three-point finite difference scheme with uniform mesh and has
shown that the error is O(h1−α) in maximum norm. Schreiber [65] considered the
application of splines to the self-adjoint equation; again the function f was assumed
to be linear. Ciarlet et al. [21] considered the application of Rayleigh–Ritz–Galerkin
method and improved Jamet’s result by showing that the error is O(h2−α) in uniform
mesh for their Galerkin approximation. Gustafsson [32] gave a numerical method for
the linear problem by representing the solution as a series expansion on a subinterval
near the singularity and using the difference method for the remaining interval. Also,
they constructed a Compact second and fourth-order scheme. Reddien [59], Reddien
and Schumaker [60] considered the collocation method and the projection method for
singular two-point boundary value problems and studied the existence, uniqueness
and convergence rates of these methods. Doedel and Reddien [23] considered high-
order finite difference methods for (4) where f is linear. Chawla and Katti [16, 17]
constructed three kinds of finite difference methods and showed that these methods
are O(h2) convergent. In [19], using cubic spline, a new numerical O(h4)-convergent
method was constructed. In [34] the construction of spline finite difference method
is discussed and proved to be O(h2)-convergent. Han [30, 31] considered Richard-
son’s extrapolation of spline approximation, correction of finite difference solution
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and spline approximation solution. In [15] Chawla et al. obtained a method for the
singular two-point boundary value problem (1) based on a uniform mesh and showed
that under quite general condition, their method provided O(h2) convergent approxi-
mation for all α ≥ 1. El-Gebeily et al. [1, 2, 25] considered a finite difference method
for the solution of a general class of singular two-point boundary value problems, and
obtained the rate of convergence of the method in the uniform norm. Related liter-
ature can also be found in [10, 15, 18, 22, 24, 27, 33, 50, 53, 62, 63] and references
therein.

In comparison with the finite difference methods, spline solution has its own ad-
vantages. For example, once the solution has been computed the information required
for spline interpolation between mesh points is available. This is particularly impor-
tant when the solution of boundary value problem is required at various locations in
the interval [a, b]. Theory of splines can be found in detail in [4, 9] and [45].

The present paper contains a survey on spline solutions of singular boundary value
problems. It is arranged as follows. In Sect. 2, a survey of papers using splines (mainly
cubic spline) to solve singular boundary value problems is given. In Sect. 3, a brief
review on B-spline papers is developed. The papers included in Sect. 4 use TAGE
method. In each section papers are arranged chronologically so that one can under-
stand step by step development.

2 Spline solution of singular boundary value problems

F. Natterer [49] defines the boundary value problem of a first order singular system in
such a way that the system can be interpreted as a Fredholm operator in some Banach
space, and a-priori-estimates for functions belonging to the domain of this operator
are proved. In the paper, the space of generalized vector valued spline functions is
also defined and its interpolation properties are investigated. The finite dimensional
approximating problems are then introduced by a projection method. The paper also
contains the convergence proof. It is shown that for suitable non-uniform partitions,
the convergence is—up to logarithmic terms—as fast as in the regular case.

In [65] R. Schreiber, basically analyses several finite element methods for singular
two-point boundary value problems

−(xσ u′)′ + qu = f, 0 < x < 1 where σ ∈ [0,1) (6)

and appropriate boundary conditions are imposed. The solution can be approximated
by splines on a non-uniform mesh. Error bounds of optimal order are proved, and up-
per and lower bounds on the extent to which the mesh must be graded are obtained.
Author also considers approximating the solution by functions of the form x−σ s(x),
where s(x) is a spline. Error bounds and numerical results for these weighted splines
indicate that they are very efficient. For a third space, known error bounds are im-
proved by using a mildly graded mesh.

Kadalbajoo and Raman in [39] have considered a second order linear differential
equation

Ly(x) ≡ y′′ + f (x)y′ + g(x) = h(x), a < x ≤ b (7)
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s.t. y(a) = α and y(b) = β; where the coefficient functions f (x) and g(x) may not
be analytic at x = a. To remove the singularity at the point x = a, authors used series
expansion in a small interval near x = a so that (7) has a solution of the form

y(x) = (x − a)m
∞∑

n=0

bn(x − a)n, b0 �= 0. (8)

The authors solve a regular boundary value problem over a reduced interval excluding
singular point and match the solution to the expansion. Next, cubic spline procedure
is developed for discretizing the resulting regular problem with step size h. After
straightforward but long calculations, a three term recurrence relation is obtained.
In order to solve this resulting difference system method of Invariant Imbedding is
then used. Stability of the recurrence relation is also being established. Lastly two
numerical examples are solved.

Remark 1 We notice that the test examples considered in the paper have also been
treated in an earlier paper [41]. While solving regular singular boundary value prob-
lems in that paper, a continuous form of Invariant Imbedding has been employed,
after removing the singularity, to reduce the resulting boundary value problem to
initial value problems in ordinary differential equations, which have been solved by
the Runge–Kutta–Fehlberg scheme with step size control. In the present study, au-
thors use cubic spline approximation, after treating the singularity separately, and
develop discrete Invariant Imbedding algorithm for the solution of the resulting alge-
braic problem. Since it is sometimes misleading to compare the results obtained by
fixed step size routines to that obtained by variable step size initial value software,
authors have solved the initial value problems for ODEs obtained in an earlier pa-
per [41] by a fixed step routine based on the Runge–Kutta–Gill method. It can be
checked from the analytical solution that the results obtained by the present method
are much more accurate than the results obtained by fixed step size routine (Runge–
Kutta–Gill method) for the initial value ODEs in [40]. Also an advantage of this
method is that the coefficient matrix of the system is tridigonal and the method has
an order of convergence O(h2).

In [34] Iyengar and Jain consider the class of singular two point boundary value
problem

x−α(xαu′)′ = f (x,u), 0 < x ≤ 1 (9)

s.t. u(0) = A, u(1) = B or u′(0) = 0, u(1) = B . Authors construct splines and the
three point finite difference methods using these splines for the solution of (9) in
different cases: α ∈ (0,1), α = 0, α = 1 (cylindrical case) and α = 2 (spherical case).
Convergence of the spline difference methods and numerical examples are given.

Remark 2 These schemes are of O(h2) under appropriate conditions. The advantage
of the spline approximation is that (9) may be solved with a particular step length
h and the intermediate values, if required, can be computed using the spline. It is
shown through numerical computations that these spline solutions are of the same
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accuracy as the two neighbouring finite difference ones. The numerical results show
that the methods are robust and the spline gives good approximation at the interme-
diate points.

M.M. Chawla and R. Subramanian, H.L. Sathi in [20] described two methods for
the solution of (weakly) singular two-point boundary-value problems:

x−α(xαy′)′ = f (x, y), 0 < x ≤ 1 : y(0) = A, y(1) = B. (10)

Consider the uniform mesh xi = ih, h = 1/N , i = 0, . . . ,N . Define the linear
functionals Li(y) = y(xi) and Mi(y) = (x−α(xαy′)′)x=xi

. In both these methods
a piecewise ‘spline’ solution is obtained in the form S(x) = Si(x), x ∈ [xi−1, xi],
i = 1, . . . ,N , where in each subinterval Si(x) is in the linear span of some set of
(non-polynomial) basis functions in the representation of the solution y(x) of the
two-point boundary value problem and satisfies the interpolation conditions:

Li−1(S) = Li−1(y), Li(S) = Li(y),

Mi−1(S) = Mi−1(y), Mi(S) = Mi(y).
(11)

By definition S and x−α(xαs′)′ ∈ C[0,1]. Conditions of continuity are derived to
ensure that xαs′ ∈ C[0,1]. It follows that the unknown parameters yi and Mi(y), i =
1, . . . ,N − 1, must satisfy conditions of the form:

− 1

Ji

yi−1 +
(

1

Ji

+ 1

Ji+1

)
yi − 1

Ji+1
yi+1 + ki,i−1Mi−1 + ki,iMi + ki,i+1Mi+1 = 0.

(12)
The first method consists in replacing Mi(y) by f (x, y) and solving (12) to ob-
tain the values yi ; this method is a generalization of the idea of Bickley [8] for
the case of (weakly) singular two-point boundary-value problems and provides order
h2 uniformly convergent approximations over [0,1]. As a modification of the above
method, in the second one authors generate the solution ȳi , at the nodal points by
adapting the fourth-order method of Chawla [14] and then use the conditions of con-
tinuity (12) to obtain the corresponding smooth approximations for Mi(y) needed for
the construction of the spline solution. The second-order and the fourth-order meth-
ods are illustrated computationally.

In [28, 29] Han Guoqiang discussed the constructions of three-point finite-
difference approximation and a spline approximation for a class of singular two-point
boundary value problems:

x−α(xαu′)′ = f (x,u), 0 < x ≤ 1 (13)

s.t. u(0+) = 0, u(1) = A,α ≥ 1. The asymptotic error expansions of the numerical
solutions of these problems are obtained. From these asymptotic error expansions
we find that the finite-difference solution and the spline approximation solution ap-
proximate the exact solution from two sides. So we can obtain correct solution of
high-order accuracy. Richardson’s extrapolation can also be done and the accuracy of
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numerical solution can be improved greatly. The numerical results show the fourth-
order convergences of the correct solution, extrapolation solution of spline approxi-
mation and extrapolation solution of finite-difference.

In [51], R.K. Pandey considers a class of singular two-point boundary value prob-
lems arising in physiology. The convergence of a spline method for singular BVPs
has been established. The results obtained using this method are better than using
the usual finite difference method with the same number of knots. Also this method
produces a spline function which may be used to obtain the solution at any point in
the range, whereas the finite difference methods only give the solution at the chosen
knots.

In [44], the class of two-point singular boundary value problems of the form

x−α(xαu′)′ = f (x,u), 0 < x ≤ 1 (14)

s.t. u(0) = A, u(1) = B , α ∈ (0,1) has been considered and a spline and the three
point finite difference method based on non-uniform mesh for the solution of given
problem is constructed. Method is illustrated by two numerical examples.

Remark 3 The given scheme is second order convergent under appropriate condi-
tions. The numerical results show that the method is robust and the spline gives good
approximation at the intermediate points. The author in his later paper [43] discusses
the construction of five point finite difference method using the splines. The new
method obtained is shown to be order h4 convergent for all α ∈ (0,1). In [42] the
author again explains higher order method for singular boundary value problems by
using spline function and results obtained for non-uniform mesh.

Kadalbajoo and Vivek Agrawal in [36], have considered a second order linear
differential equation

u′′ + p(x)u′ + q(x)u = r(x), a < x ≤ b (15)

subject to boundary conditions u(a) = α and u(b) = β where the coefficient func-
tions p(x) and q(x) fail to be analytic at x = a. In order to remove the singularity at
the point x = a for the given problem, authors use series expansion in a neighborhood
of x = a; Then, cubic spline procedure is developed for discretizing the resulting reg-
ular problem. Authors described a procedure producing an equal interval spline for
use as an interpolating spline over the whole range δ ≤ x ≤ b. The spline will give re-
sults to a prescribed accuracy at any point in the range and will involve the minimum
convenient number of knots consistent with such accuracy. The choice of interval is
determined by two separate considerations. First, one must ensure that the values at
the knots are determined to sufficient accuracy. Secondly, assuming that the values at
the knots are correct, the interpolation error at interval points of any interval is suffi-
ciently small. These two requirements are not necessarily related although it is often
found that when the second condition is satisfied the first will also hold.

Remark 4 An advantage of the method is that the coefficient matrix of the system is
of the Hessenberg form, and the method has an order of convergence O(h4), where
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h is the step size. While solving regular singular BVPs in [40], a continuous form of
invariant imbedding has been employed, after removing the singularity, to reduce the
resulting boundary value problem to initial value problems in ordinary defferential
equations, which have been solved by the Runge–Kutta–Fehlberg scheme with step
size control. Authors also used cubic spline approximation for the given problem,
after treating the singularity separately, without using invariant imbedding concept.
It can be checked from the analytical solution that the results obtained by the method
are much more accurate than the results obtained by fixed step size routine (Runge–
Kutta–Gill method) for the initial value ODEs in [40]. The superiority of the solutions
obtained by the method is again evident here as compared to the solutions obtained
by Jamet [35] and Reddien [59].

A.S.V. Ravi Kanth and Y.N. Reddy [58], considered the class of singular two-point
BVPs

y′′(x) + k

x
y′(x) + b(x)y(x) = c(x), 0 < x < 1,

y′(0) = 0 and y(1) = β.

(16)

Since x = 0 is singular point, the above equation is modified at it. By L’Hospital rule,
the given BVP is transformed into

y′′(x) + p(x)y′(x) + q(x)y(x) = r(x),

y′(0) = 0 and y(1) = β,
(17)

where p(x), q(x)and r(x) are defined appropriately. Then authors give the cubic
spline S(x) interpolating the function y(x) at the chosen grid points. Ahlberg et al. [4]
have shown that if the function y(x) ∈ C4[0,1], then the Spline function S(x) approx-
imates y(x) at all points in [0,1] to fourth order in h (Prenter [52]). By employing
spline on modified BVP (17), we get (n + 1) equations with (n + 1) unknowns. The
matrix problem associated here is a tridiagonal algebraic system whose solution can
easily be determined by an efficient algorithm called Thomas algorithm. Authors
have used the method with four examples; a homogeneous singular boundary value
problem, and three non-homogeneous singular boundary value problems, and have
tabulated the numerical results as well as the exact solutions. The tables show that
the method approximates the exact solution very well.

Remark 5 Authors have described and demonstrated the applicability of the cubic
spline method for solving singular boundary value problems. It is a direct, simple,
accurate, and easy to implement on computer. It is a practical method and can easily
be implemented on computer to solve the problems.

In [56] A.S.V. Ravi Kanth and Vishnu Bhattacharya have used cubic spline method
to analyze a class of non-linear singular boundary value problems defined by

y′′(x) + α

x
y′(x) = f (x, y),

y′(0) = 0 and αy(1) + βy′(1) = γ.

(18)
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The quasilinearization technique is used to reduce the given non-linear problem to a
sequence of linear problems. The resulting set of differential equations is modified at
the singular point and is treated by using cubic spline for finding the numerical solu-
tion. The numerical method is tested for its efficiency by considering two examples
from physiology.

In [54], J. Rashidinia, Z. Mahmoodi and M. Ghasemi present a three point finite
difference method based on uniform mesh using parametric spline for the class of
singular two-point BVPs

x−α(xαy′)′ = f (x, y), 0 < x ≤ 1; y(0) = A and y(1) = B. (19)

Firstly authors have derived the formulation of spline function approximations. Ac-
cordingly consider a uniform mesh with knots � : a = x0 < x1 < · · · < xN = b where
xi = ih, h = 1/N . A function S�(x,p) of class C2([a, b]), interpolating y(x) at the
knots {xi} and depending on a parameter p is called a parametric spline function and
reduces to a cubic spline function in the interval [xi−1, xi] as p → 0. Then given
problem is treated with the parametric spline.

Remark 6 In this method, by choosing different values of parameters, we can obtain
the classes of second order methods. Solution of Bessel’s equation of order two by
this method gives more accurate results as compared to that in [58].

J. Rashidinia, R. Mohammadi and R. Jalilian in [55] solve a class of non-linear
singular ordinary differential equations arising in physiology by a new method based
on non-polynomial cubic spline. Consider,

y′′(x) +
(

a + m

x

)
y′(x) = f (x, y), 0 ≤ x ≤ 1 (20)

with

η1y(0) + ζ1y
′(0) = γ1 and η2y(1) + ζ2y

′(1) = γ2.

Authors use the quasilinearization technique to reduce the given non-linear prob-
lem to a sequence of linear problems, then modify the resulting set of differential
equations at the singular point then treat them by using non-polynomial cubic spline
approximation. For each segment [xi, xi+1], the non-polynomial spline has the form

S�(x) = ai +bi(x −xi)+ci sin τ(x −xi)+di cos τ(x −xi), i = 0,1,2, . . . ,N −1.

(21)
The resulting system of algebraic equations is solved by using a tri-diagonal solver.

Remark 7 For α = 1/6 and β = 1/3, this method is the second-order method and
reduces to the method by Ravi Kanth and Bhattacharya [56]. For α = 1/12 and β =
5/12, this new method is the fourth-order method. Authors have illustrated numerical
solution of three problems including an oxygen diffusion problem and a non-linear
heat conduction model of the human head.
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In [57], Ravikanth has considered a class of non-linear singular BVP

y′′(x) + α

x
y′(x) = f (x, y), y′(0) = 0, y(1) = β, α ≥ 1. (22)

The author assumes that f is continuous, ∂f/∂y exists, is continuous and positive.
Due to the singularity at x = 0 on the left side of the differential equation, direct nu-
merical techniques face convergence difficulties. Attempts by many researchers for
the removal of the singularity are based on series expansion procedures in the neigh-
borhood (0, δ) of singularity and then solve the regular boundary value problem in
the interval (δ,1) using numerical methods. In this paper, authors discuss a direct
method based on cubic spline approximation for the solution of nonlinear singular
two-point boundary value problems. The advantage of this method is that the coef-
ficient matrix of the system is of the system of Hessenberg form. First they use the
quasi-linearization technique to reduce the given non-linear problem to a sequence of
linear problems. The resulting sets of differential equations are modified at the sin-
gular point and are treated by using cubic spline for finding the numerical solution.
The numerical method is tested for its efficiency by considering three physical model
problems from the literature.

Remark 8 As it is evident from the computational results solved in this paper, the
method gives O(h4) accuracy. The results obtained using this method are better than
using the usual finite difference method with the same number of knots.

3 B-spline methods

Kadalbajoo and Vivek Kumar in [37] discuss a homogeneous second order linear
differential equation having regular singularity given by

u′′(x) + f (x)u′(x) + g(x)u(x) = 0, 0 ≤ x ≤ 1 (23)

s.t. u(0) = α and u(1) = β . Functions f and g are not analytic at x = 0. It gives
singularity at x = 0. This type of problems arises when partial differential equation
reduced to ODE equation by physical symmetry. To remove the singularity authors
used Chebychev economization near the singularity and boundary at x = δ. For find-
ing the numerical solution, B-spline method is used on resulting regular BVP which
gives O(h4) accuracy. The results obtained by this method are better than using the
finite difference method with the same number of knots.

Existence and uniqueness of solutions for such type of problems has been dis-
cussed in [35] using finite difference method. Reddien [61] used collocation method
for the solution of such problem. In [32] series solution is used in the neighborhood
of the singularity. In general, series solution may not produce an effective approxi-
mation near the singularity. For reducing the necessary number of terms in the series
without increasing the errors Chebychev economization can be applied.

Remark 9 Comparing B-spline method, with the one used in [22], we remark that it
produces a spline function allowing the solution pointwise on the range. But by finite
difference method used in [22] we can find solutions only on chosen Knots.
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In [13] Nazan Caglar and Hikmet Caglar, have solved Homogeneous and non-
homogenous singular boundary value problems using B-splines. In a series of papers
by Caglar et al. [11, 12], BVPs of second, third, fourth and fifth order are solved using
third, fourth and sixth-degree splines. In [13], a third-degree B-spline is used to solve
singular boundary value problems as the following form which is assumed to have a
unique solution in the interval of integration [3],

y′′(x) + k

x
y′(x) + b(x)y(x) = c(x), 0 < x < 1; y′(0) = 0 and y(1) = β, (24)

which arise in the study of generalized axially symmetric potentials after separation
of variables has been employed. These problems also occur very frequently in the
study of electro hydrodynamics and the theory of thermal explosions. In [13], authors
discuss a direct method based on B-splines for a class of singular two-point boundary
value problems. The original differential equation is modified at singular point. The
B-spline approximation is then employed to solve the boundary value problem.

In [38] M.K. Kadalbajoo and V. Kumar, consider a class of singular two-point
boundary value problems

x−k(xku′)′ = f (x,u), 0 < x ≤ 1 (25)

with u′(0) = 0 and u(1) = B . Here k ∈ (0,1) (weakly singular) or also k = 1,2
(strongly singular). For k = 1, the problem becomes a cylindrical one and for k = 2,
it becomes spherical. B is a finite constant. It is well known that the problem above
has a unique solution, if f is continuous, ∂f

∂u
exists and is continuous and ∂f

∂u
≥ 0.

The aim of the paper is to present a modified fourth order B-spline method to solve a
certain class of linear and non-linear singular boundary value problems such as

u′′(x) + k

x
u′(x) = f (x,u), (26)

with u′(0) = 0 and u(1) = B , where k = 1 or 2. On physical ground we expect a
smooth solution. Indeed, symmetry implies that this smooth solution has a deriva-
tive that vanishes at the origin. This physical condition is just what is needed for the
existence of the limit limx→0

u′(x)
x

= u′′(0). On the other hand we can say that as
discussed in [32], it may sometimes be very difficult or even not possible to obtain
the series solution in the neighborhood of the singularity. Recently Shampine et al.
[66, 67] modified the MATLAB solver bvp4c and solved these kinds of problems. In
the case of non-linear problems, quasilinearization technique, originally developed
by Bellman and Kalaba [7], has been used to reduce the given non-linear problem to
a sequence of linear problems. The linear problem is modified at the singular point.
The numerical experiments for the model problems have been given to illustrate the
method. One of the problems discussed in this paper has earlier been discussed by
Russell and Shampine [64]. A second particular one deals with the oxygen diffusion
into a cell, in which an enzyme-catalyzed reaction occurs. A third one arises in a
study of heat and mass transfer in a porous spherical catalyst with a first order reac-
tion. There is a singular coefficient arising from the reduction of a partial differential
equation to an ODE by symmetry. A non-linear problem arising in the equilibrium of
isothermal gas spheres in Astronomy is also being solved.
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Remark 10 It was shown from numerical result that the method gives O(h4) accu-
racy. Using deferred correction this B-spline method will give results to a prescribed
accuracy at any point in the range and will involve the minimum convenient number
of knots consistent with such accuracy. This method gives comparable results and
is easy to compute. It also produces a spline function which may be used to obtain
the solution point wise on the range, whereas the finite-difference methods and the
invariant imbedding methods [39] give the solution only at the chosen knots.

4 TAGE methods

In [46], R.K. Mohanty and D.J. Evans present a fourth-order method based on cubic
spline approximations for the numerical solution of non-linear singular two point
boundary value problems. The AGE (Alternating Group Explicit) and Newton-AGE
iteration methods which are suitable both on sequential and parallel computers are
discussed both for linear and nonlinear singular problems. The convergence theory is
briefly discussed. The numerical results obtained confirm the viability of the proposed
method.

In [48], Authors consider general non-linear second order ODE

−u′′ + f (r,u,u′) = 0, 0 < r < 1 (27)

with u(0) = A and u(1) = B , where A and B are finite constants. By assuming that
for 0 < r < 1 and −∞ < u, v < ∞; f (r,u, v) is continuous; ∂f/∂u and ∂f/∂v exist
and are continuous; ∂f/∂v > 0 and |∂f/∂v| ≤ k for some positive constant k. These
conditions guaranty that the boundary value problem has a unique solution [41]. In
the paper, authors discuss a fourth order cubic spline two parameter alternating group
explicit (TAGE) method for the numerical solution of both linear and nonlinear singu-
lar two point boundary value problems. The cubic spline interpolation process itself
is fourth order. Therefore, it is natural to look for a method using cubic spline which
provides fourth order approximations. In the paper, fourth order accurate cubic spline
TAGE and Newton-TAGE iterative methods are discussed and proved to be suitable
for computation both on sequential and parallel computers. The convergence of the
method for the real unsymmetric coefficient matrix is also discussed.

Remark 11 Numerical experiments show that the TAGE method is accurate and con-
vergent. The proposed TAGE and Newton-TAGE iteration methods show the supe-
riority over the corresponding SOR iteration method. Although the TAGE method
involves more work, the developing of the TAGE group implies that parallelism can
be easily applied advantageously. Since both AGE and TAGE method requires the
same number of sweep operations to solve the system of equations, the TAGE method
requires less computation to obtain the final solution. Hence TAGE method is more
efficient than the AGE method for the numerical solution of singular two point BVP.

In [47] R.K. Mohanty, D.J. Evans and Noopur Khosla report a non-uniform mesh
cubic spline method of accuracy O(h3

k) for the solution of non-linear singular two-
point boundary value problems. The application of two-parameter alternating group
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explicit (TAGE) and Newton-TAGE iteration methods which are suitable for use on
parallel computers is discussed. The error analysis for TAGE iteration method is dis-
cussed in detail. The numerical results confirm the utility of proposed cubic spline
TAGE iteration methods.

5 Discussion and conclusion

This paper contains sufficiently large amount of material concerned with spline so-
lution of linear and non-linear second order two-point singular boundary value prob-
lems (BVPs) in ordinary differential equations. This may help substantially to the
researchers. Spline functions give simple and practical methods to solve singular
boundary value problems. It is more advantageous than other available computational
techniques. In comparison with the finite difference methods, spline solution has its
own advantages. For example, once the solution has been computed the information
required for spline interpolation between mesh points is available. This is particu-
larly important when the solution of boundary value problem is required at various
locations in the given interval.
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