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Abstract Let k ≥ 1 be an integer and G = (V1,V2;E) a bipartite graph with |V1| =
|V2| = n such that n ≥ 2k + 2. Our result is as follows: If d(x) + d(y) ≥ � 4n+k

3 �
for any nonadjacent vertices x ∈ V1 and y ∈ V2, then for any k distinct vertices
z1, . . . , zk , G contains a 2-factor with k +1 cycles C1, . . . ,Ck+1 such that zi ∈ V (Ci)

and l(Ci) = 4 for each i ∈ {1, . . . , k}.
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1 Terminology and introduction

In this paper, we consider only finite undirected graphs without loops or multiple
edges and we use Bondy and Murty [3] for terminology and notation not defined
here. Let G be a graph. A set of subgraphs is said to be vertex-disjoint if no two of
them have any common vertex in G. Let G1 and G2 be two subgraphs of G. If G1
and G2 have no common vertex in G, we define E(G1,G2) to be the set of edges
of G between G1 and G2, and let e(G1,G2) = |E(G1,G2)|. Let H be a subgraph
of G and u ∈ V (G), N(u,H) = NH (u) is the set of neighbors of u contained in H .
We let dH (u) = d(u,H) = |N(u,H)|. Clearly, d(u,G) is the degree of u in G, and
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we write d(x) to replace d(x,G). For a subset U of V (G) and a subgraph H in G,
we define dH (U) = ∑

x∈U dH (x). A 2-factor of G is a 2-regular spanning subgraph
of G. Clearly, each component of a 2-factor of G is a cycle. Let C and P be a cycle
and a path, respectively, we use l(C) and l(P ) to denote the length of C and P ,
respectively. That is, l(C) = |C| and l(P ) = |P | − 1. A Hamiltonian cycle of G is a
cycle which contains all vertices of G, and a Hamiltonian path of G is a path of G

which contains every vertex in G.
Let v1, . . . , vk be k distinct vertices in G, and let C1, . . . ,Ck be k disjoint cycles

passing through v1, . . . , vk , respectively, in G. Then we say that G has k disjoint
cycles C1, . . . ,Ck with respect to {v1, . . . , vk}. We say that G has a 2-factor with k

cycles C1, . . . ,Ck with respect to {v1, . . . , vk}, if V (G) = V (C1 ∪ · · · ∪ Ck). A cycle
of length 4 is called a quadrilateral. For a cycle C with l(C) = k, we call that C be
a k-cycle. Let v be a vertex and H be a subgraph of G. We say H is a v-subgraph if
v ∈ V (H). In particular, a v-cycle or a v-path is a cycle or path that passes through v,
respectively. For a bipartite graph G = (V1,V2;E), if |V1| = |V2|, then G is called
balanced. For a bipartite graph G = (V1,V2;E), we define

σ1,1(G) = min{d(x) + d(y)|x ∈ V1, y ∈ V2, xy /∈ E(G)}.
When G is a complete bipartite graph, we define σ1,1(G) = ∞.

Let P be a v-path, we define λ(v,P ) = min{|V (P1)|, |V (P2)|}, where P1 and P2
is two sub-paths in P − v. Let r be a real number, we use �r� for the smallest integer
that is greater than or equal to r .

Two interesting questions have been in the forefront of the study of 2-factors in a
graph. Under what conditions will a 2-factor with prescribed properties exist? Under
what conditions does a graph contains k vertex-disjoint cycles? For example, Corrádi
and Hajnal [5] investigated the maximum number of disjoint cycles in a graph. They
proved that if G is a graph of order n ≥ 3k with δ(G) ≥ 2k, then G contains k disjoint
cycles. In particular, when the order of G is exactly 3k, then G contains k disjoint
triangles. EI-Zahar [6] conjectured if a graph G of order n = n1 +· · ·+nk with ni ≥ 3
(1 ≤ i ≤ k) has minimum degree δ(G) ≥ �n1/2� + · · · + �nk/2�, then G contains k

disjoint cycles of length n1, . . . , nk , respectively. He proved it for k = 2. Alon and
Yuster [1] showed that for any ε > 0, there exists k0 such that if G is a graph of
order 4k and δ(G) ≥ (2 + ε)k with k ≥ k0, then G contains k disjoint quadrilaterals.
Komlós, Sáközy and Szemerédi [8] showed that for any graph H of order r with
chromatic number k, there exist constant c and n0 such that if n ≥ n0, r|n, and G is
a graph of order n with δ(G) ≥ (1 − 1/k)n + c, then G contains n/r disjoint copies
of H . This result come to close to EI-Zahar’s conjecture in the case when n1, . . . , nk

are all equal to a fixed even integer. However, when n1, n2, . . . , nk are all equal to a
fixed odd integer, a similar application of the above mentioned result will require the
minimum degree of G to be approximately 2n/3 which is not close to the condition
in the EI-Zahar’s conjecture. Other results about disjoint cycles can be found in [4, 7,
10–12].

Clearly, for a bipartite graph, quadrilateral is the smallest cycle. H. Matsumura
[9] investigated the degree conditions that G contains k vertex disjoint quadrilaterals
each of them contains a previously specified edges. He proved the following two
theorems.
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Theorem 1.1 [9] Suppose k ≥ 1, 1 ≤ s ≤ k, n ≥ 2k, and

σ1,1(G) ≥ max

{⌈
4n + 2s − 1

3

⌉

,

⌈
2n − 1

3

⌉

+ 2k

}

.

Then for any independent edges e1, . . . , ek , G contains k vertex disjoint cycles
C1, . . . ,Ck such that ei ∈ E(Ci), |Ci | ≤ 6, and there are at least s 4-cycles in
{C1, . . . ,Ck}.

Theorem 1.2 [9] Suppose k ≥ 1, 1 ≤ s ≤ k, n ≥ 2k, and

δ(G) ≥ max

{⌈
2n + 2k + s

4

⌉

,

⌈
2n + 4k

5

⌉}

.

Then for any independent edges e1, . . . , ek , G contains k vertex disjoint cycles
C1, . . . ,Ck such that ei ∈ E(Ci), |Ci | = 4 for 1 ≤ i ≤ s, and |Ci | ≤ 6 for s + 1 ≤
i ≤ k.

In the rest of this paper, G = (V1,V2;E) denotes a bipartite graph with partite sets
V1 and V2 satisfying |V1| = |V2| = n. In this paper, we consider a similar problem
with Theorem 1.1, i.e., we replace k independent edges with k distinct vertices. We
obtain the following result.

Theorem 1.3 Suppose s and k be two integers with 1 ≤ s ≤ k and let G =
(V1,V2;E) be a bipartite graph with |V1| = |V2| = n ≥ 2s + 3(k − s). If σ1,1(G) ≥
� 4n+s

3 �, then for any k distinct vertices v1, . . . , vk , G contains k vertex-disjoint cy-
cles C1, . . . ,Ck such that vi ∈ V (Ci), |Ci | ≤ 6 for each i ∈ {1, . . . , k}, and there are
s 4-cycles in {C1, . . . ,Ck}.

When s = k, the following result is obvious.

Corollary 1.1 Let k ≥ 1 be an integer and G = (V1,V2;E) be a bipartite graph with
|V1| = |V2| ≥ 2k. If σ1,1(G) ≥ � 4n+k

3 �, then for any k distinct vertices v1, . . . , vk , G

contains k vertex-disjoint quadrilaterals C1, . . . ,Ck such that vi ∈ V (Ci) for each
i ∈ {1, . . . , k}.

Since we have solved the packing problem by Theorem 1.3, the next step is to
show that this collection of cycles can be transformed into a collection of cycles that
form a partition of G. Our main result is as follows.

Theorem 1.4 Let k ≥ 1 be an integer and G = (V1,V2;E) a bipartite graph with
|V1| = |V2| = n ≥ 2k + 2. If σ1,1(G) ≥ � 4n+k

3 �, then for any k distinct vertices
z1, . . . , zk , G contains a 2-factor with k+1 cycles C1, . . . ,Ck+1 such that zi ∈ V (Ci)

and |Ci | = 4 for each i ∈ {1, . . . , k}.
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Notes The following example shows that the degree condition in Theorem 1.4 is
sharp when k = 1 and n = 4. Let G be a balanced bipartite graph consisting of
two disjoint subgraphs P and C, where P = x1x2x3x4 is a path of order 4 with
x1x4 /∈ E(G) and C = v1v2v3v4v1 is a quadrilateral. Clearly, n = 4 and k = 1.
Suppose that {x1, v1} ⊆ V1. We define the neighbor set of xi in C as follows:
N(x1,C) = {v2, v4} and N(x4,C) = {v1, v3}. Then for any nonadjacent vertices
u ∈ V1 and v ∈ V2, d(u) + d(v) ≥ 5 = � 17

3 � − 1. It is easy to check that G does
not contain two disjoint quadrilaterals such that one of them passing through v1.

The degree conditions in Theorems 1.3 and 1.4 come from our proof. However,
for more general case, we do not know whether the degree condition is sharp. We
believe that this is true.

2 Lemmas

We will use the notation C[u,v] to denote the segment of the cycle C from u to v

(including u and v) under some orientation of C, and C[u,v) = C[u,v] − {v} and
C(u, v) = C[u,v] − {u,v}.

Lemma 2.1 [2] If d(x,G)+d(y,G) ≥ n+1 for any two nonadjacent vertices x and
y with x ∈ V1 and y ∈ V2, then G is Hamiltonian.

Lemma 2.2 [11] Let P = x1x2 · · ·xs be a path in G with s = 2r + d , where d = 0
or 1. Let x0 ∈ V (G−P) such that {xs, x0} 
⊆ Vi for every i ∈ {1,2}. (a) If d(x0,P )+
d(xs,P ) ≥ r + 1, then G has a path P � such that V (P �) = V (P )∪ {x0}. (b) If d = 0
and d(x0,P ) + d(xs,P ) ≥ r + 1, then G has a path P � from x0 to x1 such that
V (P �) = V (P ) ∪ {x0}.

Lemma 2.3 Let C be a cycle in G, x ∈ V (C), u ∈ V (G−C)∩V1, v ∈ V (G−C)∩V2
and dC(u)+dC(v) ≥ |C|/2+2. Then, either G[V (C)∪{v}] contains a shorter cycle
than C passing through x, or there exists w ∈ NC(u) such that G[V (C) ∪ {v} − {w}]
contains a cycle passing through x.

Proof Clearly, d(v,C) ≤ 2, otherwise, G[V (C) ∪ {v}] contains a cycle shorter than
C and passing through x. Since dC(u) + dC(v) ≥ |C|/2 + 2, which implies that
dC(v) = 2 and dC(u) = |C|/2. This means that NC(u) = V (C) ∩ V2. Without loss
of generality, we assume that NC(v) = {a, b} with x ∈ V (C[b, a]). Take any w ∈
NC(u) ∩ C(a, b). Then G[V (C) ∪ {v} − {w}] contains a cycle passing through x. �

Remark 2.1 In Lemma 2.3, if |C| = 4, it is easy to see that there exists w ∈ NC(u)

such that G[V (C) ∪ {v} − {w}] contains a 4-cycle. If |C| = 6 and G[V (C) ∪ {v}]
contains no cycle which is shorter than C and passing through v, then there exists
w ∈ NC(u) such that G[V (C) ∪ {v} − {w}] contains a 6-cycle. Note that we can
exchange the role of u and v when |C| ≤ 6.

Lemma 2.4 [10] Let P = x1y1 · · ·xkyk be a path in G, k ≥ 2. If d(x1,P ) +
d(yk,P ) ≥ k + 1, then G contains a cycle C such that V (C) = V (P ).
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Lemma 2.5 Let Q be a 4-cycle passing through v, P be a u-path of length 5 such that
V (Q)∩V (P ) = ∅. Suppose that λ(u,P ) 
= 0,1 and e(Q,P ) ≥ 9, then G[V (Q∪P)]
contains two disjoint cycles Q1 and Q2 such that l(Q1) = 4 or 6, l(Q2) = 4, v ∈
V (Q2) and u ∈ V (Q1).

Proof Let Q = a1a2a3a4a1, P = x1x2 · · ·x6. Suppose that G[V (Q ∪ P)] does not
contain two disjoint cycles {Q1,Q2} with respect to {u,v} such that l(Q1) = 6 and
l(Q2) = 4, we will prove that G[V (Q ∪ P)] contains two disjoint 4-cycles {Q1,Q2}
with respect to {u,v}.

Without loss of generality, suppose that {a1, x1} ⊆ V1. Since λ(u,P ) 
= 0,1, u =
x3 or x4. If u = x3 (or x4) and {u,v} ⊆ Vi for some i ∈ {1,2}, then we may assume
that v = a1. If u = x3 (or x4) and u,v belong to different partite sets, we let v = a2.
By symmetry, it suffices to consider the case that v = a1 and u = x3.

Let P1 = x1x2x3x4. It is easy to see that if e(P1,Q) ≥ 7, then G[V (P ∪ Q)] con-
tains two disjoint 4-cycles Q1 and Q2 such that u ∈ V (Q1) and v ∈ V (Q2). Hence,
e(P1,Q) ≤ 6. As e(P,Q) ≥ 9, then 5 ≤ e(P1,Q) ≤ 6, e(x5x6,Q) ≥ 3.
Case 1: e(P1,Q) = 6 and d(x4,Q) = 2. If d(a2,P1) = 2, then let Q1 = a2x1x2x3a2
and Q2 = x4a1a4a3x4, we are done. Hence, d(a2,P1) ≤ 1 and d(a4,P1) ≤ 1 by
symmetry. As e(P1,Q) = 6, it follows that {a1, a3} ⊆ N(x2) and d(a2,P1) =
d(a4,P1) = 1. If N(a2,P1) ∩ N(a4,P1) = ∅, without loss of generality, assume
that a2x1 ∈ E(G) and a4x3 ∈ E(G). Then, G[V (Q ∪ P1)] contains two disjoint 4-
cycles Q1 = x3a4a3x4x3 and Q2 = x1a2a1x2x1 with x3 ∈ V (Q1) and a1 ∈ V (Q2),
we are done. Hence, N(a2,P1) ∩ N(a4,P1) 
= ∅. If x1 ∈ N(a2,P1) ∩ N(a4,P1),
then G[V (P1 ∪Q)] contains two required quadrilaterals Q2 = a3x2x3x4a3 and Q1 =
x1a2a1a4x1. Hence, it remains the case that x3 ∈ N(a2,P1) ∩ N(a4,P1). If x6a1 ∈
E(G), then G[V (Q∪P)] contains two required quadrilaterals Q1 = x3a2a3a4x3 and
Q2 = a1x4x5x6a1. So, x6a1 /∈ E(G). As e(x5x6,Q) ≥ 3, it follows that d(x5,Q) = 2.
We see that G[V (Q∪P)] contains two required quadrilaterals Q1 = a2x3x4x5a2 and
Q2 = x2a1a4a3x2.
Case 2: e(P1,Q) = 6 and d(x4,Q) ≤ 1. If d(x4,Q) = 0, then d(xi,Q) = 2 for
each i ∈ {1,2,3}. As e(P,Q) ≥ 9, so, d(x5,Q) ≥ 1. Without loss of generality, say
x5a2 ∈ E(G), then we can choose Q1 = x3a2x5x4x3 and Q2 = x1a4a1x2x1. Hence,
it remains the case that d(x4,Q) = 1 and so e({a2, a4},P1) ≥ 3. Without loss of gen-
erality, say d(a2,P1) = 2.

Suppose that x4a3 ∈ E(G). We conclude d(x2,Q) = 1. Otherwise, d(x2,Q) = 2.
If a4x1 ∈ E(G), then choose Q1 = x4a3x2x3x4 and Q2 = x1a2a1a4x1. If a4x3 ∈
E(G), then let Q1 = x3a4a3x4x3 and Q2 = x1a2a1x2x1. Since we have shown
that d(x2,Q) = 1, it follows that d(a4,P1) = 2. If x2a1 ∈ E(G), then let Q1 =
x3a2a3x4x3 and Q2 = x1x2a1a4x1. If x2a3 ∈ E(G), then let Q1 = x3x2a3x4x3 and
Q2 = x1a2a1a4x1.

Hence, x4a3 /∈ E(G) and so x4a1 ∈ E(G). Let us assume that x2a3 ∈ E(G). Then
d(x6,Q) = 1, otherwise, d(x6,Q) = 2, we see that G[V (Q ∪ P)] contains two re-
quired cycles Q1 = a2x1x2x3a2 and Q2 = x6a1a4a3x6. Consequently, it follows that
d(x5,Q) = 2. Then G[V (Q ∪ P)] contains two required cycles Q1 = a2x1x2x3a2
and Q2 = x5x4a1a4x5. Therefore x2a3 /∈ E(G), and so d(a4,P1) = 2 and x2a1 ∈
E(G). If d(x5,Q) = 2, then choose Q1 = x3a4x5x4x3 and Q2 = a1a2x1x2a1. If
d(x6,Q) = 2, then chose Q1 = a4x1x2x3a4 and Q2 = x6a1a2a3x6.
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Case 3: e(P1,Q) = 5. Note that in this case, e(x5x6,Q) = 4. If a4x1 ∈ E(G),
then G[V (Q ∪ P)] contains two disjoint cycles Q1 = a4x1x2x3x4x5a4 and Q2 =
x6a1a2a3x6 such that u = x3 ∈ V (Q1) and v = a1 ∈ V (Q2), a contradiction. Thus,
a4x1 /∈ E(G) and a2x1 /∈ E(G) by symmetry. If d(a3,P1) = 2, then G[V (Q ∪
P)] contains two required disjoint quadrilaterals Q1 = a3x2x3x4a3 and Q2 =
x5x6a1a2x5, we have nothing to prove. Therefore, we may assume that d(a3,P1) ≤ 1.
As e(Q,P1) = 5, it follows that d(a1,P1) = 2, d(a3,P1) = 1 and N(a2,P1) =
N(a4,P1) = {x3}. Suppose a3x2 ∈ E(G), then G[V (Q ∪ P)] contains two required
cycles Q1 = a1a4a3x2a1 and Q2 = a2x3x4x5a2. So, a3x2 /∈ E(G) and a3x4 ∈ E(G).
However, we see that G[V (Q ∪ P)] contains two required disjoint quadrilaterals
Q1 = a3a4x3x4a3 and Q2 = a1a2x5x6a1. This proves the lemma. �

The following lemma is obvious from the proof of Lemma 2.5.

Lemma 2.6 [12] Let Q be a 4-cycle passing through v, P be a u-path of length 5
such that V (Q) ∩ V (P ) = ∅. Suppose that λ(u,P ) 
= 0,1 and e(Q,P ) ≥ 10, then
G[V (Q ∪ P)] contains two disjoint 4-cycles Q1 and Q2 such that v ∈ V (Q2) and
u ∈ V (Q1).

Lemma 2.7 Let d ≥ 2 be an integer. Let P = x1 · · ·x2d be a path, C1 = v1v2v3v4v1

and C2 = u1u2u3u4u1 be two disjoint quadrilaterals of G with {v1, u1, x1} ⊆ V1.
Suppose that e({x1, x2d},C1) = 4. If e({v3, v4, x2d , x2d−1, x1, x2},C2) ≥ 10, then
G[V (P ∪ C1 ∪ C2)] contains two quadrilaterals C′

1 and C′
2 passing through v1 and

u1, respectively, and a cycle Ck+1 of length 2d such that C′
1, C′

2 and Ck+1 are dis-
joint.

Proof Since e({v3, v4, x2d , x2d−1, x1, x2},C2) ≥ 10, without loss of generality, we
may assume that e({v3, x1, x2d−1},C2) ≥ 5.
Fact 1: e({v3, x1, x2d−1},C2) = 5. Otherwise, suppose that e({v3, x1, x2d−1},C2) = 6.
Then we obtain that N(v3,C2) = N(x1,C2) = N(x2d−1,C2) = {u2, u4}. If N(v4,C2)

= {u1, u3}, then we have two quadrilaterals C′
1 = x2dv1v2v3x2d and C′

2 = v4u1u4u3v4

passing through v1 and v2, respectively, and a cycle Ck+1 = x1u2x2d−1 · · ·x1

such that they are all disjoint. So, d(v4,C2) ≤ 1. Similarly, d(x2d ,C2) ≤ 1. As
e({v4, x2, x2d},C2) ≥ 10 − 6 = 4, this implies d(x2,C2) = 2 and d(x2d,C2)=1.
If x2du3 ∈ E(G), then G[V (C1 ∪ C2 ∪ P)] contains three required cycles:
C′

1 = x1v2v1v4x1, C′
2 = v3u2u1u4v3 and Ck+1 = u3x2 · · ·x2du3. If x2du1 ∈ E(G),

then G[V (C1 ∪ C2 ∪ P)] contains three required cycles: C′
1 = x1v2v1v4x1, C′

2 =
x2du1u4v3x2d and Ck+1 = u2u3x2 · · ·x2d−1u2.
Fact 2: d(v4,C2) ≤ 1 and d(x2d,C2) ≤ 1. Otherwise, assume that d(v4,C2) = 2.
By Fact 1, there exists ui ∈ {u2, u4}, by symmetry, say u2, such that u2 ∈
N(x1,C2)∩N(x2d−1,C2). Then G[V (C1 ∪C2 ∪P)] contains three required cycles:
C′

1 = x2dv1v2v3x2d , C′
2 = v4u1u4u3v4 and Ck+1 = x1u2x2d−1 · · ·x2x1. Similarly,

d(x2d,C2) ≤ 1.
By Fact 1 and Fact 2, we obtain e({v3, v4, x1, x2, x2d−1, x2d},P ) ≤ 9, a contra-

diction. This proves the lemma. �
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Let F = {v1, . . . , vk} be a set of distinct vertices. A cycle C is called admissible if
|V (C) ∩ F | = 1 and |C| ≤ 6, and a set of disjoint cycles {C1, . . . ,Cr} is admissible
for r ≤ k if each Ci is admissible.

3 Proof of Theorem 1.3

Proof Otherwise, let G be an edge-maximal counterexample to Theorem 1.3.
Clearly, since G is not a complete bipartite graph, there are nonadjacent vertices
x ∈ V1 and y ∈ V2 in G. Let G′ be the graph obtained from G by adding the new
edge xy. For any k distinct vertices {v1, . . . , vk}, by the maximality of G, G′ con-
tains k admissible cycles C1, . . . ,Ck with respect to {v1, . . . , vk} and there are at
least s quadrilaterals in {C1, . . . ,Ck}. Without loss of generality, we may assume
xy ∈ E(Ck).

Claim 3.1 k ≥ 2.

Proof Otherwise, suppose k = 1. This implies s = 1. Since for each nonadjacent
vertices x ∈ V1 and y ∈ V2, d(x) + d(y) ≥ 4n+1

3 ≥ n + 1, G contains a Hamiltonian
cycle by Lemma 2.1. Let C = x1y1 · · ·xnynx1 be a Hamiltonian cycle of G with
x1 ∈ V1. Without loss of generality, assume v1 = x2 (otherwise, we can relabel the
index). Furthermore, if n = 2, then G contains a quadrilateral, a contradiction. Thus,
we may assume that n ≥ 3. We consider the path P = x1y1x2y2x3y3 in G. Since G

contains no quadrilateral with respect to v1, therefore,

N(x2,G) ∩ N(x1,G) = y1, N(y1,G) ∩ N(y2,G) = x2 and

N(x2,G) ∩ N(x3,G) = y2.

Then we have

d(x1) + d(x2) = |N(x1,G) ∩ N(x2,G)| + |N(x1,G) ∪ N(x2,G)| ≤ n + 1.

Similarly, d(x2)+d(x3) ≤ n+1 and d(y1)+d(y2) ≤ n+1. Furthermore, we observe
that d(x2) ≥ 2 and d(y3) ≤ n − 1 as G contains no quadrilateral with respect to v1.
So, it follows that

∑

x∈V (P )

d(x) ≤ 3n + 3 − d(x2) + d(y3) ≤ 4n. (1)

On the other hand, it is easy to see that G contains three pairs of nonadjacent vertex
{x1, y2}, {y1, x3} and {x2, y3}, thus,

∑
x∈V (P ) d(x) ≥ 3 × 4n+1

3 = 4n + 1, contradict-
ing (1). �

By the choice of G, there exists v ∈ {v1, v2, . . . , vk} such that G contains
k − 1 admissible cycles C1,C2, . . . ,Ck−1 with respect to {v1, v2, . . . , vk} − {v}
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and v /∈ V (
∑k−1

i=1 Ci). We choose v ∈ {v1, v2, . . . , vk} and k − 1 admissible cycles
C1, . . . ,Ck−1 with respect to {v1, . . . , vk} − {v} such that

k−1∑

i=1

|Ci | is as small as possible. (2)

Note that there are at least s − 1 4-cycles in {C1, . . . ,Ck−1}.
Subject to (2), we choose v ∈ {v1, v2, . . . , vk} and k − 1 admissible cycles

C1,C2, . . . ,Ck−1 with respect to {v1, . . . , vk} − {v} such that

The length of the longest v-path in M = G − V

(
k−1∑

i=1

Ci

)

is maximum. (3)

Subject to (2) and (3), we choose v ∈ {v1, v2, . . . , vk}, k − 1 vertex disjoint
C1,C2, . . . ,Ck−1 with respect to {v1, . . . , vk} − {v} and P such that

λ(v,P ) is maximum. (4)

Let P = x1x2 · · ·xt be a longest v-path in M with x1 ∈ V1. By the maximality
of G, we see that M contains a v-path of length at least 3, so t ≥ 4. Without loss
of generality, suppose that v = vk and vi ∈ V (Ci) for each i ∈ {1,2, . . . , k − 1}. Let
H = ∑k−1

i=1 Ci , then M = G − V (H) and |M| = 2m. Clearly, m ≥ 2.
For convenience, in the following proof, let T1, . . . , Tl denote l disjoint quadri-

laterals and Ql+1, . . . ,Qk−1 denote k − l − 1 disjoint 6-cycles in C1, . . . ,Ck−1, let
HT = ⋃l

i=1 Ti and HQ = ⋃k−1
i=l+1 Qi , where s ≤ l + 1 ≤ k. As n ≥ 2s + 3(k − s), we

obtain n = 2l + 3(k − 1 − l)+m and m ≥ l − s + 3. Let t = 2r + q , when q = 0 or 1.
Our proof includes several claims.

Claim 3.2 t = 2m, i.e., P is a Hamiltonian path of M .

Proof Otherwise, suppose that t < 2m. Let x0 ∈ V (M − P) such that {xt , x0} 
⊆
Vi for each i ∈ {1,2}. By Lemma 2.2 and (3), d(x0,P ) + d(xt ,P ) ≤ r . Clearly,
d(x0,M − V (P )) ≤ m − r and so d(x0,M) + d(xt ,M) ≤ m. For each 6-cycle
Ci ∈ HQ, we may assume that dCi

(x0) + dCi
(xt ) ≤ 4, otherwise, by Lemma 2.3,

Remark 2.1 and the choice of (2), there exists w ∈ NCi
(xt ) such that G[V (Ci) ∪

{x0} − {w}] contains a 6-cycle C′ passing through vi . If we replace Ci with C′, we
see that P + w is a longer path than P , which contradicts (3) while (2) still maintain.
Hence, d(x0,HQ) + d(xt ,HQ) ≤ 4(k − 1 − l). As m ≥ l − s + 3, it follows that

d(x0,HT ) + d(xt ,HT ) ≥ 4n + s

3
− 4(k − 1 − l) − m = 8l + s + m

3
≥ 3l + 1.

This implies that there exists Ci ∈ HT such that d(x0,Ci) + d(xt ,Ci) = 4. That is,
d(x0,Ci) = d(xt ,Ci) = 2. Let z ∈ V (Ci) with zxt ∈ E(G) be such that Ci −z+x0 is
an quadrilateral passing through vi , then P + z is longer than P in M , contradicting
(3) while (2) still holds. Thus, t = 2m. So the claim holds. �
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Claim 3.3 If λ(vk,P ) = 0 or 1, then M is Hamiltonian.

Proof By Claim 3.2, M contains a Hamiltonian path P = x1x2 · · ·x2m passing
through vk . If x1x2m ∈ E(G), then we have nothing to prove. So, x1x2m /∈ E(G).
By symmetry, if λ(vk,P ) = 0, we may assume that vk = x1. If λ(vk,P ) = 1, we
assume that vk = x2.

If there exists Ci ∈ HT such that d(x1,Ci)+d(x2m,Ci) = 4, by Remark 2.1, there
exits w ∈ V (Ci) with x1w ∈ E(G) such that Ci − w + x2m contains a quadrilateral
C′

i passing through vi . If we replace Ci with C′
i , we see that M contains a vk-path

P ′ = P − x2m + w. However, λ(vk,P
′) = λ(vk,P ) + 1, contradicting (4) while (2)

and (3) still maintain. Hence, d(x1,Ci) + d(x2m,Ci) ≤ 3 for each Ci ∈ HT and so
d(x1,HT ) + d(x2m,HT ) ≤ 3l. By a similar argument, we can show that d(x1,Ci) +
d(x2m,Ci) ≤ 4 for each Ci ∈ HQ and so d(x1,HQ)+d(x2m,HQ) ≤ 4(k −1− l). As
m ≥ l − s + 3, it follows that

d(x1,M) + d(x2t ,M) ≥ 4n + s

3
− 3l − 4(k − 1 − l) = 8l + 4m + s

3
− 3l ≥ m + 1.

By Lemma 2.4, M contains a hamiltonian cycle. This proves the claim. �

We continue the proof. If m = 2, then by Claim 3.3, G[V (P )] contains a quadri-
lateral passing through vk , denoted by Ck , then G contains k admissible cycles
C1, . . . ,Ck such that vi ∈ V (Ci) for each i ∈ {1, . . . , k}, and there are at least s

4-cycles in {C1, . . . ,Ck}, a contradiction. Hence, we may assume that m ≥ 3 in the
following. By Claims 3.2 and 3.3, we can choose a vk-path P of length 5 in M such
that λ(vk,P ) = 2. Let P = y1y2y3y4y5y6 with y1 ∈ V1, then vk = y3 or y4. Since
there is at least s − 1 4-cycles in {C1,C2, . . . ,Ck−1}, then M contains no 4-cycle
passing through vk . Consequently, we obtain

N(y3,M) ∩ N(y5,M) = y4 and N(y2,M) ∩ N(y4,M) = y3.

If vk = y3, then N(y1,M) ∩ N(y3,M) = y2. Otherwise, vk = y4, then N(y4,M) ∩
N(y6,M) = y5. It follows that

d(y3,M) + d(y5,M) = |N(y3,M) ∪ N(y5,M)| + |N(y3,M) ∩ N(y5,M)| ≤ m + 1.

Similarly, d(y2,M)+d(y4,M) ≤ m+1, d(y1,M)+d(y3,M) ≤ m+1 or d(y4,M)+
d(y6,M) ≤ m + 1. Without loss of generality, we assume that vk = y3.

Since M contains no quadrilateral passing through vk = y3, then d(y6,M) ≤
m − 1. Note that d(y3,M) ≥ 2, then

∑

x∈V (P )

d(x,M) ≤ 3m + 3 − d(y3,M) + d(y6,M) ≤ 4m.

On the other hand, it is easy to see that V (P ) contains three pairs of nonadjacent
vertex {y1, y4}, {y2, y5} and {y3, y6}. Therefore,

∑

x∈V (P )

d(x,H) ≥ 3 × 4n + s

3
− 4m = 8l + 12(k − 1 − l) + s. (5)
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Claim 3.4 For each 6-cycle Ci ∈ HQ, we may assume that e(P,Ci) ≤ 12.

Proof Otherwise, assume that there exists Ci ∈ H such that e(P,Ci) ≥ 13. Let
Ci = a1a2a3a4a5a6a1 with a1 ∈ V1 and vi = a1, P1 = y2y3y4y5. Clearly, dCi

(P1) ≥
13 − dCi

({y1, y6}) ≥ 13 − 6 = 7. If y2a1 ∈ E(G), then |E(G) ∩ {y2a3, y2a5}| = 0,
otherwise, without loss of generality, say y2a3 ∈ E(G), then G[V (Ci ∪ P)] con-
tains a 4-cycle y2a1a2a3y2 passing through a1 = vi , which contradicts (2). Simi-
larly, if y4a1 ∈ E(G), then |E(G) ∩ {y4a3, y4a5}| = 0. On the other hand, if there
exists x ∈ {a3, a5} such that {y2x, y4x} ⊆ E(G), then y2y3y4xy2 is a 4-cycle pass-
ing through vk = y3, contradicting (2) again. Consequently, dCi

({y2, y4}) ≤ 3 and the
equality holds when {y2a1, y4a3, y4a5} ⊆ E(G) or {y4a1, y2a3, y2a5} ⊆ E(G). It fol-
lows that dCi

({y3, y5}) ≥ 7 − 3 = 4, which implies that there exists z ∈ {a2, a4, a6}
such that {zy3, zy5} ⊆ E(G). Then we see that G[V (Ci ∪ P)] contains a 4-cycle
y3zy5y4y3 passing through vk = y3, which contradicts (2) again. This proves the
claim. �

Now, we are in the position to complete the proof of Theorem 1.3. Note that there
is at least s − 1 4-cycles in H . By (5) and Claim 3.4, we obtain

∑

x∈V (P )

d(x,HT ) ≥ 8l + 12(k − 1 − l) + s − 12(k − 1 − l) = 8l + s. (6)

As s ≥ 1, this implies there exists Tj ∈ HT such that e(Tj ,P ) ≥ 9. By Lemma 2.5,
G[V (Tj ∪ P)] contains two disjoint cycles Q1 and Q2 such that l(Q1) = 4 or 6,
l(Q2) = 4, vj ∈ V (Q2) and vk ∈ V (Q1). Replacing Tj with Q2. If l(Q1) = 4, then
G contains desired k admissible cycles H ∪ (Q1 ∪ Q2) − Tj with at least s quadri-
laterals, a contradiction. Hence, it remains the case that l(Q1) = 6, then G contains k

admissible cycles H ∪ (Q1 ∪ Q2) − Tj with respect to {v1, . . . , vk}, this implies that
H contains exactly s − 1 4-cycles, which yields to l = s − 1. Now we rewrite (6) as
follows:

∑

x∈V (P )

d(x,HT ) ≥ 8l + s = 9l + 1.

This implies that there exists Ci ∈ HT such that e(Ci,P ) ≥ 10. By Lemma 2.6,
G[V (Ci ∪ P)] contains two disjoint 4-cycles Q1 and Q2 such that vk = y3 ∈ V (Q1)

and vi ∈ V (Q2). Replace Ci with Q2, we see that G contains G contains k ver-
tex disjoint admissible cycles C1, . . . ,Ci−1,Q2, Ci+1, . . . ,Ck−1,Q1 with respect to
{v1, v2, . . . , vk}, and there are s 4-cycles in H ∪ (Q2 ∪ Q1) − Ci , a final contradic-
tion. �

4 Proof of Theorem 1.4

Proof Let k ≥ 1 be an integer and G = (V1,V2;E) a bipartite graph with |V1| =
|V2| = n ≥ 2k + 2 such that σ1,1(G) ≥ � 4n+k

3 �. Suppose to the contrary, Theorem 1.4
is false. By Corollary 1.1, for any k distinct vertices z1, . . . , zk , G contains k disjoint
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quadrilaterals C1, . . . ,Ck with respect to {z1, . . . , zk}. We choose k disjoint quadri-
laterals C1, . . . ,Ck with respect to {z1, . . . , zk} such that

The length of the longest path in G − V

(
k∑

i=1

Ci

)

is maximum. (7)

Let P = x1x2 · · ·xt be a longest path in G − V (
∑k

i=1 Ci) with x1 ∈ V1. Set H =
∑k

i=1 Ci , D = G − V (H) and |D| = 2d . As n = 2k + d ≥ 2k + 2, we obtain d ≥ 2.
Let t = 2r + q , when q = 0 or 1. Our proof includes several claims.

Claim 4.1 t = 2d.

Proof Otherwise, suppose t < 2d. Let x0 ∈ V (D − P) such that {x0, xt } 
⊆ Vi with
i ∈ {1,2}. By Lemma 2.2 and (7), d(x0,P ) + d(xt ,P ) ≤ r . Clearly, d(x0,D −
V (P )) ≤ d − r and so d(x0,D) + d(xt ,D) ≤ d . Then

d(x0,H) + d(xt ,H) ≥
⌈

4n + k

3

⌉

− d = 3k + d

3
.

Since d ≥ 2, the above inequality implies that there exists Ci ∈ H such that
d(x0,Ci) + d(xt ,Ci) = 4, then by Remark 2.1, there exists z ∈ V (Ci) such that
xtz ∈ E(G) and Ci − z + x0 is a quadrilateral passing through vi , if we replace Ci

with Ci − z + x0, then P + z is longer than P , contradicting (7). This proves the
claim. �

If x1x2d ∈ E(G), by Claim 4.1, D contains a hamiltonian cycle, denoted by Ck+1,
then G contains a 2-factor with k + 1 cycles C1, . . . ,Ck+1 such that vi ∈ V (Ci) and
|Ci | = 4 for each i ∈ {1, . . . , k}, a contradiction. Hence, x1x2d /∈ E(G). As d ≥ 2, if
d(x1,P )+d(x2d ,P ) ≥ d +1, by Lemma 2.4, D is hamiltonian and we are done. So,
we may assume that d(x1,P ) + d(x2d ,P ) ≤ d . Consequently, we have

d(x1,H) + d(x2d ,H) ≥
⌈

4n + k

3

⌉

− d ≥ 3l + d

3
.

The above inequality implies that there exists Ci ∈ H such that d(x1,Ci) +
d(x2d,Ci) = 4. Without loss of generality, we may assume that Ci = C1. Let
C1 = v1v2v3v4v1 with z1 = v1 ∈ V1. If v3x2 ∈ E(G), then G[V (C1 ∪ P)] con-
tains two disjoint cycles C′

1 = x1v2v1v4x1 and Ck+1 = v3x2 · · ·x2dv3 such that
l(C′

1) = 4 and l(Ck+1) = 2d , so, G contains a desired 2-factor with k + 1 cycles:
C′

1,C2, . . . ,Ck,Ck+1, a contradiction. Therefore, v3x2 /∈ E(G). Similarly, v4x2d−1 /∈
E(G). If there exists some Ci , i∈{2, . . . , k} such that e({x1, x2, x2d−1, x2d, v3, v4},Ci)

≥ 10, then by Lemma 2.7, G[V (C1 ∪ Ci ∪ P)] contains three disjoint cycles C′
1, C′

i

and Ck+1 such that zj ∈ V (C′
j ) and l(C′

j ) = 4 for each j ∈ {1, i} and l(Ck+1) = 2d ,
thus, G contains a desired 2-factor with k + 1 cycles, a contradiction. Hence,
e({x1, x2, x2d−1, x2d, v3, v4},Ci) ≤ 9 for each Ci ∈ H − C1. It follows that

e({x1, x2, x2d−1, x2d , v3, v4},D ∪ C1) ≥ 3 × 4n + k

3
− 9(k − 1) = 4d + 9. (8)
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Let P1 = v4x1 · · ·x2d−1 and P2 = v3x2d · · ·x2. Since x2dv1v2v3x2d is a quadrilateral
passing through v1, we have d(v4,P1) + d(x2d−1,P1) ≤ d by Lemma 2.4. Similarly,
d(x2,P2) + d(v3,P2) ≤ d . Therefore,

e({x1, x2, x2d−1, x2d , v3, v4},D ∪ C1) ≤ 3d + 12. (9)

Combine (8) with (9), we obtain 4d + 9 ≤ 3d + 12, this gives d ≤ 3. If d = 3,
it follows from (9) that d(v4,P1) + d(x2d−1,P1) = 3, d(x2,P2) + d(v3,P2) = 3,
d(x1,P ) + d(x2d ,P ) = 3, e({v4, x2d−1},D ∪ C1) = 7 and e({v3, x2},D ∪ C1) =
e({x1, x2d},D ∪C1) = 7. Thus, x5v2 ∈ E(G) and x2v1 ∈ E(G). Then G[V (C1 ∪D)]
contains two disjoint cycles C′

1 = x6v1v4v3x6 and Ck+1 = x1v2x5x4x3x2x1 such that
C′

1 passing through z1 = v1, and so, G contains a desired 2-factor with k + 1 cycles:
C′

1,C2, . . . ,Ck,Ck+1, a contradiction.
Hence, it remains the case that d = 2. Clearly, v3x2 /∈ E(G) and v4x3 /∈ E(G).

In this case, by (8) and (9), we obtain 17 ≤ e({v3, v4} ∪ P,D ∪ C1) ≤ 18. If e(P ∪
{v3, v4},D ∪C1) = 18, it follows from (9) that e({x1, x4},D ∪C1) = e({v3, x2},D ∪
C1) = e({v4, x3},D ∪ C1) = 6. Consequently, x2v1 ∈ E(G) and v2x3 ∈ E(G), we
see that G[V (C1 ∪ P)] contains two disjoint quadrilaterals C′

1 = v1x2x3x4v1 and
Ck+1 = v3v2x1v4v3 such that C′

1 passing through z1 = v1, and so G contains a de-
sired 2-factor with k quadrilaterals C′

1, C2, . . . ,Ck with respect to {z1, z2, . . . , zk} and
a cycle Ck+1, a contradiction. Hence, e(P ∪ {v3, v4},D ∪ C1) = 17. From the above
argument, we see that v1x2 /∈ E(G). As e({v3, v4} ∪ P,D ∪ C1) = 17, it is easy to
check that v2x3 ∈ E(G). Then G[V (C1 ∪ P)] contains two disjoint quadrilaterals
C′

1 = x4v1v4v3x4 and Ck+1 = v2x1x2x3v2 such that C′
1 passing through v1 = z1, so,

G contains a 2-factor with k quadrilaterals C′
1,C2, . . . ,Ck with respect to {z1, . . . , zk}

and a cycle Ck+1, a final contradiction. This proves Theorem 1.4. �

5 Concluding remark

We propose the following conjecture to specify the length of Ci for s < i ≤ k in
Theorem 1.3 and conclude this paper.

Conjecture Suppose s and k be two integers with 1 ≤ s ≤ k and let G = (V1,V2;E)

be a bipartite graph with |V1| = |V2| = n ≥ 2s + 3(k − s). If σ1,1(G) ≥ � 4n+s
3 �, then

for any k distinct vertices v1, . . . , vk , G contains k vertex disjoint cycles C1, . . . ,Ck

such that vi ∈ V (Ci) for each i ∈ {1, . . . , k}, |Ci | = 4 for 1 ≤ i ≤ s and |Ci | = 6 for
s < i ≤ k.
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