
Abh. Math. Semin. Univ. Hambg.
https://doi.org/10.1007/s12188-024-00279-z

On the non-vanishing of theta lifting of Bianchi modular
forms to Siegel modular forms

Di Zhang1

Received: 26 September 2022 / Accepted: 1 July 2024
© The Author(s) 2024

Abstract
In this paper we study the theta lifting of a weight 2 Bianchi modular form F of level �0(n)

with n square-free to a weight 2 holomorphic Siegel modular form. Motivated by Prasanna’s
work for the Shintani lifting, we define the local Schwartz function at finite places using a
quadratic Hecke character χ of square-free conductor f coprime to level n. Then, at certain
2 by 2g matrices β related to f, we can express the Fourier coefficient of this theta lifting
as a multiple of L(F, χ, 1) by a non-zero constant. If the twisted L-value is known to be
non-vanishing, we can deduce the non-vanishing of our theta lifting.

Keywords Theta lifting · Bianchi modular form · Siegel modular form · L-function

Mathematics Subject Classification 11F30 · 11F27 · 11F41 · 11F67

1 Introduction

Shimura initiated the systematic study of holomorphic modular forms of half-integral weight
and provided a correspondence between certain modular forms of even weight and modular
forms of half-integral weight. Later, in the other direction, Shintani [21] described a method
in terms of weighted periods of holomorphic cusp forms to construct modular forms of half-
integral weight. Waldspurger showed in [23] a proportional relation between special values
of L-functions attached to an eigenform of even weight and the square of the square-free
Fourier coefficients of the Shintani lifting. For the special case of modular forms on the full
modular group, Kohnen-Zagier [14] proved a simple version of Waldspurger’s theorem with
the constant of proportionality given explicitly. Inspiredby theirworkwewill analyse the theta
lifting of Bianchi modular forms to Siegel modular forms and investigate the relationship
between Fourier coefficients of this lifting and special L-values attached to the Bianchi
modular forms. This can be used to describe the non-vanishing of the theta lifting, which is
an open problem in general.

To construct the theta lifting of a weight 2 Bianchi modular form F for level �0(n) with n
a square-free ideal for an imaginary quadratic field F of class number one, following [3] and
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[13] we consider the 4-dimensional rational quadratic space V given by Hermitian matrices
with entries in F . Its associated symmetric space D is isomorphic to the upper half space H3.
In our theta integral we use the differential form ηF attached to F defined on the arithmetic
quotient �\D. We choose the Schwartz form ϕ = ϕKM∞ ϕ f defined on a pair of vectors in V
so that the theta kernel is given by

θ(g, h, z) :=
∑

(x1,x2)∈V 2

ω(g, h)ϕ(x1, x2; z) for g ∈ Sp4 ⊂ GL4, h ∈ SO(3, 1).

Then the theta lifting is constructed as

	ϕ(ηF )(g) =
∫

�\D
ηF (z) ∧ θ(g, h, z)

which by results of Kudla andMillson turns out to be a weight 2 holomorphic Siegel modular
form. Its Fourier coefficient at a 2 × 2 symmetric matrix β > 0 is given here by

∑

(x1,x2)∈�\
β

ϕ f (x1, x2)
∫

CU (x1,x2)

ηF

where 
β := {(x1, x2) ∈ V 2 : ((xi , x j )) = β} and U (x1, x2) := Span{x1, x2} ⊂ V . For
an auxiliary quadratic Hecke character χ with its conductor coprime to n we define the
Schwartz form as ϕ = ϕKM∞ ϕ

χ
f . The choice of the Schwartz function ϕ

χ
f in Sect. 4 is crucial

for us to get the period integral related to some twisted L-values. With this choice we take
certain β > 0 (again depending on the conductor of χ) at which the coefficient of 	ϕ(ηF )

is expressed as the above weighted sum of period integrals over infinite geodesics joining
two cusps. By [24, Theorem 1.8], the period integral over infinite geodesics ending in ∞
can be related to L(F, χ, 1). We apply Atkin-Lehner operators to transform other infinite
geodesics and reduce to this case. In Sect. 5 I compute the coefficient at such a β as a multiple
of L(F, χ, 1) by a non-vanishing number. By Friedberg-Hoffstein’s theorem [8, Theorem
B], we can deduce that there always exists a character χ such that the twisted L-value is
non-vanishing which implies the non-vanishing of the corresponding theta lifting.

Theorem 1.1 (Theorem 5.17) Let F = Q(
√
d) (square-free d < 0) be an imaginary

quadratic field of class number one and denote byO its ring of integers. Consider a weight 2
Bianchi cusp form F of level �0(n) with n a square-free ideal away from ramified primes in
F/Q. Given a square-free product m of split or inert primes in F/Q such that (m, n) = 1,
form = mO we choose a quadratic Hecke character χm of conductorm

√
d. Then, at certain

β > 0 related to m, the Fourier coefficient of the theta lifting 	ϕ(ηF ) can be computed as

(∗) · L(F, χm, 1)

where the non-zero constant (∗) is given explicitly in (38).

Constructions of congruences between automorphic forms are one of important tools, particu-
larly those between cusp forms and theta lifts on GSp4(A). [17] gave an explicit construction
of the theta lifts of automorphic forms for imaginary quadratic fields to further study the
congruence on GSp4(A). Different to our approach to construct the Schwartz form (defining
the finite part), its choice is to define a distinguished infinite part while at each finite place
the local Schwartz function is the characteristic function in Sect. 4.3.

It is known that Böcherer formulates an equality between sums of Fourier coefficients of
Siegel modular forms and certain L-values. [5] proved a precise formula relating the Bessel
period of lifted automorphic forms on GSp4(A) to central L-values, where the Bessel period
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On the non-vanishing of theta lifting of Bianchi modular…

is the Fourier coefficient considered by Böcherer. We have not calculated the Bessel period
of our theta lifts but in the future we expect to relate some combinations of the Fourier
coefficients of our lifts to special L-values. This would lead us to investigate the connections
between our calculations and those on the Bessel period, and how our further result would
be related to Böcherer’s conjecture.

2 Binary Hermitian form

In this section we recall some basics from linear algebra about Hermitian matrices and
Hermitian binary forms from [7, Chapter 9].

For an complex matrix A, the matrix Ā is obtained from A by applying complex conjuga-
tion to all entries and the matrix At is the transpose of A. An n × n matrix A with complex
entries is called Hermitian if Āt = A. By the definition we see that an Hermitian matrix is
unchanged by taking its conjugate transpose. Note that any Hermitian matrix must have real
diagonal entries.

Let R be a subring of C with R = R̄. We write H(R) for the set of Hermitian 2 × 2
matrices with entries in R, i.e.

H(R) = {A ∈ M2(R) | Āt = A}.

Every f ∈ H(R) defines a binary Hermitian form with coefficients in R. If f =
(
a b
b̄ d

)

then the associated binary Hermitian form is the semi quadratic map f : C×C → R defined
by

f (u, v) = (u, v)

(
a b
b̄ d

)
(ū, v̄)t = auū + buv̄ + b̄ūv + dvv̄.

We shall often call an element f ∈ H(R) a binary hermitian form with coefficients in R. The
discriminant �( f ) of f ∈ H(R) is defined as �( f ) = det( f ). Set |a| = (aā)1/2 for a ∈ C

where − denotes the complex conjugation. We define the GL2(R)-action on H(R) given by
the formula

σ · f = (| det(σ )|−1/2σ) f (| det(σ̄ t )|−1/2σ̄ t ) = | det(σ )|−1σ f σ̄ t (1)

for σ ∈ GL2(R) and f ∈ H(R). If σ =
(

α β
γ δ

)
∈ GL2(R) we have

σ · f = | det(σ )|−1
(

(α, β) f (ᾱ, β̄)t (α, β) f (γ, δ)t

(γ, δ) f (ᾱ, β̄)t (γ, δ) f (γ̄ , δ̄)t

)
.

Note that �(σ · f ) = �( f ) for every σ ∈ GL2(R) and f ∈ H(R). Two elements f , g ∈
H(R) are called GL2(R)-equivalent if g = σ · f for some σ ∈ GL2(R); SL2(R)-equivalence
is defined analogously.

A binary Hermitian form f ∈ H(R) is positive definite if f (u, v) > 0 for all (u, v) ∈
C × C \ {(0, 0)}. If − f is positive definite f is called negative definite. If �( f ) < 0 then f
is called indefinite.

We define

H+(R) = { f ∈ H(R) | f is positive definite}
H−(R) = { f ∈ H(R) | f is indefinite}.
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Clearly the group GL2(R) leaves the H± invariant. It is easy to see that f ∈ H+(R) if
and only if a > 0 and �( f ) > 0. The group R>0 acts on H+(C) by scalar multiplication.
Similarly R

× acts on H−(C). We define

H̃+(C) := H+(C)/R>0, H̃−(C) := H−(C)/R
×.

For f ∈ H±(C), [ f ] stands for the class of f in H̃±(C). The action of GL2(C) on H±(C)

clearly induces an action of GL2(C) on H̃±(C). The centre of SL2(C) acts trivially onH(C),
so we get an induced action of PSL2(C) on H(C) and H̃±(C).

Recall the upper half space H3 = C × R>0, elements of which can be written as (z, r)
with z = x + iy for x, y ∈ R, r ∈ R>0.

Definition 2.1 The map � : H+(C) → H3 is defined as

φ : f =
(
a b
b̄ d

)
→ b

d
+

√
�( f )

d
· j

In fact φ induces a map φ : H̃+(C) → H3.

This map is a bijection since for a point (z, r) ∈ H3 there exists f =
(

|z|2+r2 z
z̄ 1

)
such

that φ( f ) = z + r j ∈ H3. Therefore, this map gives a one to one correspondence between
equivalence classes of positive definite Hermitian forms and points in the upper half space.
Note that� is the analogue of identification of the set of equivalence classes of binary positive
definite quadratic forms with points of the upper half plane.

Proposition 2.2 The map φ : H̃+(C) → H3 is a PSL2(C)-equivariant bijection; that is
φ(σ · f ) = σ · φ( f ) for every σ ∈ PSL2(C) and f ∈ H̃+.

Proof See [7, Proposition 9.1.2, Chapter 9]. 	


Definition 2.3 For a binary Hermitian form f =
(
a b
b̄ d

)
∈ H−(C) we define

ψ( f ) = {z + r j ∈ H3 | a − b̄z − bz̄ + dzz̄ + r2d = 0}
and G = {ψ( f ) | f ∈ H−(C)} which is a set of geodesic planes in H3.

Remark 2.4 This mapψ is slightly different to themap in [7, Definition 1.3, Chapter 9] which
is given by

f �→ {z + r j ∈ H3 : a + b̄z + bz̄ + dzz̄ + r2d = 0}.
The above map ψ is chosen for us to prove Proposition 3.4. In addition we will consider the
cycle DU for positive definite U generated by f with f ∈ H−(C).

If d �= 0 then ψ( f ) is the following geodesic hemisphere

ψ( f ) = {z + r j ∈ H3 | |dz − b|2 + |d|2r2 = −�( f )}.
If d = 0 then ψ( f ) is a vertical plane. The group PSL2(C) acts on G by its induced action
on subsets of H3. Clearly ψ induces a map ψ : H̃−(C) → G.

Proposition 2.5 The map ψ : H̃−(C) → G is a PSL2(C)-equivariant bijection; that is
ψ(σ · f )) = σ · ψ( f ) for every σ ∈ PSL2(C) and f ∈ H̃−(C).
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Proof We will prove the equivariance property only for the generators of PSL2(C).
Let σ = ( 1 β

0 1

)
where β ∈ C. Then

σ · f =
(
1 β

0 1

)(
a b
b̄ d

)(
1 0
β̄ 1

)
=

(
a + βb̄ + β̄b + ββ̄d b + βd

b̄ + β̄d d

)
.

It follows that

ψ(σ · f )={z + r j ∈ H3 | a+βb̄+β̄b + ββ̄d−(b̄ + β̄d)z − (b+βd)z̄ + dzz̄ + r2d = 0}.
On the other hand, for z + r j ∈ ψ( f ), we have σ · (z + r j) = (z + β) + r j ∈ H3. Setting
z

′ = z + β and r
′ = r , we observe that

a − b̄(z
′ − β) − b(z̄

′ − β̄) + d(z
′ − β)(z̄′ − β̄) + r ′2d = 0.

Then it is not hard to see that ψ(σ · f )) = σ · ψ( f ) for σ = ( 1 β
0 1

)
.

In the same way we prove this property for σ = (
0 −1
1 0

)
. We have

σ · f =
(
0 −1
1 0

)(
a b
b̄ d

)(
0 −1
1 0

)
=

(
d −b̄

−b a

)
.

It follows that

ψ(σ · f ) = {z + r j ∈ H3 | d + bz + b̄z̄ + azz̄ + r2a = 0}.
For z+r j ∈ ψ( f ), we have z

′ +r
′
j = σ · (z+r j) = − z̄

|z|2+r2
+ r

|z|2+r2
j . Then |z′|2+r ′2 =

1
|z|2+r2

. It follows that z = − z̄′
|z′|2+r ′2 and r = r ′

|z′|2+r ′2 . Hence the following identity holds

a + b̄
z̄′

|z′|2 + r ′2 + b
z

|z′|2 + r ′2 + d
z′ z̄′

(|z′|2 + r ′2)2
+ d

r ′2

(|z′|2 + r ′2)2
= 0.

Then it is not hard to see that ψ(σ · f )) = σ · ψ( f ) for σ = (
0 −1
1 0

)
. 	


3 Orthogonal group of sign (3, 1) and cycles

In this sectionwe recall some basic aspects on orthogonal groups of signature (3,1) and cycles
in this case from [3, Sect. 4].

Let F = Q(
√
d) (d < 0) be an imaginary quadratic field of class number 1. Denote by

O by its ring of integers. For an ideal n ⊂ O put

�0(n) =
{(

a b
c d

)
∈ SL2(O) : c ∈ n

}
.

Assume that the four-dimensional space V over Q is given by the hermitian matrices

V = {x ∈ M2(F) : xt = x},
with quadratic form

x �→ − det(x)

and corresponding bilinear form

(x, y) �→ −1

2
tr(xy∗),
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where
(
a b
c d

)∗
=

(
d −b

−c a

)
. (2)

Note that this bilinear form is preserved under the action of GL2(C) where its action is given
in (1); that is, for g ∈ GL2(C),

(g · x, g · y) = (| det(g)|−1gxḡt , | det(g)|−1gyḡt )

= −1

2
tr(| det(g)|−1gxḡt | det(g)|(ḡt )−1y−1g−1 det(| det(g)|−1gyḡt ))

= −1

2
tr(gxy−1 det(y)g−1) = (x, y). (3)

We fix an orthogonal basis of V (Q) given by e1 = (
1 0
0 −1

)
, e2 = (

0 1
1 0

)
, e3 =

(
0

√
d

−√
d 0

)
and

e4 = (
1 0
0 1

) = Z0 such that the discriminant of V is d . The basis of Z⊥
0 can be identified with

{e1, e2, e3}.
The symmetric space in this case can be realized as

D = {Z ∈ V (R) : (Z , Z0) < 0},
which is isomorphic to hyperbolic 3-space H3. The isomorphism can be given by

μ : z + r j ∈ H3 �−→ 1

r

(|z|2 + r2 z
z̄ 1

)
. (4)

The GL2-action on the Hermitian form defined as in (1) induces that on H3 in the following.

For g =
(

α β
γ δ

)
we have g · 1

r

(
|z|2+r2 z

z̄ 1

)
= 1

r ′
(

|z′|2+r ′2 z′
z̄′ 1

)
; expand the LHS,

g · 1
r

(
|z|2+r2 z

z̄ 1

)
= r−1| det(g)|−1

(
α β
γ δ

) (
|z|2+r2 z

z̄ 1

) (
ᾱ γ̄

β̄ δ̄

)

= r−1| det(g)|−1
(

α|z|2+αr2+β z̄ αz+β

γ |z|2+γ r2+δz̄ γ z+δ

) (
ᾱ γ̄

β̄ δ̄

)

= r−1| det(g)|−1
(

αᾱ|z|2+αᾱr2+ᾱβ z̄+αβ̄z+ββ̄ αγ̄ |z|2+αγ̄ r2+βγ̄ z̄+αδ̄z+βδ̄

ᾱγ |z|2+ᾱγ r2+ᾱδz̄+β̄γ z+β̄δ γ γ̄ |z|2+γ γ̄ r2+γ̄ δz̄+γ δ̄z+δδ̄

)
,

and then

z
′ = (αz + β)(γ̄ z̄ + δ̄) + αγ̄ r2

|γ z + δ|2 + |γ |2r2 , r
′ = |αδ − βγ |r

|γ z + δ|2 + |γ |2r2 .

By (4), we can define the action of GL2(C) on H3 to be as
(

α β

γ δ

)
· (z, r) =

(
(αz + β)(γ̄ z̄ + δ̄) + αγ̄ r2

|γ z + δ|2 + |γ |2r2 ,
|αδ − βγ |r

|γ z + δ|2 + |γ |2r2
)

. (5)

Proposition 3.1 The above map μ as in (4) intertwines theGL2(C)-action on V (R) and H3;
that is μ(g · (z, r)) = g · μ(z, r) for g ∈ GL2(C).

Proof See [26, Proposition 4.2.1]. 	

The set Iso(V ) of all isotropic lines (1-dimensional x ∈ V such that q(x) = 0) in V (Q) can
be identified with P

1(F) = F ∪ ∞ (∞ = [1 : 0]). Assume that the cusp ∞ corresponds
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to the isotropic line spanned by u∞ = (
1 0
0 0

)
. Given an element g =

(
α β
γ δ

)
∈ SL2(F)

transforming the cusp ∞ to another cusp κ = [α : γ ], we can see that

g · u∞ =
(

α β

γ δ

)(
1 0
0 0

)(
ᾱ γ̄

β̄ δ̄

)
=

(
αᾱ αγ̄

ᾱγ γ γ̄

)
.

Hence we can identify the cusp with the isotropic line by means of the map

ν : [a : b] �−→ span

(
aā ab̄
āb bb̄

)
∈ Iso(V ). (6)

Proposition 3.2 The above map ν satisfies

ν(g · [a : b]) = g · ν([a : b])
for g ∈ GL2(F) and [a : b] ∈ P

1(F).

Proof See [26, Proposition 4.2.2]. 	

Let U ⊂ V be a Q-subspace with dimQ U = 2 such that ( )|U is positive definite; say
U = 〈x1, x2〉. Define the special cycle as

DU = {Z ∈ D : Z ⊥ U }.
Let � be a torsion-free congruence subgroup of GL(V ) preserving the quadratic form on V
and let �U be the stabilizer of U in � ∩ SO0(3, 1)(R), where SO0 is the identity component
of SO. We denote the image of the quotient �U\DU in �\D by CU . The stabilizer �U is
either trivial (if the orthogonal complementU⊥ ⊂ V is split over Q) or infinite cyclic (ifU⊥
is non-split over Q) (see [11, Lemma 4.2]). If �U is infinite, then CU is a closed geodesic in
�\D, while CU is infinite if �U is trivial (see [3, Sect. 4.3]).

Lemma 3.3 For U = 〈x1, x2〉 ⊂ V as above. Then the following two statements are
equivalent:

(1) U⊥ is split over Q,
(2) disc(U ) ∈ −d(Q×)2.

Proof For an arbitrary subspaceU of a non-degenerate quadratic space V we have dim(V ) =
dim(U ) + dim(U⊥). Thus U⊥ is also 2-dimensional. By assumption U⊥ is a hyperbolic
plane. By Witt’s Theorem (a 2-dimensional quadratic space over a field F is a hyperbolic
plane if and only if its discriminant lies in −(F×)2) we have disc(U⊥) ∈ −(Q×)2. Thus
disc(U ) ∈ −d(Q×)2 as disc(V ) = disc(U )disc(U⊥).

Conversely suppose disc(U ) ∈ −d(Q×)2. Again by disc(V ) = disc(U )disc(U⊥), we
have disc(U⊥) ∈ −(Q×)2 implying that U⊥ is split over Q. 	


We orient DU by requiring that a tangent vector v ∈ TZ (DU ) � Z⊥ ∩ U⊥ followed by
Z⊥ ∩U gives a properly oriented basis of TZ (D) � Z⊥. Then 〈Z⊥ ∩U⊥, Z⊥ ∩U , Z〉 has
the same orientation as 〈e1, e2, e3, e4〉, i.e. the determinant of the base change is positive.

For β = β t ∈ M2(Q) a positive definite symmetric matrix, let


β = {
(x1, x2) ∈ V 2(Q) : ((xi , xi )) = β

}
.

Consider the subspace U (x1, x2) := 〈x1, x2〉 ⊂ V . For a fixed cusp κi corresponding to the
isotropic line lκi , we write


β,κi = {(x1, x2) ∈ 
β : U (x1, x2) ⊥ lκi }.
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From now on, fix a β such that disc(U ) ∈ −d(Q×)2, i.e. det β ∈ −d(Q×)2. Let (x1, x2) ∈

β andU = U (x1, x2) = 〈x1, x2〉. Given a vector x ∈ U , by Lemma 3.3, it is orthogonal to
two isotropic lines lκ1 and lκ2 generated by uκ1 and uκ2 respectively associated to two cusps κ1
and κ2. Again, if these two cusps are not equivalent with respect to �, we can give a positive
orientation to U to distinguish the cusps in the sense that the new base 〈uκ1 , x1, x2, uκ2〉
preserves the orientation of 〈e1, e2, e3, e4〉. For a fixed cusp κi corresponding to the isotropic
line lκi , we write


β,κi ,+ ={(x1,x2)∈
β,κi : 〈uκi ,uκ j 〉⊥U (x1,x2),〈uκi ,x1,x2,uκ j 〉has a positive orientation}.
It should be mentioned here that 〈uκi , x1, x2, uκ j 〉 and 〈uκi ,−x1,−x2, uκ j 〉 have the same
orientation which means that we need to count (x1, x2) and (−x1,−x2) simultaneously in

β,κi ,+. Alternatively, the following Lemma 3.7 describes the orientations associated to
two pairs (x1, x2) and (−x1,−x2) in 
β,∞,+ in a different way. Note that the stabilizer
�κi ⊂ �0(n) of the cusp κi acts on 
β,κi ,+ as GL2(C) preserves bilinear forms and the
orientation.

Proposition 3.4 For det β ∈ −d(Q×)2, we have

�\
β =
∑

κi∈�\P1(F)

�κi \
β,κi ,+.

Proof Given a representative [(x1, x2)] in �\
β such that U (x1, x2) ⊥ uκi , we consider its
�-orbit � · (x1, x2). The corresponding DU for U = 〈� · (x1, x2)〉 has the image C(x1,x2) in
�\H3 under the natural projection H3 → �\H3. For a γ ∈ � we have U�·(x1,x2) ⊥ γ · uκi .
By Proposition 3.1, we know that γ ·uκi = uγ ·κi . It follows that γ · (x1, x2) lies in 
β,γ ·κi ,+.
Thus, modulo the �-action, we have a well-defined map:

ι : �\
β −→
∐

κi∈�\P1(F)

�κi \
β,κi ,+.

If two pairs (x1, x2) and (y1, y2) are not �-equivalent then they are not �κi -equivalent since
�κi ⊂ �. Hence this map is injective.

We will show that the inverse map ι−1 is injective in the following. For x =
(
a b
b̄ d

)
, we

calculate its orthogonal complement in H3, due to the isomorphism (4),

x⊥ ∩ H3 = {z + r j ∈ H3 : d(|z|2 + r2) − bz̄ − b̄z + a = 0} = ψ(x)

where ψ is defined as in Definition 2.3. Observe that x⊥
1 ∩ x⊥

2 ∩ H3 = ψ(x1) ∩ ψ(x2) of
which one boundary point on the complex plane is κi . Suppose that two pairs (x1, x2) and
(y1, y2) are not �κi -equivalent in �κi \
β,κi ,+. Note that ψ(x1) ∩ ψ(x2) and ψ(y1) ∩ ψ(y2)
have a boundary point in common, the cusp κi . Assume that there exists an element γ ∈ �

such that γ · (x1, x2) = (y1, y2). Then, by Proposition 2.5, we have γ · ψ(x1) = ψ(y1) and
γ · ψ(x2) = ψ(y2). It is easy to observe that

γ · (ψ(x1) ∩ ψ(x2)) = γ · ψ(x1) ∩ γ · ψ(x2) = ψ(y1) ∩ ψ(y2).

It follows that γ must be in �κi , which is a contradiction to that (x1, x2) and (y1, y2) are not
�κi -equivalent. So such a γ does not exist. We have proven the injectivity of ι−1. 	


Set det(β) ∈ −d(Q×)2. It is easy to observe that, for the cusp ∞,


β,∞ =
{((

a1 b1
b̄1 0

)
,

(
a2 b2
b̄2 0

))
∈ 
β : det(β) ∈ −d(Q×)2, a1, a2 ∈ Q, b1, b2 ∈ F

}
.
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Setting (x1, x2) ∈ 
β,∞ =
((

a1 b1
b̄1 0

)
,
(
a2 b2
b̄2 0

))
, the associated Gram matrix is of form

β =
(

(x1, x1) (x1, x2)
(x1, x2) (x2, x2)

)
=

(
b1b̄1

1
2 (b1b̄2 + b̄1b2)

1
2 (b1b̄2 + b̄1b2) b2b̄2

)
.

of which the determinant is

det(β) = disc(U (x1, x2)) = −1

4
(b1b̄2 − b̄1b2)

2.

We are not interested in the case when b1b̄2 ∈ Q since then det(β) = 0.
LetU = U (x1, x2) for (x1, x2) ∈ 
β,∞. We will calculate its corresponding special cycle

DU in the following. Given a point z+r j ∈ H3 identified with 1
r

(|z|2 + r2 z
z̄ 1

)
, we compute

1

r

(|z|2 + r2 z
z̄ 1

)(
a1 b1
b̄1 0

)∗
= 1

r

(|z|2 + r2 z
z̄ 1

)(
0 −b1

−b̄1 a1

)
= 1

r

(−b̄1z ∗
∗ −b1 z̄ + a1

)
.

Thus we have

x⊥
1 = {z + r j ∈ H3 : a1 − b1 z̄ − b̄1z = 0},

and similarly,

x⊥
2 = {z + r j ∈ H3 : a2 − b2 z̄ − b̄2z = 0}.

Then, solving above equations, we can deduce that the special cycle DU consists of the
infinite geodesic line joining two cusps ∞ and

zU = a2b1 − a1b2
b1b̄2 − b̄1b2

. (7)

Lemma 3.5 Suppose that O = Z[ω] with ω is either
√
d or 1+√

d
2 and denote the stabilizer

of the cusp ∞ by �∞ =
{(

1 α

0 1

)
: α ∈ O

}
. Denote

L∞,† =
{((

a1 b1
b̄1 0

)
,

(
a2 b2
b̄2 0

))
: a1, a2 ∈ Z, b1, b2 ∈ O, the condition † holds

}

where the condition † is given by
(
b1
b2

)
= m

(
α β

γ δ

)(
1
ω

)
(8)

with α, β, γ, δ ∈ Z, αδ − βγ = ±1 and m ∈ F. Then the cusp zU associated to �∞\L∞,†

runs through all the representatives in (m
√
dF |)−1O/O.

Proof Write U = U (x1, x2). The �∞-action on (x1, x2) is given explicitly by
(
1 α

0 1

)
· (x1, x2) =

((
a1 + αb̄1 + ᾱb1 b1

b̄1 0

)
,

(
a2 + αb̄2 + ᾱb2 b2

b̄2 0

))
.

Under the �∞-action, the cusp zU becomes z
′
U ; that is

z
′
U = (a2 + αb̄2 + ᾱb2)b1 − (a1 + αb̄1 + ᾱb1)b2

b1b̄2 − b̄1b2
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=a2b1 + αb̄2b1 − a1b2 − αb̄1b2
b1b̄2 − b̄1b2

= zU + α.

By our assumption, the cusp zU can be rewritten as

zU = ma2(α + βω) − ma1(γ + δω)

−mm(α + βω)(γ + δω̄) + mm(α + βω̄)(γ + δω)

= a2(α + βω) − a1(γ + δω)

−m(αδ − βγ )(ω̄ − ω)
= a2(α + βω) − a1(γ + δω)

m
√
dF

of which the numerator ranges over the whole O.
Thus, modulo the �∞-action, the corresponding cusp zU runs through all the representa-

tives in (m
√
dF )−1O/O. 	


Remark 3.6 Let m be a square-free product of split or inert primes.

(1) Let d ≡ 1mod 4 and then dF = d . The above zU ranges over (m
√
d)−1O. Writing

f = (m
√
d)O, we have

zU f =
(
a2b1 − a1b2
b1b̄2 − b̄1b2

)
f =

(
a2b1 − a1b2

m

)
O.

(2) Let d ≡ 2, 3mod 4 and then dF = 4d . Note that in this case prime 2 is ramified in
F = Q(

√
d). Rewrite (8) above as

(
b1
b2

)
= 1

2
m

(
α β

γ δ

)(
1
ω

)

with α, β, γ, δ ∈ Z, αδ−βγ = ±1. Then the above zU ranges over (m
√
d)−1O. Writing

f = (m
√
d)O, we have

zU f =
(
a2b1 − a1b2
b1b̄2 − b̄1b2

)
f =

(
2(a2b1 − a1b2)

m

)
O.

In Sect. 4 we will define the Schwartz function evaluated at a2b1−a1b2
m or 2(a2b1−a1b2)

m
depending on d .

LetU = 〈x1, x2〉 =
〈(

a1 b1
b̄1 0

〉
,
(
a2 b2
b̄2 0

)〉
where a1, a2 ∈ Q and b1, b2 ∈ F×. We have seen

that DU consists of the infinite geodesic line joining the cusps ∞ and zU as in (7). Choose
a point Z = zU + r j on DU and then the orientation of TZ (DU ) depends on the sign of
Im(b1b̄2) (assuming Im(b1b̄2) �= 0) by the following lemma.

Lemma 3.7 Let U , DU , Z be as above. Then the sign of Im(b1b̄2) (assuming Im(b1b̄2) �= 0)
determines the orientation of TZ (DU ).

Proof Here we sketch the proof and for more details see [26, Lemma 4.2.7].

Let Z = zU + r j be a point on DUwhich can be identified with 1
r

(
zU z̄U + r2 zU

z̄U 1

)
.

Suppose that

(
α β

β̄ δ

)
∈ Z⊥ and we compute, recalling ∗ action in (2)

(
α β

β̄ δ

)(
zU z̄U + r2 zU

z̄U 1

)∗
=

(
α − β z̄U ∗

∗ −β̄zU + δ(zU z̄U + r2)

)
.
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It follows that

Z⊥ =
{(

α β

β̄ δ

)
: α − β z̄U − β̄zU + δ(zU z̄U + r2) = 0

}
.

We describe the subspace Z⊥ ∩U as

Z⊥ ∩U =
{(

α β

β̄ 0

)
: α − β z̄U − β̄zU = 0, α ∈ R, β ∈ C

}

=
{(

β z̄U + β̄zU β

β̄ 0

)}

where β ∈ Span{b1, b2}. We see that

Z⊥ ∩U =
〈
1

2
a1(e1 + e4) + 1

2
(b1 + b̄1)e2 − 1

2
i(b1 − b̄1)e3,

1

2
a2(e1 + e4) + 1

2
(b2 + b̄2)e2 − 1

2
i(b2 − b̄2)e3

〉

is identical to U =
〈(

a1 b1
b̄1 0

〉
,

(
a2 b2
b̄2 0

)〉
.

Similarly, we have that

Z⊥ ∩U⊥

=
〈
ε

2
(zU z̄U − r2 − 1)e1 + 1

2
(zU + z̄U )e2 − 1

2
i(zU − z̄U ) + e3

ε

2
(zU z̄U − r2 + 1)e4

〉

where ε = ±1 describes the orientation of TZ (DU ) � Z⊥ ∩U⊥. If the cycle DU is directed
from zU to ∞ then we take ε = −1. For a different direction of DU we take ε = 1.

Then we consider the base change, which describes the orientation related to introducing

β,κi ,+, given by

⎛

⎝
Z⊥ ∩U⊥
Z⊥ ∩U

Z

⎞

⎠ = M

⎛

⎜⎜⎝

e1
e2
e3
e4

⎞

⎟⎟⎠

where the determinnant of M can ba calculated as

det M = −εr
1

2
i(b1b̄2 − b̄1b2) = 1

2
εr Im(b1b̄2) > 0.

It is obvious that the sign of Im(b1b̄2) determines the orientation ε of TZ (DU ). 	


4 Schwartz function

In this paper we need to consider the pair Sp4 ×SO(3, 1) to construct the theta liftings of
weight 2 Bianchi modular forms. In the following Subsects. 4.1, 4.2 and 4.3, we define local
Schwartz functions at split primes dividing m, inert primes dividing m and ramified primes
away from 2 respectively. In Sect. 5 we will construct the theta lifting of a weight 2 Bianchi
modular form of �0(n) with square-free n coprime to (m|dF |). To avoid the vanishing of our
theta lifting, in Subsect. 4.4 we define the local Schwartz function at each place dividing N (n)

123



D. Zhang

(norm of n) and ramified prime 2, to be different to the characteristic function of integral
lattice. In Subsect. 4.5 we consider all other finite places.

Let F = Q(
√
d) be an imaginary quadratic field and denote by O its ring of integers.

Choose m ∈ Z as a square-free product of inert or split primes and put m = mO. Let χm be
a finite order Hecke character of conductor m

√
d . Denote by χ̃m the induced idelic one and

by χ̃m,v its local component. In this section we will define a Schwartz function ϕχm related
to this character χm.

We first describe how to localise the quadratic space in the following proposition. In
Sect. 3 we have chosen the rational quadratic space of dimension 4 such that (V (Q), q) �
(H(F),−det). Thus, to extend it to the 4-dimensional quadratic space over p-adic numbers
Qp , we can consider H(F) ⊗ Qp . Following [20, p.273], there are two four dimensional
quadratic spaces over Qp with discriminant d ∈ Q

×
p /(Q×

p )2 up to isometry. If d = 1, it is
isometric to M2×2(Qp) equipped with the determinant; if d �= 1, it is isometric to

V1(Qp) =
{(

e f
√
d

g
√
d e

)
: f , g ∈ Qp, e ∈ Qp(

√
d)

}
⊂ M2

(
Qp(

√
d)

)

equipped with the determinant.

Proposition 4.1 For a prime p, the four dimensional quadratic space over Qp is isometric
to either (V1(Qp), det) when p is inert or ramified in F/Q, or (M2(Qp), det) when p splits
in F/Q.

Proof Given a diagonal quadratic form Q = ∑n
i=1 ai x

2
i with ai ∈ Q

×
p , we define the Hasse

invariant as cp(Q) = c(Q) = ∏
i< j (ai , a j )p = ±1 where ( ) denotes the Hilbert symbol.

The non-degenerate quadratic spaces over Qp (p < ∞) are in 1-1 correspondence with the
triples (n, d, c), where n is the dimension, d is the discriminant, and c is the Hasse invariant
[4, Theorem 1.1, Chapter 4].

Let p be inert in F/Q which implies that
√
d /∈ Qp and that F ⊗ Qp = Qp(

√
d). Then

we have

H(F) ⊗ Qp =
{(

a b
b d

)
: a, d ∈ Qp, b ∈ Qp(

√
d)

}
= H(F ⊗ Qp),

where − denotes the non-trivial action in Gal(Qp(
√
d)/Qp). Equipping H(F) ⊗ Qp

with the quadratic form being − det and choosing an orthogonal basis e1 = (
1 0
0 1

)
,

e2 = (
1 0
0 −1

)
, e3 = (

0 1
1 0

)
and e4 =

(
0

√
d

−√
d 0

)
, we have an associated diagonal form

Q = −x21 + x22 + x23 − dx24 . It follows that d = d and c = (−1,−d)p = 1 since
p � d . Similarly, for V1(Qp) with the discriminant d = d , choosing an orthogonal

basis e
′
1 = (

1 0
0 1

)
, e

′
2 =

( √
d 0
0 −√

d

)
, e

′
3 =

(
0

√
d√

d 0

)
and e

′
4 =

(
0

√
d

−√
d 0

)
in V1(Qp)

above, we have a diagonal form Q
′ = x21 − dx22 − dx23 + dx24 . Then d

′ = d3 and
c

′ = (1,−d)2p(1, d)p(−d,−d)p(−d, d)2p = 1 since p � d . Thus, we can deduce that
(H(F) ⊗ Qp,− det) � (V1(Qp), det) if p is inert in F/Q.

Let p split in F/Q such that (p) = pp. Then d has a square root α in the ringZp of p-adic
integers by Hensel’s lemma. It is known that F ⊗ Qp = Fp × Fp where Fp, Fp are both

isomorphic to Qp . Consider the mapH(F) ⊗ Qp → M2(Qp) via
(
a b
b d

)
⊗ x �→

(
apx bpx
bpx dpx

)

where the subscripts p, p, p̄ denote images under Q ↪→ Qp , F ↪→ Fp and F ↪→ Fp
respectively. Note that bp, bp have the same image in Qp . It is not hard to see the map
H(F) ⊗ Qp → M2(Qp) is surjective: for any element

(
0 1−1 0

) · λ with λ ∈ Qp we can find
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its preimage
(

0
√
d

−√
d 0

)
⊗ α−1λ in H(F) ⊗ Qp; for

(
1 0
0 1

) · λ,
(
1 0
0 −1

) · λ and
(
0 1
1 0

) · λ, we

can find their preimages
(
1 0
0 1

) ⊗ λ,
(
1 0
0 −1

) ⊗ λ and
(
0 1
1 0

) ⊗ λ respectively in H(F) ⊗ Qp .
Then H(F) ⊗ Qp � M2(Qp) as they are both 4-dimensional over Qp . In fact M2(Qp)

equipped with the determinant is one isometric class of four dimensional quadratic spaces
of discriminant 1 [20, p.273]. Again, equipping H(F) ⊗ Qp with minus determinant and

choosing an orthogonal basis e1 = (
1 0
0 1

)
, e2 = (

1 0
0 −1

)
, e3 = (

0 1
1 0

)
and e4 =

(
0

√
d

−√
d 0

)
, we

have an associated diagonal form Q = −x21 + x22 + x23 − dx24 . It follows that d = d (square
in Zp) and c = (−1,−d)p = 1. Choosing an orthogonal basis e

′
1 = (

1 0
0 1

)
, e

′
2 = (

1 0
0 −1

)
,

e
′
3 = (

0 1
1 0

)
and e

′
4 = (

0 1−1 0

)
in M2(Qp) we have d

′ = 1 and c
′ = 1. Thus we can deduce

that (H(F) ⊗ Qp,− det) � (M2(Qp), det) if p splits in F/Q.
Suppose that p is ramified in F/Qp and then we have F ⊗Qp = Qp(

√
d). As in the inert

case,H(F)⊗Qp = H(F ⊗Qp). Corresponding to (H(F)⊗Qp,− det) the Hasse invariant

c = (−1,−d)p = (−1)
p−1
2 . For (V1(Qp), det) we calculate

c
′ = (1, d)p(−d,−d)p = (1,−d)p(1,−1)p(1,−d)p(−d,−d)p = (−d,−d)p = (−1)

p−1
2

where the last equality holds as d is square-free and divisible by q . Thus, if p is ramified we
have (H(F ⊗ Qp),− det) � (V1(Qp), det). 	


Fix the additive character ψ = ∏
q ψq of AQ given by ψ∞(x) = exp(2π i x) and, for

every rational prime q , ψq(x) = exp(2π iFrq(q−1x)) for x ∈ Qq , where Frq(x) denotes the
fractional part of x . In this casewe have ker(ψq) = qZq . Note that computing the congruence
subgroup of Sp4 under which ϕq is invariant is related to ker(ψq).

Let χV (x) = (x, det V ) : Q
×\A

× �→ {±1} be the quadratic Hecke character associated
to V . For X = (x1, x2) ∈ V (Q)2, represent the associated Gram matrix by

(X,X) = ((xi , x j )) ∈ Sym2(Q),

where ( ) is the symmetric bilinear form on V (Q)2. Let ω = ωψq denote the Weil represen-
tation on the Schwartz space S(V 2) characterized (for every q) by the following actions of
Sp4 ×SO(3, 1) locally on ϕq ∈ S((V ⊗ Qq)

2):

ω(1, h)ϕq(X) = ϕq(h
−1X), (9)

ω

((
1 b
0 1

)
, 1

)
ϕq(X) = ψq

(
1

2
tr(b(X,X))

)
ϕq(X), (10)

ω

((
a 0
0 t a−1

)
, 1

)
ϕq(X) = χV ,q(det(a))| det(a)|2qϕq(Xa), (11)

ω

((
0 1

−1 0

)
, 1

)
ϕq(X) = γ ϕ̂q(X). (12)

Here the Fourier transform is defined by

ϕ̂q(X) =
∫

(V⊗Qq )2
ϕq(Y)ψq(tr(X,Y))dY

and γ is a certain complex number of absolute value 1.

123



D. Zhang

4.1 At split prime dividingm

Let q|m be a split prime such that (q) = qq̄. According to Proposition 4.1, there is an
isomorphism (H(F) ⊗ Qq ,− det) � (V1(Qq), det) for q split in F/Q given by

(
a b
b̄ d

)
�−→

(
a b
c d

)

where c is the image of b̄ ∈ F under F ↪→ Fq � Qq .

Definition 4.2 (1) Suppose that d ≡ 1mod 4. The local Schwartz function ϕ
χm
q at q is

vanishing unless

ai ∈ Zq , bi ∈ qOq, ci ∈ qOq, di ∈ Zq , a2d1 − a1d2 ∈ qZq ,

in which case

ϕχm
q

((
a1 b1
c1 d1

)
,

(
a2 b2
c2 d2

))

=
{

(χ̃m,qχ̃m,q̄)
(
a2b1−a1b2

m + c2d1−c1d2
m

)
, if a2b1−a1b2

m + c2d1−c1d2
m ∈ O×

q × O×
q̄ ,

0, if a2b1−a1b2
m + c2d1−c1d2

m ∈ qOq or q̄Oq̄.

where (χ̃m,qχ̃m,q̄)(−) = χ̃m,q(−)χ̃m,q̄(−). Note that bi ∈ qOq, ci ∈ qOq is equivalent
to bi ∈ qOq × q̄Oq̄.

(2) Suppose that d ≡ 2, 3mod 4. Replace above a2b1−a1b2
m by 2(a2b1−a1b2)

m and c2d1−c1d2
m by

2(c2d1−c1d2)
m as discussed in Remark 3.6

In the following we will check the invariance properties of this local Schwartz function
under some congruence subgroups of Sp4 and SO(3, 1) in details in case of d ≡ 1mod 4 and
the other case can be treated similarly. We need to calculate the transformation properties
(9), (10), (11) and (12). For simplicity we write ϕq = ϕ

χm
q and χ = χm in the following

computation.

Set X = (x1, x2) =
((

a1 b1
c1 d1

)
,
(
a2 b2
c2 d2

))
. For ai ∈ Zq , bi ∈ qOq, ci ∈ qOq, di ∈ Zq , it is

not difficult to observe that

ω

((
1 u
0 1

))
ϕq(X) = ϕq(x1, x2) for u ∈ M2(qZq) (13)

as ψq
( 1
2 tr(u(X,X))

)
is trivial for such (x1, x2) and u.

Set Y = (y1, y2) =
((

α1 β1
γ1 δ1

)
,
(

α2 β2
γ2 δ2

))
. Inspired by Prasanna’s computations in the

proof of [19, Proposition 3.4], we will calculate the Fourier transform

ϕ̂q(Y) =
∫

ai∈Zq ,bi∈qOq
ci∈qOq,di∈Zq

ψq(tr(X,Y))ϕq(X)dX for i = 1, 2,

where

tr(X,Y) = −1

2
(a1δ1 − b1γ1 − c1β1 + d1α1 + a2δ2 − b2γ2 − c2β2 + d2α2).

Denote by λ√
d the image of

√
d in Oq. By the above definition, ϕq is invariant under the

transformations ai �→ ai + q , bi �→ bi + q2, bi �→ bi + q2λ√
d (or bi �→ bi + q2

1+λ√
d

2 )

123



On the non-vanishing of theta lifting of Bianchi modular…

and di �→ di + q . Sending ai �→ ai + q , we will have ψq(−qδi ), factored out of the above
integral, which has to be trivial for the non-vanishing of ϕ̂q . So for ϕ̂q(Y) non-vanishing we
need δi ∈ Zq . Sending b1 �→ b1 + q2, we get ψq(q2(γ1 + β1)). For b1 �→ b1 + q2λ√

d and

b1 �→ b1+q2
1+λ√

d
2 , we getψq(q2(γ1−β1)λ√

d) andψq(
1
2q

2(γ1+β1)+ 1
2q

2(γ1−β1)λ√
d)

respectively. For ϕ̂q(Y) non-vanishing we need γ1 + β1, γ1 − β1 ∈ q−1
Zq which implies

β1, γ1 ∈ q−1
Zq . Repeating the same argument we can deduce that for the non-vanishing of

ϕ̂q the following conditions must be satisfied, for i = 1, 2,

αi ∈ Zq , βi ∈ q−1
Zq , γi ∈ q−1

Zq , δi ∈ Zq .

It follows that ω
((

0 1−1 0

))
ϕq(Y) is vanishing unless αi ∈ Zq , βi ∈ q−1

Zq , γi ∈ q−1
Zq and

δi ∈ Zq .
Recall from (10) that

ω

((
1 u
0 1

))
ϕ̂q(Y) = ψq

(
1

2
tr(u(Y,Y))

)
ϕ̂q(Y).

Set αi ∈ Zq , βi ∈ q−1
Zq , γi ∈ q−1

Zq , δi ∈ Zq . Then when u ∈ M2(q3Zq) we can see that
ψq

( 1
2 tr(u(Y,Y))

)
is trivial. Thus we can deduce that

ω

((
1 u
0 1

)(
0 1

−1 0

))
ϕq(Y) = ω

((
0 1

−1 0

))
ϕq(Y) for u ∈ M2(q

3
Zq), u = ut

which implies

ω

((
1 0
u 1

))
ϕq(Y) = ϕq(Y) for u ∈ M2(q

3
Zq), u = ut . (14)

For a =
(

α β
γ δ

)
∈ GL2(Zq), we compute

Xa = (x1, x2)
(

α β

γ δ

)

=
((

αa1 + γ a2 αb1 + γ b2
αc1 + γ c2 αd1 + γ d2

)
,

(
βa1 + δa2 βb1 + δb2
βc1 + δc2 βd1 + δd2

))
=:

((
a

′
1 b

′
1

c
′
1 d

′
1

)
,

(
a

′
1 b

′
1

c
′
1 d

′
1

))

due to which we obtain that

a
′
2b

′
1 − a

′
1b

′
2

m
= (βa1 + δa2)(αb1 + γ b2) − (αa1 + γ a2)(βb1 + δb2)

m

= (αδ − βγ )a2b1 − (αδ − βγ )a1b2
m

= det(a) · a2b1 − a1b2
m

and similarly that
c
′
2d

′
1−c

′
1d

′
2

m = det(a) · c2d1−c1d2
m . Then from (11) we see that if det(a) ∈ Z

×
q

then

ω

((
a 0
0 t a−1

))
ϕq(X) = χV ,q(det(a))| det(a)|2q(χ̃qχ̃q̄)(det(a))ϕq(X). (15)

Combining (13), (14) and (15), we have proved the following lemma:

Lemma 4.3 We have

ω(k1)ϕq = χV ,q(det(A))| det(A)|2q(χ̃qχ̃q̄)(det(A))ϕq
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for

k1 =
(
A B
C D

)
∈

{(
A B
C D

)
∈ Sp4(Zq) : B ∈ M2(qZq),C ∈ M2(q

3
Zq)

}
.

Proof The assertion follows from the Iwahori decomposition of Sp4. 	

We next discuss the action of SO(3, 1)(Qq) on ϕq characterised by

ω(1, h)ϕq(x1, x2) = ϕq(h
−1x1, h−1x2) for h ∈ SO(3, 1)(Qq).

Recall from [26, Sect. 1.2], for odd split prime q we have the exact sequence

1 → {±1} → SL2(Qq × Qq)
�−→ SO(3, 1)(Qq) → Q

×
q /Q

×2
q → 1

from which we can deduce the isomorphism PSL2(Qq × Qq) � SO+(3, 1)(Qq) where
SO+ := Im(�). In this case of split q , wewant to check congruence subgroups of PSL2(Zq×
Zq) underwhich the Schwartz functionϕq is invariant. Recall from [20, Sect. 2] that h−1xi :=
h−1
1 xi t (h

−1
2 )∗ for h = (h1, h2) ∈ PSL2(Zq) × PSL2(Zq) = PSL2(Zq × Zq).

Lemma 4.4 For h = (h1, h2) ∈ PSL2(Zq) × PSL2(Zq) satisfying

hi ∈ �(q) =
{(

α β

γ δ

)
∈ PSL2(Zq) : ±

(
α β

γ δ

)
≡ ±

(
1 0
0 1

)
mod q

}
,

we have that

ω(1, h)ϕq(x1, x2) = ϕq(x1, x2). (16)

Proof Set

h−1
j =

(
α j β j

γ j δ j

)
and xi =

(
ai bi
ci di

)
for i, j ∈ {1, 2}

with α j , δ j ≡ 1mod q and β j , γ j ≡ 0mod q .
First we assume that ai , di ∈ Zq and bi , ci ∈ qZq so that ϕq is non-vanishing on (x1, x2).
We compute

(
a

′
i b

′
i

c
′
i d

′
i

)
:= h−1

1 xi
t (h−1

2 )∗

=
(

δ2(α1ai + β1ci ) − β2(α1bi + β1di ) −γ2(α1ai + β1ci ) + α2(α1bi + β1di )
δ2(γ1ai + δ1ci ) − β2(γ1bi + δ1di ) −γ2(γ1ai + δ1ci ) + α2(γ1bi + δ1di )

)
.

It is not hard to observe thatb
′
i , c

′
i ∈ qZq as bi , ci , β j , γ j ∈ qZq , and

a
′
2d

′
1 − a

′
1d

′
2 ≡ α1α2δ1δ2(a2d1 − a1d2) ≡ a2d1 − a1d2 mod q.

Modulo q2, we have

a
′
2b

′
1 − a

′
1b

′
2

≡ δ2α1a2(−γ2α1a1 + α2α1b1 + α2β1d1) − δ2α1a1(−γ2α1a2 + α2α1b2 + α2β1d2)

≡ α2
1α2δ2(a2b1 − a1b2) + α1α2β1δ2(a2d1 − a1d2).
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It follows that

a
′
2b

′
1 − a

′
1b

′
2

m
≡ a2b1 − a1b2

m
mod q.

Similarly, we obtain that modulo q2

c
′
2d

′
1 − c

′
1d

′
2 ≡α2δ1d1(δ2γ1a2 + δ2δ1c2 − β2δ1d2) − α2δ1d2(δ2γ1a1 + δ2δ1c1 − β2δ1d1)

≡α2δ
2
1δ2(c2d1 − c1d2) + α2γ1δ1δ2(a2d1 − a1d2).

and

c
′
2d

′
1 − c

′
1d

′
2

m
≡ c2d1 − c1d2

m
mod q.

Therefore, when ϕq is non-vanishing, we can deduce that

ω(1, h)ϕq((x1, x2)) = ϕq((x1, x2)) for h = (h1, h2) ∈ �(q) × �(q).

When ϕq is vanishing, we consider that b1 ∈ Z
×
q and other cases that b2, d1 or d2 in Z

×
q can

be treated similarly. For h−1 =
((

α1 β1
γ1 δ1

)
,
(

α2 β2
γ2 δ2

))
∈ �(q), it is observed that

b
′
1 = −γ2(α1a1 + β1c1) + α2(α1b1 + β1d1) ∈ Z

×
q

which makes ϕq vanish on (h−1x1, h−1x2). Now we have proven this lemma. 	


4.2 At inert prime dividingm

Let q be an inert prime dividing m such that (q) = q. According to Proposition 4.1, there is
an isomorphism (H(F) ⊗ Qq ,− det) � (V1(Qq

√
d), det) for q inert in F/Q given by

(
a b
b̄ c

)
�−→

(
b a

√
d

c
√
d b̄

)
for a, c ∈ Qq , b ∈ Qq(

√
d)

where − on the right hand side denotes the non-trivial action in Gal(Qq(
√
d)/Qq).

Definition 4.5 (1) Suppose that d ≡ 1mod 4. The local Schwartz function ϕ
χm
q at q is

vanishing unless, for i = 1, 2,

ai ∈ Zq , bi ∈ qOq, ci ∈ Zq and a2c1 − a1c2 ∈ qZq ,

in which case

ϕχm
q

((
b1 a1

√
d

c1
√
d b̄1

)
,

(
b2 a2

√
d

c2
√
d b̄2

))

=
{

χ̃m,q

(
a2b1−a1b2

m + b̄2c1−b̄1c2
m

)
, if a2b1−a1b2

m + b̄2c1−b̄1c2
m ∈ O×

q ,

0, if a2b1−a1b2
m + b̄2c1−b̄1c2

m ∈ qOq.

(2) Suppose that d ≡ 2, 3mod 4. We replace above a2b1−a1b2
m by 2(a2b1−a1b2)

m and b̄2c1−b̄1c2
m

by 2(b̄2c1−b̄1c2)
m as discussed in Remark 3.6.
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In the following we will check the invariance properties of this local Schwartz function with
respect to Sp4 ×SO(3, 1) in detail in case of d ≡ 1mod 4 and the other case can be treated
similarly. For simplicity we write ϕq = ϕ

χm
q and χ = χm.

Set X = (x1, x2) =
((

b1 a1
√
d

c1
√
d b̄1

)
,
(

b2 a2
√
d

c2
√
d b̄2

))
. For ai ∈ Zq ,bi ∈ qOq and ci ∈ Zq ,

it is easy to observe that

ω

((
1 u
0 1

))
ϕq(x1, x2) = ϕq(x1, x2) for u ∈ M2(qZq). (17)

Set Y = (y1, y2) =
((

β1 α1
√
d

γ1
√
d β̄1

)
,
(

β2 α2
√
d

γ2
√
d β̄2

))
. Consider the Fourier transform

ϕ̂q(Y) =
∫

ψq(tr(X,Y))ϕq (X)dX

where

tr(X,Y) = −1

2
(b1β̄1 + b̄1β1 − a1γ1d − α1c1d + b2β̄2 + b̄2β2 − a2γ2d − α2c2d).

By the definition, ϕq is invariant under the transformations ai �→ ai + q , bi �→ bi + q2,

bi �→ bi + q2
√
d (or bi �→ bi + q2 · 1+√

d
2 ) and ci �→ ci + q . Repeating arguments in the

previous subsection, we can observe that the Fourier transform ϕ̂(y1, y2) is vanishing unless,
for i = 1, 2,

αi ∈ Zq ;β, β̄ ∈ q−1Oq(as βi + β̄i ∈ q−1
Zq , βi − β̄i ∈ q−1

√
dZq); γi ∈ Zq .

It follows that, for u ∈ M2(q3Zq) such that u = ut ,

ω

((
1 u
0 1

)(
0 1

−1 0

))
ϕq(y1, y2) = ω

((
0 1

−1 0

))
ϕq(y1, y2)

which implies

ω

((
1 0
u 1

))
ϕq(y1, y2) = ϕq(y1, y2) for u ∈ M2(q

3
Zq), u = ut . (18)

For a ∈ GL2(Zq), writeXa :=
((

b
′
1 a

′
1

√
d

c
′
1

√
d b̄

′
1

)
,

(
b
′
2 a

′
2

√
d

c
′
2

√
d b̄

′
2

))
. We have a

′
2b

′
1−a

′
1b

′
2 =

det(a)(a2b1 − a1b2), b̄
′
2c

′
1 − b̄

′
1c

′
2 = det(a)(b̄2c1 − b̄1c2) and a

′
2c

′
1 − a

′
1c

′
2 = det(a)(a2c1 −

a1c2). So for det(a) ∈ Z
×
q , we obtain

ω

((
a 0
0 t a−1

)
, 1

)
ϕq(x1, x2) = χV ,q(det(a))| det(a)|2q χ̃q(det(a))ϕq(x1, x2). (19)

Combining (17),(18) and (19), we can deduce the following lemma:

Lemma 4.6 We have

ω(k2)ϕq = χV ,q(det(A))| det(A)|2q χ̃q(det(A)ϕq

for

k2 =
(
A B
C D

)
∈

{(
A B
C D

)
∈ Sp4(Zq) : B ∈ M2(qZq),C ∈ M2(q

3
Zq)

}
.
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We next discuss the action of SO(3, 1)(Qq) on ϕq characterised by

ω(1, h)ϕq(x1, x2) = ϕq(h
−1x1, h−1x2) for h ∈ SO(3, 1)(Qq).

Due to the exceptional isomorphism PSL2(Qq(
√
d)) � SO+(3, 1)(Qq) as in [26, Sect. 1.2],

in this casewe check the invariance property under some congruence subgroups of PSL2(Oq).
Here we have that h−1xi := h−1xi (h̄−1)∗ for i = 1, 2 where − denotes the non-trivial action
in Gal(Qq(

√
d)/Qq) (see [20, Sect. 2]).

Lemma 4.7 For

h ∈ �(q) =
{(

α β

γ δ

)
∈ PSL2(Oq) : ±

(
α β

γ δ

)
≡ ±

(
1 0
0 1

)
mod q

}
,

we have that

ω(1, h)ϕq(x1, x2) = ϕq(x1, x2). (20)

Proof Set

h−1 =
(

α β

γ δ

)
and xi =

(
bi ai

√
d

ci
√
d b̄i

)
.

with α, δ ≡ 1 mod q and β, γ ≡ 0 mod q .
First we assume ai ∈ Zq , b̄i ∈ qOq,ci ∈ Zq so that ϕq is non-vanishing on (x1, x2).

Writing h−1xi =
(

b
′
i a

′
i

√
d

c
′
i

√
d b̄

′
i

)
, we compute

(
b

′
i a

′
i

√
d

c
′
i

√
d b̄

′
i

)
=

(
α β

γ δ

)(
bi ai

√
d

ci
√
d b̄i

)(
δ̄ −β̄

−γ̄ ᾱ

)

=
(

αbi + βci
√
d αai

√
d + βb̄i

γ bi + δci
√
d γ ai

√
d + δb̄i

)(
δ̄ −β̄

−γ̄ ᾱ

)

=
(

δ̄(αbi + βci
√
d) − γ̄ (αai

√
d + βb̄i ) −β̄(αbi + βci

√
d) + ᾱ(αai

√
d + βb̄i )

δ̄(γ bi + δci
√
d) − γ̄ (γ ai

√
d + δb̄i ) −β̄(γ bi + δci

√
d) + ᾱ(γ ai

√
d + δb̄i )

)
.

It is not hard to observe that a
′
i ∈ Zq ,b

′
i ∈ qOq, c

′
i ∈ Zq and that a

′
2c

′
1 −a

′
1c

′
2 ≡ a2c1 −a1c2

mod q . Then we expand

a
′
2b

′
1 − a

′
1b

′
2

=
(

ᾱβb̄2 − β̄αb2√
d

− β̄βc2 + ᾱαa2

)
(δ̄(αb1 + βc1

√
d) − γ̄ (αa1

√
d + βb̄1))

−
(

ᾱβb̄1 − β̄αb1√
d

− β̄βc1 + ᾱαa1

)
(δ̄(αb2 + βc2

√
d) − γ̄ (αa2

√
d + βb̄2)),

and, modulo q2, we get

a
′
2b

′
1 − a

′
1b

′
2 ≡α2ᾱδ̄(a2b1 − a1b2) + αᾱβδ̄

√
d(a2c1 − a1c2).

Similarly, we have, modulo q2,

b̄
′
2c

′
1 − b̄

′
1c

′
2

≡δδ̄c1(−β̄δc2
√
d + ᾱ(γ a2

√
d + δb̄2)) − δδ̄c2(−β̄δc1

√
d + ᾱ(γ a1

√
d + δb̄1))
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≡δ2ᾱδ̄(b̄2c1 − b̄1c2) + ᾱγ δδ̄
√
d(a2c1 − a1c2).

Then we can deduce that

a
′
2b

′
1 − a

′
1b

′
2

m
+ b̄

′
2c

′
1 − b̄

′
1c

′
2

m
≡ a2b1 − a1b2

m
+ b̄2c1 − b̄1c2

m
mod q

which implies that

ϕq

(
a

′
2b

′
1 − a

′
1b

′
2

m
+ b̄

′
2c

′
1 − b̄

′
1c

′
2

m

)
= ϕq

(
a2b1 − a1b2

m
+ b̄2c1 − b̄1c2

m

)
.

Next we assume b1 ∈ O×
q so that ϕq is vanishing on (x1, x2). It follows that δ̄αb1 ∈

O×
q and then b

′
1 ∈ O×

q which makes ϕq is vanishing on (h−1x1, h−1x2). Other cases that

b̄
′
1, b

′
2, b̄

′
2 ∈ O×

q can be treated in the same way and recall that a
′
2c

′
1 − a

′
1c

′
2 ≡ a2c1 − a1c2

mod q . Hence, if ϕq is vanishing on (x1, x2), so is that on (h−1x1, h−1x2).
Now we have proven this lemma. 	


4.3 At ramified prime away from 2

Let q be a ramified prime away from 2 such that (q) = q2. According to Proposition 4.1,
there is an isomorphism (H(F) ⊗ Qq ,− det) � (V1(Qq), det) for q ramified in F/Q given
by

(
a b
b̄ c

)
�−→

(
b a

√
d

c
√
d b̄

)
for a, c ∈ Qq , b ∈ Qq(

√
d)

where − on the right hand side denotes the non-trivial action in Gal(Qq(
√
d)/Qq). Note that

when d ≡ 2, 3 (mod 4) the prime 2 is ramified and at the ramified 2 the local Schwartz
function is defined in the next subsection.

Definition 4.8 (1) Suppose that d ≡ 1mod 4. The local Schwartz function ϕ
χm
q at q is

vanishing unless, for i = 1, 2,

ai ∈ Zq , ci ∈ Zq , bi ∈ Oq, b1b̄2 − b̄1b2 ∈ qOq,

in which case

ϕχm
q

((
b1 a1

√
d

c1
√
d b̄1

)
,

(
b2 a2

√
d

c2
√
d b̄2

))

{
χ̃m,q

(
a2b1−a1b2

m + b̄2c1−b̄1c2
m

)
, if a2b1−a1b2

m + b̄2c1−b̄1c2
m ∈ O×

q ,

0, if a2b1−a1b2
m + b̄2c1−b̄1c2

m ∈ qOq.

(2) Suppose that d ≡ 2, 3mod 4. We replace above a2b1−a1b2
m by 2(a2b1−a1b2)

m and b̄2c1−b̄1c2
m

by 2(b̄2c1−b̄1c2)
m as discussed in Remark 3.6.

In the following we will check the invariance properties of this local Schwartz function
with respect to Sp4 ×SO(3, 1) in case of d ≡ 1mod 4 and the other case can be treated
similarly. For simplicity we write ϕq = ϕ

χm
q and χ = χm.
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Set X = (x1, x2) =
((

b1 a1
√
d

c1
√
d b̄1

)
,
(

b2 a2
√
d

c2
√
d b̄2

))
. For ai , ci ∈ Zq and bi , b̄i ∈ Oq, it is

easy to observe that

ω

((
1 u
0 1

))
ϕq(x1, x2) = ϕq(x1, x2) for u ∈ M2(qZq). (21)

Set Y = (y1, y2) =
((

β1 α1
√
d

γ1
√
d β̄1

)
,
(

β2 α2
√
d

γ2
√
d β̄2

))
. Consider the Fourier transform

ϕ̂q(Y) =
∫

ψq(tr(X,Y))ϕq (X)dX

where

tr(X,Y) = −1

2
(b1β̄1 + b̄1β1 − a1γ1d − α1c1d + b2β̄2 + b̄2β2 − a2γ2d − α2c2d).

By the definition, ϕq is invariant under the transformations ai �→ ai + q , bi �→ bi + q ,
bi �→ bi + √

d and ci �→ ci + q . Repeating arguments in the previous subsection, we can
observe that the Fourier transform ϕ̂(y1, y2) is vanishing unless, for i = 1, 2,

αi , γi ∈ q−1
Zq and βi , β̄i ∈ Oq(as βi + β̄i ∈ Zq , βi − β̄i ∈ √

dZq).

It follows that, for u ∈ M2(q2Zq) such that u = ut ,

ω

((
1 u
0 1

)(
0 1

−1 0

))
ϕq(y1, y2) = ω

((
0 1

−1 0

))
ϕq(y1, y2)

which implies

ω

((
1 0
u 1

))
ϕq(y1, y2) = ϕq(y1, y2) for u ∈ M2(q

2
Zq), u = ut . (22)

For a ∈ GL2(Zq) with det(a) ∈ Z
×
q , we also have

ω

((
a 0
0 t a−1

)
, 1

)
ϕq(x1, x2) = χV ,q(det(a))| det(a)|2q χ̃q(det(a))ϕq(x1, x2). (23)

Again, combining (21),(22) and (23), we can deduce the following lemma:

Lemma 4.9 We have

ω(k3)ϕq = χV ,q(det(A))| det(A)|2q χ̃q(det(A))ϕq

for

k3 =
(
A B
C D

)
∈

{(
A B
C D

)
∈ Sp4(Zq) : B ∈ M2(qZq),C ∈ M2(q

2
Zq)

}
.

We next discuss the action of SO(3, 1)(Qq) on ϕq characterised by

ω(1, h)ϕq(x1, x2) = ϕq(h
−1x1, h−1x2) for h ∈ SO(3, 1)(Qq).

In this case, we check the invariance property under congruence subgroups of PSL2(Oq)

and have that h−1xi := h−1xi (h̄−1)∗ for i = 1, 2 where − denotes the non-trivial action in
Gal(Qq(

√
d)/Qq) (see [20, Sect. 2]).
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Lemma 4.10 For

h ∈ �(q) =
{(

α β

γ δ

)
∈ PSL2(Oq) : ±

(
α β

γ δ

)
≡ ±

(
1 0
0 1

)
mod q

}
,

we have that

ω(1, h)ϕq(x1, x2) = ϕq(x1, x2). (24)

Proof Set

h−1 =
(

α β

γ δ

)
and xi =

(
bi ai

√
d

ci
√
d b̄i

)
.

with α, δ ≡ 1 mod q and β, γ ≡ 0 mod q.
First we assume ai , ci ∈ Zq and bi , b̄i ∈ Oq so that ϕq is non-vanishing on (x1, x2).

Writing h−1xi =
(

b
′
i a

′
i

√
d

c
′
i

√
d b̄

′
i

)
, we compute

(
b

′
i a

′
i

√
d

c
′
i

√
d b̄

′
i

)
=

(
α β

γ δ

)(
bi ai

√
d

ci
√
d b̄i

)(
δ̄ −β̄

−γ̄ ᾱ

)

=
(

αbi + βci
√
d αai

√
d + βb̄i

γ bi + δci
√
d γ ai

√
d + δb̄i

)(
δ̄ −β̄

−γ̄ ᾱ

)

=
(

δ̄(αbi + βci
√
d) − γ̄ (αai

√
d + βb̄i ) −β̄(αbi + βci

√
d) + ᾱ(αai

√
d + βb̄i )

δ̄(γ bi + δci
√
d) − γ̄ (γ ai

√
d + δb̄i ) −β̄(γ bi + δci

√
d) + ᾱ(γ ai

√
d + δb̄i )

)
.

It is not hard to observe that a
′
i , c

′
i ∈ Zq , b

′
i , b̄

′
i ∈ Oq and b

′
1b̄

′
2 − b̄

′
1b

′
2 ≡ b1b̄2 − b̄1b2 mod

q. Modulo q, we have

a
′
2b

′
1 − a

′
1b

′
2

≡δ̄αb1

(
ᾱβb̄2 − β̄αb2√

d
+ ᾱαa2

)
− δ̄αb2

(
ᾱβb̄1 − β̄αb1√

d
+ ᾱαa1

)

≡α2ᾱδ̄(a2b1 − a1b2) − αᾱβδ̄/
√
d(b1b̄2 − b̄1b2),

and

c
′
2b̄

′
1 − c

′
1b̄

′
2

≡ᾱδb̄1

(
δ̄γ b2 − δγ̄ b̄2√

d
+ δ̄δc2

)
− ᾱδb̄2

(
δ̄γ b1 − δγ̄ b̄1√

d
+ δ̄δc1

)

≡δ2ᾱδ̄(c2b̄1 − c1b̄2) + ᾱγ δδ̄/
√
d(b1b̄2 − b̄1b2).

So, modulo q, we get

a
′
2b

′
1 − a

′
1b

′
2

m
≡ α2ᾱδ̄

a2b1 − a1b2
m

and
c

′
2b̄

′
1 − c

′
1b̄

′
2

m
≡ δ2ᾱδ̄

c2b̄1 − c1b̄2
m

.

It follows that

ϕq

(
a

′
2b

′
1 − a

′
1b

′
2

m
+ c

′
2b̄

′
1 − c

′
1b̄

′
2

m

)
= ϕq

(
a2b1 − a1b2

m
+ c2b̄1 − c1b̄2

m

)
.

Next we assume b1 ∈ q−1O×
q so that ϕq is vanishing on (x1, x2). It follows that δ̄αb1 ∈

q−1O×
q and then b

′
1 ∈ q−1O×

q which makes ϕq be vanishing on (h−1x1, h−1x2). Other cases

123



On the non-vanishing of theta lifting of Bianchi modular…

for ai , ci , b̄1, b2, b̄2 can be treated in the same way. Hence, if ϕq is vanishing on (x1, x2), so
is that on (h−1x1, h−1x2).

Now we have proven this lemma. 	


4.4 At places dividing N(n) and ramified 2

In this subsection we consider the local Schwartz function at finite places dividing N (n) and
at ramified prime 2 (when d ≡ 2, 3mod 4). For a place q and an integral lattice X on V , we
put Xq = X ⊗Z Zq .

Definition 4.11 (1) Let q|N (n) be split with (q) = qq̄.

• Suppose that (n, (q)) = q. Define the local Schwartz function ϕq to be the
characteristic function of

{((
a1 b1
c1 d1

)
,

(
a2 b2
c2 d2

))
∈ X2

q : b1c2 + c1b2 ∈ O×
q , di ∈ qZq

}
.

• Suppose that (n, (q)) = q̄. Define ϕq to be the characteristic function of
{((

a1 b1
c1 d1

)
,

(
a2 b2
c2 d2

))
∈ X2

q : b1c2 + c1b2 ∈ O×
q̄ , di ∈ qZq

}
.

• Suppose that (n, (q)) = (q). Define ϕq to be the characteristic function of
{((

a1 b1
c1 d1

)
,

(
a2 b2
c2 d2

))
∈ X2

q : b1c2 + c1b2 ∈ O×
q × O×

q̄ , di ∈ qZq

}
.

(2) At inert place q|n with (q) = q, we define ϕq to be the characteristic function of
{((

b1 a1
√
d

c1
√
d b̄1

)
,

(
b2 a2

√
d

c2
√
d b̄2

))
∈ X2

q : b1b̄2 + b̄1b2 ∈ O×
q , ci ∈ qZq

}

(3) If 2 is ramified with (2) = q22, we define ϕ2 to be the characteristic function of
{((

b1 a1
√
d

c1
√
d b̄1

)
,

(
b2 a2

√
d

c2
√
d b̄2

))
: ai , ci ∈ Z2, bi ∈ 1

2
Oq2 , b1b̄2 + b̄1b2 ∈ 1

2
O×

q2

}
.

Note that if we take the local Schwartz function at finite places dividing N (n) and ramified
2 as the characteristic function of integral lattice, the resulting theta liftingwould be vanishing.

In the following we will check the invariance properties of this local Schwartz function
with respect to Sp4 ×SO(3, 1).

Lemma 4.12 (1) For ϕq as in above Definition 4.11 (1) and (2), We have

ω(k4)ϕq = ϕq

for

k4 ∈
{(

A B
C D

)
∈ Sp4(Zq) : A ∈

(
Zq qZq

qZq Zq

)
, B ∈ M2(qZq),C ∈ M2(qZq)

}
.

(2) At ramified 2, we have

ω(k5)ϕ2 = ϕ2
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for

k5 ∈
{(

A B
C D

)
∈ Sp4(Zq) : A ∈

(
Z2 2Z2

2Z2 Z2

)
, B ∈ M2(2

4
Z2)

}
.

Proof (1) We prove this lemma in details only for split q with (n, (q)) = q and other cases

can be treated similarly. SetX = (x1, x2) =
((

a1 b1
c1 d1

)
,
(
a2 b2
c2 d2

))
∈ X2

q . It is not difficult

to observe that

ω

((
1 u
0 1

))
ϕq(X) = ϕq(x1, x2) for u ∈ M2(qZq).

Set Y = (y1, y2) =
((

α1 β1
γ1 δ1

)
,
(

α2 β2
γ2 δ2

))
. Consider the Fourier transform

ϕ̂q(Y) =
∫

X2
q,v

ψq(tr(X,Y))ϕq (X)dX for i = 1, 2,

where

tr(X,Y) = −1

2
(a1δ1 − b1γ1 − c1β1 + d1α1 + a2δ2 − b2γ2 − c2β2 + d2α2).

By the above definition, ϕq is invariant under the transformations ai �→ ai + Zq , bi �→
bi +q , bi �→ bi +qλ√

d (or bi �→ bi +q
1+λ√

d
2 ) and di �→ di +q . Note that b1c2+c1b2 ∈

O×
q is not preserved under bi �→ bi + q or bi �→ bi + q̄. Then we can deduce that

ω
((

0 1−1 0

))
ϕq(Y) is vanishing unless αi ∈ Zq , βi ∈ Zq , γi ∈ Zq and δi ∈ qZq . It

follows that

ω

((
1 u
0 1

)(
0 1

−1 0

))
ϕq(Y) = ω

((
0 1

−1 0

))
ϕq(Y) for u ∈ M2(qZq), u = ut

which implies

ω

((
1 0
u 1

))
ϕq(Y) = ϕq(Y) for u ∈ M2(qZq), u = ut .

For a =
(

α β
γ δ

)
∈ GL2(Zq), set

((
a

′
1 b

′
1

c
′
1 d

′
1

)
,

(
a

′
2 b

′
2

c
′
2 d

′
2

))
:= (x1, x2)a. It is clear that

d
′
1 = αd1 + βd2 and d

′
2 = γ d1 + δd2

lie in qZq . Also we have

b
′
1c

′
2 + c

′
1b

′
2 = (αb1 + γ b2)(βc1 + δc2) + (βb1 + δb2)(αc1 + γ c2).

If β, γ ≡ 0mod q and det(a) ∈ Z
×
q , then b

′
1c

′
2 + c

′
1b

′
2 ∈ O×

q . We can deduce that

ω

((
a 0
0 t a−1

))
ϕq(X) = ϕq(X) for a ∈

(
Zq qZq

qZq Zq

)
and det(a) ∈ Z

×
q .

(2) Set X = (x1, x2) =
((

b1 a1
√
d

c1
√
d b̄1

)
,
(

b2 a2
√
d

c2
√
d b̄2

))
. For ai , ci ∈ Z2 and bi ∈ 1

2Oq2 , it is

easy to observe that

ω

((
1 u
0 1

))
ϕq(x1, x2) = ϕq(x1, x2) for u ∈ M2(2

4
Z2).
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Set Y = (y1, y2) =
((

β1 α1
√
d

γ1
√
d β̄1

)
,
(

β2 α2
√
d

γ2
√
d β̄2

))
. Consider the Fourier transform

ϕ̂q(Y) =
∫

ψq(tr(X,Y))ϕq(X)dX

where

tr(X,Y) = −1

2
(b1β̄1 + b̄1β1 − a1γ1d − α1c1d + b2β̄2 + b̄2β2 − a2γ2d − α2c2d).

By the definition, ϕq is invariant under the transformations ai �→ ai +Z2, bi �→ bi +Z2,
bi �→ bi + Z2

√
d and ci �→ ci + Z2. Repeating arguments in the previous subsection,

we can observe that the Fourier transform ϕ̂(y1, y2) is vanishing unless, for i = 1, 2,

αi , γi ∈ 4Z2 and βi ∈ 4Oq2(as βi + β̄i ∈ 4Zq , βi − β̄i ∈ 4
√
dZq).

It follows that, for u ∈ M2(Z2) such that u = ut ,

ω

((
1 u
0 1

)(
0 1

−1 0

))
ϕq(y1, y2) = ω

((
0 1

−1 0

))
ϕq(y1, y2)

which implies

ω

((
1 0
u 1

))
ϕq(y1, y2) = ϕq(y1, y2) for u ∈ M2(Z2), u = ut .

For a =
(

α β
γ δ

)
∈ GL2(Zq), set

((
b
′
1 a

′
1

√
d

c
′
1

√
d b̄

′
1

)
,

(
b
′
2 a

′
2

√
d

c
′
2

√
d b̄

′
2

))
:= (x1, x2)a. We have

b
′
1 = αb1 + γ b2 and b

′
2 = βb1 + δb2

and then

b
′
1b̄

′
2 + b̄

′
1b

′
2 = (αb1 + γ b2)(βb̄1 + δb̄2) + (αb̄1 + γ b̄2)(βb1 + δb2).

If β, γ ∈ 2Z2 and αγ ∈ Z
×
2 , we have

ω

((
a 0
0 t a−1

)
, 1

)
ϕ2(x1, x2) = ϕ2(x1, x2).

	

Lemma 4.13 (1) Let q|N (n) split with (q) = qq̄.

• Suppose that (n, (q)) = q. We have

ω(1, h1)ϕq(x1, x2) = ϕq(x1, x2)

for h1 = h1,1 × h1,2 with

h1,i ∈ �(q) =
{(

α β

γ δ

)
∈ PSL2(Oq) : ±

(
α β

γ δ

)
≡ ±

(
1 0
0 1

)
mod q

}
.

• If (n, (q)) = q̄, we have

ω(1, h2)ϕq(x1, x2) = ϕq(x1, x2) for h2 ∈ �(q̄).

• If (n, (q)) = (q), we have

ω(1, h3)ϕq(x1, x2) = ϕq(x1, x2) for h3 ∈ �(q).
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(2) For inert q|N (n) with (q) = q, we have

ω(1, h4)ϕq(x1, x2) = ϕq(x1, x2) for h4 ∈ �(q).

(3) For 2 ramified with (2) = q22, we have

ω(1, h5)ϕq(x1, x2) = ϕq(x1, x2) for h5 ∈ �(q2).

Proof In part (1), we prove the first statement and other cases can be treated similarly. Let

(q) = qq̄. Set h−1
j =

(
α j β j

γ j δ j

)
and xi =

(
ai bi
ci di

)
with α j , δ j ≡ 1mod q and β j , γ j ≡

0mod q. We compute
(
a

′
i b

′
i

c
′
i d

′
i

)
:=h−1

1 xi t (h
−1
2 )∗

=
(

δ2(α1ai + β1ci ) − β2(α1bi + β1di ) −γ2(α1ai + β1ci ) + α2(α1bi + β1di )
δ2(γ1ai + δ1ci ) − β2(γ1bi + δ1di ) −γ2(γ1ai + δ1ci ) + α2(γ1bi + δ1di )

)

≡
(∗ bi
ci di

)
mod q.

So the conditions on b1c2 + b2c1 and d
′
i for ϕq non-vanishing are preserved.

Let q be an inert prime. Set h−1 =
(

α β

γ δ

)
and xi =

(
bi ai

√
d

ci
√
d b̄i

)
with α, δ ≡ 1 mod

q and β, γ ≡ 0 mod q . It suffices to show that
(

b
′
i a

′
i

√
d

c
′
i

√
d b̄

′
i

)
=

(
α β

γ δ

)(
bi ai

√
d

ci
√
d b̄i

)(
δ̄ −β̄

−γ̄ ᾱ

)

=
(

δ̄(αbi + βci
√
d) − γ̄ (αai

√
d + βb̄i ) ∗

δ̄(γ bi + δci
√
d) − γ̄ (γ ai

√
d + δb̄i ) −β̄(γ bi + δci

√
d) + ᾱ(γ ai

√
d + δb̄i )

)

≡
(

bi ∗
ci

√
d b̄i

)
mod q.

It is clear that if ϕq is vanishing on (x1, x2), then so is ω(1, h j )ϕq on (x1, x2) in the same
way as dicussed in previous subsections. Similarly at ramified 2 we obtain the same result. 	


4.5 At other finite places

We consider non-archimedean places away from m|dF |N (n). For such a place q and an
integral lattice X on V , we put Xq = X ⊗Z Zq . Define its dual lattice

X �
q = {x ∈ V ⊗ Qq : (x, y) ∈ Zq ∀y ∈ Xq}

and let (q−lq ) be the Zq -module generated by {(x, x) : x ∈ X �
q}. In [3, Lemma 27], it is

shown that lq = 0 at these places. At each place q , we define the local Schwartz function ϕq

to be the characteristic function of X2
q . Note that ϕq is invariant under PSL2(Zq)×PSL2(Zq)

for split q and PSL2(Oq) for inert or ramified q due to lq = 0 (see [3, Sect. 5.2]).

Lemma 4.14 ( [25, Lemma 2.1]) At non-archimedean q � m|dF |N (n) we have

ω(σ)ϕq = χV ,q(det A)ϕq for σ =
(
A B
C D

)
∈ Sp4(Zq).
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5 Theta lift and Fourier coefficient

Let F = Q(
√
d) be an imaginary quadratic field of class number 1. Denote its ring of

integers by O = Z[ω] and the discriminant by dF . Let m be a product of distinct inert or
split primes as introduced in Sect. 4 and choose a quadratic Hecke character χm (m = mO)
of conductor f = √

dm. Let n be square-free and coprime to (m|dF |). Suppose that F =
(F0,F1,F2) : H3 → C

3 is a weight 2 cusp form for �0(n) with the corresponding �0(n)-
invariant differential ηF of the form−F0

dz
r +F1

dr
r +F2

dz̄
r onH3. More detailed discussion

on Bianchi modular form can be found in [26, Chapter 1].

Remark 5.1 (1) Suppose that d ≡ 1mod 4 with dF = d . We choose the local Schwartz
function ϕ

χm
q at each place q dividing m|dF | as defined in Definition 4.2, 4.5 and 4.8.

At each place q dividing N (n), the local Schwartz function ϕn
q is chosen to be as in

Definition 4.11. For all other finite places we take the local Schwartz function as in
Sect. 4.5.

(2) Suppose that d ≡ 2, 3mod 4 with dF = 4d . We choose the local Schwartz function ϕ
χm
q

at each place q dividingm as defined in Definition 4.2 and 4.5, and that at ramified place
away from 2 as in Definition 4.8. At each place q dividing 2N (n), the local Schwartz
functions ϕn

q and ϕ2 are chosen to be as in Definition 4.11. For all other places we take
the local Schwartz function as in Sect. 4.5.

It has been shown in Lemma 4.4, 4.7, 4.10 and 4.13 that the local Schwartz function ϕv

at each place v dividing m|dF |N (n) is invariant under the action of the principal congruence
subgroup �(qv) ⊂ SO+(3, 1)(V (Qv)). We now consider a �0(qv)-invariant local Schwartz
function ϕnew

v at these places defined by

ϕnew
v (x1, x2) =

∑

[γ ]∈�0(qv)/�(qv)

ω(1, γ )ϕv(x1, x2)

where the sum is taken over all the representatives of �0(qv)/�(qv). With this new local
Schwartz function we know that ϕnew

f is invariant under �0(fn) when d ≡ 1 mod 4 or

�0(fnq2) when d ≡ 2, 3 mod 4.
Give the Schwartz form ϕ2 ∈ S(V (R)2) ⊗ 
2(D) as constructed in [13, Sect. 5], [9,

Sect. 4] and [10, Sect. 5], and the above finite Schwartz function ϕnew
f on V (A f )

2, we now
consider a Schwartz form

ϕ(X, z) := ϕ2 ⊗ ϕnew
f ∈ S(V (A)2) ⊗ 
2(D) for X ∈ V (A)2, z ∈ D.

Then we consider the theta series in this case is given by

θ(g
′
, ϕnew

f , z) :=
∑

X∈V (Q)2

ω(g
′
)ϕ(X, z) for g

′ ∈ Sp4(A)

which defines a closed differential 2-form on �0(2mN )\D.
Following [13, Theorem 1], the theta lifting of F , which is a holomophic Siegel modular

form of weight 2, is given by

	ϕ(ηF )(g
′
) :=

∫

�\D
ηF (z) ∧ θ(g

′
, ϕnew

f , z)

where � = �0(fn) ∩ �0(n) = �0(fn) when d ≡ 1 mod 4 or � = �0(fnq2) ∩ �0(n) =
�0(fnq2) when d ≡ 2, 3 mod 4. Moreover, the Fourier coefficients are given as periods of
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ηF over certain special cycles Cβ in �\D attached to positive definite β ∈ Sym2(Q), i.e.,

	(ηF )(g
′
) =

∑

β>0

aβ(ηF )e2π i tr(βg
′
)

By Lemma 4.3, 4.6, 4.9 and 4.14, we can determine that it has level

Lm,n =
{(

A B
C D

)
∈ Sp4(Z) : A ∈

(
Z n1N (n)Z

n1N (n)Z Z

)
,

B ∈ M2(n2m|d|N (n)Z),C ∈ M2(m
3d2N (n)Z)

}

with
{

n1 = n2 = 1, if d ≡ 1mod 4
n1 = 2, n2 = 24, if d ≡ 2, 3mod 4.

Recall


β =
{
(x1, x2) ∈ V (Q)2 :

(
(x1, x1) (x1, x2)
(x1, x2) (x2, x2)

)
= β

}
.

By [3, Theorem 9], the Fourier coefficient of the theta lifting 	ϕ(ηF ) at β > 0 is given by

C	ϕ(ηF ),β =
∑

(x1,x2)∈�\
β

ϕnew
f (x1, x2)

∫

CU (x1,x2)

ηF

=
∑

[κi ]∈�\P1(F)

∑

(x1,x2)∈�κi \
β,κi ,+
ϕnew
f (x1, x2)

∫

CU (x1,x2)

ηF (25)

where the second equality is the consequence of Proposition 3.4. For simplicity we will
denote C	ϕnew (ηF ),β := I = ∑

[κi ]∈�\P1(F) Iκi where

Iκi =
∑

(x1,x2)∈�κi \
β,κi ,+
ϕnew
f (x1, x2)

∫

CU (x1,x2)

ηF . (26)

We will first express I∞ in terms of the twisted L-value L(F, χm, 1) in Subsect. 5.1 and
then use Atkin-Lehner operators to calculate Iκi for κi �= ∞ in Subsect. 5.2.

Remark 5.2 We will describe how to choose the Gram matrix β for which we will show that
C	ϕ(ηF ),β is non-vanishing.

• Let det β ∈ −d(Q×)2. Then for (x1, x2) ∈ 
β , U (x1, x2)⊥ is split over Q due to
Proposition 3.3 and U (x1, x2)⊥ has signature (1,1). The stabilizer �U ⊂ � of U =
U (x1, x2) is trivial if U⊥ is split over Q, see [11, Lemma 4.2].

• For (x1, x2) =
((

a1 b1
b̄1 0

)
,
(
a2 b2
b̄2 0

))
∈ 
β,∞,+, we have

β =
(

β11 β12

β21 β22

)
=

(
b1b̄1

1
2 (b1b̄2 + b̄1b2)

1
2 (b1b̄2 + b̄1b2) b2b̄2

)
.

We want this pair to satisfy the condition † as in Remark 3.6. This will allow us to
apply Lemma 3.5 to deduce that the corresponding cusp zU (x1,x2) runs through all the
representatives in f−1/O. For the non-vanishing of ϕ

χm
q at split or inert q dividing f, we

only count (x1, x2) such that bi (i = 1, 2) is divisible by m. Via imposing conditions
on β itself, we can achieve that for any pair (x1, x2) in 
β,∞,+ the assumption † holds.
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Explicit examples of β will be given at the end of the Subsect. 5.1, see from Example
5.6 to 5.11.

Assume that β is given as in above Remark 5.2. For (x1, x2) in 
β,∞,+, we have
(
b1
b2

)
= m

(
x y
z w

)(
1
ω

)
if d ≡ 1 (27)

or
(
b1
b2

)
= 1

2
m

(
x y
z w

)(
1
ω

)
if d ≡ 2, 3 (28)

with x, y, z, w ∈ Z and xw − yz = ±1. We want to find out if there is another pair (y1, y2)
in 
β,∞,+ such that it gives rise to the same cycle DU as that generated by (x1, x2).

Assume that such a pair (y1, y2) exists in
β,∞,+. ForU (x1, x2) = U (y1, y2)we consider
an element σ = (

a b
c d

) ∈ GL2(Q) such that
(
a b
c d

)(
x1
x2

)
=

(
y1
y2

)
. (29)

To make 〈u∞, x1, x2, uκ j 〉 and 〈u∞, y1, y2, uκ j 〉 represent the same orientation, we need
σ ∈ GL+

2 (Q). Additionally the Gram matrix β’s corresponding to (x1, x2) and (y1, y2) must
be identical.

Expressing (yi , y j ) in terms of (xi , x j ) and using bilinearity, we have

(y1, y1) = a2(x1, x1) + 2ab(x1, x2) + b2(x2, x2),

(y2, y2) = c2(x1, x1) + 2cd(x1, x2) + d2(x2, x2),

(y1, y2) = ac(x1, x1) + (ad + bc)(x1, x2) + bd(x2, x2).

Consider that det β is preserved; more explicitly,

det β = det((yi , y j )) = (y1, y1)(y2, y2) − (y1, y2)2

=a2c2(x1, x1)2 + b2d2(x2, x2)2 + 4abcd(x1, x2)2 + (a2d2 + b2c2)(x1, x1)(x2, x2)

+ 2ac(ad + bc)(x1, x1)(x1, x2) + 2bd(ad + bc)(x1, x2)(x2, x2)

− a2c2(x1, x1)2 − b2d2(x2, x2)2 − (ad + bc)2(x1, x2)2 − 2abcd(x1, x1)(x2, x2)

− 2ac(ad + bc)(x1, x1)(x1, x2) − 2bd(ad + bc)(x1, x2)(x2, x2)

=(det σ)2 det((xi , x j )) = det((xi , x j )).

Since σ has positive determinant we know that σ ∈ SL2(Q).
Moreover, to preserve β the following identities must hold:

(x1, x1) = a2(x1, x1) + 2ab(x1, x2) + b2(x2, x2), (30)

(x2, x2) = c2(x1, x1) + 2cd(x1, x2) + d2(x2, x2), (31)

(x1, x2) = ac(x1, x1) + (ad + bc)(x1, x2) + bd(x2, x2). (32)

As det σ = ad − bc = 1, we can rewrite (32) as

ac(x1, x1) + 2bc(x1, x2) + bd(x2, x2) = 0. (33)

We will describe σ in different cases in the following.
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(I) Let b be 0. From (30) we know that a2 = 1, and from (32) we have that (x1, x2) =
ac(x1, x1) + (x1, x2) which implies c = 0. So σ = ± (

1 0
0 1

)
. In the same way, if c = 0

then σ = ± (
1 0
0 1

)
.

(II) Assume that bc �= 0. Substituting (x1, x2) in (30), we have

(x1, x1) = a2(x1, x1) + b2(x2, x2) − a

c
(ac(x1, x1) + bd(x2, x2))

which is simplified to be

c(x1, x1) + b(x2, x2) = 0. (34)

Combining (33) and (34) we have

ac(x1, x1) + 2bc(x1, x2) − cd(x1, x1) = 0

and then d = a + 2b (x1,x2)
(x1,x1)

. As ad − bd = 1, we have

a2 + 2ab
(x1, x2)
(x1, x1)

+ b2
(x2, x2)
(x1, x1)

= 1. (35)

Set x1 =
(
a1 b1
b̄1 d1

)
, x2 =

(
a2 b2
b̄2 d2

)
, y1 =

(
a

′
1 b

′
1

b̄
′
1 d

′
1

)
and y2 =

(
a

′
2 b

′
2

b̄
′
2 d

′
2

)
. Combining (27) and

(29), we can rewrite

b
′
1 = ab1 + bb2 = m((ax + bz) + (ay + bw)ω)

or combining (28) and (29)

b
′
1 = ab1 + bb2 = 1

2
((ax + bz) + (ay + bw)ω).

Then we need ax + bz = μ ∈ Z and ay + bw = ν ∈ Z. Solving these two equations we
get

a = μδ − νγ

αδ − βγ
∈ Z and b = να − μβ

αδ − βγ
∈ Z.

Similarly, we can deduce that c, d ∈ Z when treating b
′
2. Therefore, the linear transform

σ ∈ SL2(Q) on (x1, x2) ∈ 
β,κi ,+ generates the same cycle, but the Schwartz function
on (y1, y2) vanishes if σ /∈ SL2(Z). For particular choices ofβwe get limited possibilities
of above σ . We can rewrite (35) as

(
a + b

(x1, x2)
(x1, x1)

)2

+ b2
(x1, x1)(x2, x2) − (x1, x2)2

(x1, x1)2
= 1. (36)

(II.1) If (x1, x2) = 0 and (x1, x1) = (x2, x2), then a2 = 0 as bc �= 0 by our assumption.
So in this case σ = ± (

0 1−1 0

)
.

(II.2) If (x1, x2) = 0 and (x1, x1) < (x2, x2), i.e.
det β

(x1,x1)2
> 1, then there is no such a σ

that bc �= 0.

(II.3) If (x1, x2) �= 0 and (x1,x1)(x2,x2)−(x1,x2)2

(x1,x1)2
> 1, then b has to be 0 which is a

contradiction to bc �= 0.

Remark 5.3 The possibilities of σ in (29) will determine the constant μβ in Proposition
5.5. After the whole treatment of this section, we will see that this μβ does not effect the
non-vanishing of our theta liftings since it appears in the Fourier coefficient as a non-zero
multiplier. In Example from 5.6 to 5.11, we will show how to get the exact values of μβ .
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5.1 On cycles through∞

We will first calculate the part I∞ corresponding to the cusp ∞ as in (26). We pick a funda-
mental domain for �∞\DU and integrate with respect to the cycle. Since we are integrating
along a vertical path with z-coordinate constant, we can ignore dz and dz̄. We obtain

I∞ =
∑

(x1,x2)∈�∞\
β,∞,+
ϕnew
f (x1, x2)

∫

(z,r)∈CU (x1,x2)

1

2
F1(z, r)dr . (37)

Lemma 5.4 For (x1, x2) ∈ �∞\
β,∞,+, we have

ϕnew
f (x1, x2) = λm,nϕ f (x1, x2)

where

λm,n =
∏

q1|m|d|

[
�0(q1) : �(q1)

] ∏

q2 above ramified 2

[
�0(q2) : �(q2)

] ∏

q3|n

[
�0(q3) : �(q3)

]
.

Proof Note that any pair (x1, x2) in 
β,∞ is of form
((

a1 b1
b̄1 0

)
,
(
a2 b2
b̄2 0

))
. Recall from [26,

Sect. 1.3], for a ∈ O× satisfying ((a), f) = 1 we have
∏

v|f
χ̃v(av) =

∏

v�f

χ̃−1
v (av) = χ−1((a)).

Then, for our choice of finite Schwartz function ϕ f , we have

ϕ f (x1, x2) =
∏

v|f
χ̃m,v

(
a2b1 − a1b2

m

)

=
∏

v�f

χ̃−1
m,v

(
a2b1 − a1b2

m

)
= χ−1

((
a2b1 − a1b2

m

))

or

ϕ f (x1, x2) = χ−1
((

2(a2b1 − a1b2)

m

))
.

Let q be the split prime dividing m. Consider the representative

γ = (γ1, γ2) =
((

xγ,1 yγ,1

0 x−1
γ,1

)
,

(
xγ,2 yγ,2

0 x−1
γ,2

))

for �0(q)/�(q) with [xγ, j ] ∈ (O/(q))× and [yγ, j ] ∈ O/(q). By the computation in the
proof of Lemma 4.4, we can observe that

ϕχm,new
q (x1, x2) =

∑

[γ ]∈�0(q)/�(q)

(χ̃m,qχ̃m,q̄)(x
−2
γ,1)(χ̃m,qχ̃m,q̄)

(
a2b1 − a1b2

m

)

=
∑

[γ ]∈�0(q)/�(q)

(χ̃m,qχ̃m,q̄)

(
a2b1 − a1b2

m

)

= [�0(q) : �(q)]ϕχm
q (x1, x2)
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Similarly we have for inert q|m
ϕχm,new
q (x1, x2) = [�0(q) : �(q)]ϕχm

q (x1, x2),

and for ramified prime q with (q) = q2

ϕχm,new
q (x1, x2) = [�0(q) : �(q)]ϕχm

q (x1, x2).

At the place q|N (n) we will show that

ϕn,new
q = [�0(q) : �(q)]ϕn

q .

For q split, set xi =
(
ai bi
ci 0

)
and compute

w(1, γ ) · (x1, x2) =
(( ∗ x−1

γ1
x−1
γ2

b1
xγ1xγ2c1 0

)
,

( ∗ x−1
γ1

x−1
γ2

b2
xγ1xγ2c2 0

))
.

It is not hard to observe that the condition on b1c2+b2c1 is preserved as xγ, j ∈ Z
×
q . It follow

that

w(1, γ )ϕq(x1, x2) = ϕq(x1, x2)

which implies the assertion. For q inert, set xi =
(
bi ai

√
d

0 b̄i

)
and compute

γ −1 · (x1, x2) =
((

x−1
γ x̄γ b1 ∗

0 xγ x̄−1
γ b̄1

)
,

(
x−1
γ x̄γ b2 ∗

0 xγ x̄−1
γ b̄2

))
.

Again the condition on b1b̄2 + b̄1b2 is preserved and so the assertion follows. The case at
ramified 2 can be treated similarly.

Now we have proven the lemma. 	

Proposition 5.5 Assume that the Gram matrix β is chosen so that the condition † in Lemma
3.5 is satisfied. Then we can calculate

I∞ = μβλm,nL(F, χm, 1)

2A(1, 1, χm, 1)
(38)

where μβ is a non-zero integer depending on β as stated in Remark 5.3 and A(1, 1, χm, 1)
is given explicitly in [24, Theorem 1.8].

Proof By the above lemma, we can express

I∞ =
∑

(x1,x2)∈�∞\
β,∞,+
ϕnew
f (x1, x2)

∫

(z,r)∈CU (x1,x2)

1

2
F1(z, r)dr

=λm,n

∑

(x1,x2)∈�∞\
β,∞,+
ϕ f (x1, x2)

∫

(z,r)∈CU (x1,x2)

1

2
F1(z, r)dr .

Under our assumption on β, by Lemma 3.5 we have

I∞ = μβλm,n

∑

[zU ]∈f−1/O,(zU f,f)=1

χ−1
m (zU f)

∫ ∞

0

1

2
F1(z, r)dr
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where μβ is a non-zero integer depending on the possibilities of σ as discussed in Remark
5.3. At last, by [24, Theorem 1.8] with n = 1, we can compute

I∞ = μβλm,n

∑

[zU ]∈f−1/O,(zU f,f)=1

χ−1
m (zU f)

∫ ∞

0

1

2
F1(z, r)dr = μβλm,nL(F, χm, 1)

2A(1, 1, χm, 1)
.

	

For a diagonal Grammatrix β, the pair (x1, x2) ∈ 
β,∞,+ has b1b̄2+ b̄1b2 = 0. It follows

that ϕn
q is vanishing on such a pair (x1, x2). So, for the non-vanishing of I∞, the Grammatrix

β being diagonal is ruled out of our consideration. In the following we give some examples
of β satisfying the condition † (as promised in Remark 5.2) for which I∞ can be expressed
in terms of L(F, χm, 1).

Example 5.6 Let F = Q(
√−3) with dF = −3 and O = Z[ω] with ω = 1+√−3

2 . Suppose
that

β =
(

b1b̄1
1
2 (b1b̄2 + b̄1b2)

1
2 (b1b̄2 + b̄1b2) b2b̄2

)
=

(
m2 1

2m
2

1
2m

2 m2

)
.

We have

I∞ = 4λm,nL(F, χm, 1)

A(1, 1, χm, 1)
.

Proof For the non-vanishing of ϕ
χm
q , we need m|bi . Solving bi b̄i = m2, we must take

bi = ±m, ±mω or ±mω̄. Observing

(x1, x2) = 1

2
(b1b̄2 + b̄1b2) = 1

2
m2,

we can determine bi with the condition † as in Proposition 3.5 satisfied:
{
b1 = m
b2 = mω

∼
(
b1
b2

)
= m

(
1 0
0 1

)(
1
ω

)

{
b1 = m
b2 = mω̄

∼
(
b1
b2

)
= m

(
1 0
1 −1

)(
1
ω

)

{
b1 = −m
b2 = −mω

∼
(
b1
b2

)
= m

(−1 0
0 −1

)(
1
ω

)

{
b1 = −m
b2 = −mω̄

∼
(
b1
b2

)
= m

(−1 0
−1 1

)(
1
ω

)

{
b1 = mω or mω̄

b2 = m,

{
b1 = −mω or − mω̄

b2 = −m.

We have seen in Lemma 3.7 that the sign of Im(b1b̄2) determines the orientation ε of
TZ (DU ) via εIm(b1b̄2) > 0. If the cycle DU integrated over is directed from the cusp on the
complex plane to the cusp ∞, we need ε < 0 which implies Im(b1b̄2) < 0. We will list all
pairs in �∞\
β,∞,+ with Im(b1b̄2) < 0.

First we consider one pair

(x1,1, x1,2) =
((

a1,1 m
m 0

)
,

(
a1,2 mω

mω̄ 0

))
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with a1,1, a1,2 ∈ Z which gives rise to the cycle DU (x1,1,x1,2) directed from the cusp

zU (x1,1,x1,2) = a1,1ω−a1,2
m

√−3
∈ F to the cusp ∞. Rewriting (35) as a2 − ab + b2 = 1, we

have either a2 = 1, b2 = 0 or a2 = 0, b2 = 1 and then σ = ± (
1 0
0 1

)
or ± (

0 1−1 0

)
. So the

following four pairs give rise to the same cycle DU (x1,1,x1,2):

(x1,1, x1,2), (−x1,1,−x1,2), (x1,2,−x1,1), (−x1,2, x1,1). (39)

Lemma 3.5 tells us that for (x1,1, x1,2) ∈ �∞\
β,∞,+, zU (x1,1,x1,2) ranges over f
−1/O with

f = √−3m.
Suppose that

(x2,1, x2,2) =
((

a2,1 −m
−m 0

)
,

(
a2,2 −mω̄

−mω 0

))

with a2,1, a2,2 ∈ Z is another pair in 
β,∞,+ which gives rise to the cycle DU (x2,1,x2,2)

directed from the cusp zU (x2,1,x2,2) = a2,1ω̄−a2,2
m

√−3
∈ F to the cusp ∞. Similarly we have

following pairs

(x2,1, x2,2), (−x2,1,−x2,2), (x2,2,−x2,1), (−x2,2, x2,1) (40)

giving rise to the same cycle DU (x2,1,x2,2). Also for (x2,1, x2,2) ∈ �∞\
β,∞,+ we have
zU (x1,1,x1,2) running through f−1/O with f = √−3m.

It is obvious that the eight pairs in (39) and (40) are not�∞-equivalent since the�∞-action
on the pair preserves off-diagonal entries of each component of the pair. Then we can split
I∞ as

I∞ =I(x1,1,x1,2) + I(−x1,1,−x1,2) + I(x1,2,−x1,1) + I(−x1,2,x1,1)

+ I(x2,1,x2,2) + I(−x2,1,−x2,2) + I(x2,2,−x2,1) + I(−x2,2,x2,1),

where the subscript (−,−) indicates the sum as in (37) over [zU (−,−)] ∈ f−1/O. By [24,
Theorem 1.8] with n = 1, we can calculate

I(x1,1,x1,2) = I(x2,1,x2,2) = λm,nL(F, χm, 1)

2A(1, 1, χm, 1)
.

So, in this case we have μβ = 8 and then we can deduce that

I∞ = 8 · I(x1,1,x1,2) = 4λm,nL(F, χm, 1)

A(1, 1, χm, 1)
.

	

Detailed calculations in the following examples can be found in [26, Sect. 4.4.1].

Example 5.7 Let F = Q(
√
d) with d ≡ 1 (mod 4) and d �= −3 in which case dF = d and

O = Z[ω] with ω = 1+√
d

2 . Suppose that

β =
(
m2 1

2m
2

1
2m

2 1−d
4 m2

)
.

We have

I∞ = 2λm,nL(F, χm, 1)

A(1, 1, χm, 1)
.
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Example 5.8 Let F = Q(
√
d) with d ≡ 2, 3 (mod 4) and d �= −1 in which case dF = 4d

and O = Z[d]. Let

β =
( 1

4m
2 1

4nm
2

1
4nm

2 1
4 (n

2 − d)m2

)

with n ∈ Z coprime to 2n (for the non-vanishing of ϕn
q and ϕ2). We have

I∞ = 2λm,nL(F, χm, 1)

A(1, 1, χm, 1)
.

Example 5.9 Let F = Q(i) with dF = −4 and O = Z[i]. Set

β =
( 1

4m
2 1

4nm
2

1
4nm

2 1
4 (n

2 + 1)m2

)

with 1 < n ∈ Z coprime to 2n (for the non-vanishing of ϕn
q and ϕ2 at ramified 2). We have

I∞ = 4λm,nL(F, χm, 1)

A(1, 1, χm, 1)
.

Example 5.10 Let F = Q(
√
d) with d ≡ 1 (mod 4) and d �= −3 in which case dF = d and

O = Z[ω] with ω = 1+√
d

2 . Set

β =
(
m2 nm2

2
nm2

2
n2−d
4 m2

)

with 1 < n ∈ Z coprime to qn. We have

I∞ = 2λm,nL(F, χm, 1)

A(1, 1, χm, 1)
.

Example 5.11 Let F = Q(
√−3) with dF = d = −3 and O = Z[ω] with ω = 1+√−3

2 . Set

β =
(
m2 nm2

2
nm2

2
n2−d
4 m2

)

with odd n ∈ Z greater than 1 and coprime to n. We have

I∞ = 3λm,nL(F, χm, 1)

A(1, 1, 1, χm, 1)
.

Remark We can swap the diagonal entries of each β in Example from 5.6 to 5.11 and obtain
same results.

5.2 On other cycles

We introduce the Atkin-Lehner operator as defined in Lingham’s thesis [15, Sect. 5.3]. Ling-
ham developed this for all odd class numbers while we shall only use results for class number
1 since thenwe can followAsai’s treatment of cusps (see [1, Sect. 1.1]) in the case of principal
ideal domain. For m in O dividing n such that m and n

m are coprime, take

Wm =
(
x y
z w

)
(41)

where x ∈ m, y ∈ O, z ∈ n,w ∈ m and (xw − yz)O = m.
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Proposition 5.12 (1) For any ideal m dividing n such that m and n
m are coprime, we can

find a matrix of the form (41).
(2) Wm is an involution (i.e. W 2

m (modulo scalars) lies in �0(n)), normalizes �0(n) and is
independent of the particular choice of x, y, z, w.

Proof See [15, Lemma 5.3.1 and Lemma 5.3.2]. 	

In particular if we take m = O we get an element of �0(n) and if we take m = n we get

the analogue of the classical Fricke involution. One can check that the Fricke involution can
be formed as a product of Atkin-Lehner involutions, wherem runs over prime power divisors
of n.

Lemma 5.13 Let α1 = p1
q1
, α2 = p2

q2
be two cusps such that 〈p1, q1〉 = 〈p2, q2〉 = O. Then

the following are equivalent

(1) α2 = Mα1 for some M ∈ �0(n);
(2) q2s1 − q1s2 ∈ q1q2O + n, where si satisfies pi si ≡ 1 (mod qi ).

Proof See [15, Lemma 1.5.1] for a more general version holding over any number field. 	

It follows that two cusps are equivalent relative to �0(n) if and only if the ideals generated
by the denominators have the same ‘greatest common divisor’ with n, so each equivalence
class of cusps is in one-to-one correspondence with each ordered decomposition n = ML.
Following Asai’s treatment (see [1, Sect. 1.1]) we say a cusp κ2/κ1 belongs to L-class if
gcd(κ1O, n) = L. For each decomposition n = MLwithM = MO and any cusp κ = κ2/κ1
of L-class, we can take a typical matrix Wκ which transforms κ to ∞:

Wκ =
(
1 0
0 M

)
ακ with ακ =

(
Mλ1 λ2
−κ1 κ2

)
∈ SL2(O). (42)

As 〈κ1, κ2〉 = 〈κ1, M〉 = O there exist b, c ∈ O such that bκ2 ≡ 1 (mod κ1) and cM ≡ 1
(mod κ1). Taking λ1 = bc ∈ O we observe that λ2 = 1−Mλ1κ2

κ1
belongs to O. So Wκ is

well-defined. It is not difficult to see that Wκ is of type of Atkin-Lehner operator as defined
in (41).

Fix a representative κi = κi,2/κi,1 ∈ P
1(F)/� of each equivalence class of cusps corre-

sponding to the ordered decomposition m
√
dFn = MiLi with Mi generated by Mi and Li

by Li . Write as defined in (42)

Wκi =
(
1 0
0 Mi

)(
Miλ1 λ2
−κi,1 κi,2

)

which transforms κi to ∞.
It is well known that the fractional linear transformation on the extended upper half space

is composition of an even number of inversions (see e.g. [2, Sect. 2.3]). So the action of
GL2(C) on the subspace U preserves the orientation. By Proposition 3.2 we know that if
U (x1, x2) ⊥ ν(∞) thenU (W−1

κi
· (x1, x2)) ⊥ ν(W−1

κi
·∞). We have proven that the bilinear

form on a pair of vectors is preserved under the action of GL2(C) in (3) and hence so is the
Gram matrix β. Thus for (x1, x2) ∈ 
β,∞,+ we have | det(Wκi )| · W−1

κi
· (x1, x2) ∈ 
β,κi ,+.

Then we obtain

Iκi =
∑

(x1,x2)∈�κi \
β,κi ,+
ϕnew
f (x1, x2)

∫

CU (x1,x2)

ηF
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=
∑

(x1,x2)∈�∞\
β,∞,+
ϕnew
f (| det(Wκi )| · W−1

κi
· (x1, x2))

∫

C
U (| det(Wκi )|·W−1

κi
·(x1,x2))

ηF

=
∑

(x1,x2)∈�∞\
β,∞,+
ϕnew
f (| det(Wκi )| · W−1

κi
· (x1, x2))

∫

C
U (W−1

κi
·(x1,x2))

ηF

where the last equality is the consequence of U (| det(Wκi )| · W−1
κi

· (x1, x2)) = U (W−1
κi

·
(x1, x2)).

Remark 5.14 We introduce the factor | det(Wκi )| tomake sure that for (x1, x2) ∈ �κi \
β,κi ,+,
| det(Wκi )|−1 · Wκi · (x1, x2) lies in V (Q)2 (so in �∞\
β,∞,+) but not just in V (R)2.

Next we will analyze ϕnew
f (| det(Wκi )| · W−1

κi
· (x1, x2)) for (x1, x2) ∈ �∞\
β,∞,+. For

simplicity we write χ = χm.

We begin the calculation in a slightly more general setting. Given g =
(
x y
z w

)
and

(x1, x2) =
((

a1 b1
b̄1 0

)
,

(
a2 b2
b̄2 0

))
, we compute

((
a

′
1 b

′
1

b̄
′
1 d

′
1

)
,

(
a

′
2 b

′
2

b̄
′
2 d

′
2

))
:= | det g|−1 · g ·

((
a1 b1
b̄1 0

)
,

(
a2 b2
b̄2 0

))

=| det(g)|−2
((

a1x x̄+b̄1 x̄ y+b1x ȳ a1x z̄+b̄1 yz̄+b1xw̄
a1 x̄ z+b̄1 x̄w+b1 ȳz a1zz̄+b̄1 z̄w+b1zw̄

)
,
(
a2x x̄+b̄2 x̄ y+b2x ȳ a2x z̄+b̄2 yz̄+b2xw̄
a2 x̄ z+b̄2 x̄w+b2 ȳz a2zz̄+b̄2 z̄w+b2zw̄

))

(43)

and then

(a
′
2b

′
1 − a

′
1b

′
2) =| det(g)|−4[(a2x x̄ + b̄2 x̄ y + b2x ȳ)(a1x z̄ + b̄1yz̄ + b1xw̄)

− (a1x x̄ + b̄1 x̄ y + b1x ȳ)(a2x z̄ + b̄2yz̄ + b2xw̄)]
=| det(g)|−4[a2b1(x x̄xw̄ − x ȳx z̄) − a1b2(x x̄xw̄ − x ȳx z̄)

+ b1b̄2(x x̄ yw̄ − x ȳx z̄) + b̄1b2(x ȳyz̄ − x̄ yxw̄)]
= det(g)−2 det(ḡ)−1[(a2b1 − a1b2)x

2 + (b1b̄2 − b̄1b2)xy], (44)

(b̄
′
2d

′
1 − b̄

′
1d

′
2) =| det(g)|−4[(a2 x̄ z + b̄2 x̄w + b2 ȳz)(a1zz̄ + b̄1 z̄w + b1zw̄)

− (a1 x̄ z + b̄1 x̄w + b1 ȳz)(a2zz̄ + b̄2 z̄w + b2zw̄)]
=| det(g)|−4[a2b1(x̄ zzw̄ − ȳzzz̄) − a1b2(x̄ zzw̄ − ȳzzz̄)]

+ b1b̄2(x̄wzw̄ − ȳzz̄w) − b̄1b2(x̄wzw̄ − ȳzz̄w)

= det(g)−2 det(ḡ)−1[(a2b1 − a1b2)z
2 + (b1b̄2 − b̄1b2)wz]. (45)

Remark 5.15 With our choice of β, the pair (x1, x2) ∈ �∞\
β,∞,+ satisfies the condition †
as in Remark 3.6. It means that bi ∈ qOq × q̄Oq̄ (i.e. q|bi ) for split q|m with (q) = qq̄, and
bi ∈ qOq for inert q|m with (q) = q. So b1b̄2 − b̄1b2 appearing in (44) and (45) turns out to
be divisible by q2 for each prime q|m.

Recall the ordered decomposition fn = MiLi (or fnq2 = MiLi with q2 above 2 when
d ≡ 2, 3mod 4) and its corresponding representative κi = κi,2

κi,1
of equivalence class of cusps

with κi,1 and κi,2 coprime.
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Lemma 5.16 For (x1, x2) ∈ �∞\
β,∞,+ and non-trivialMi dividing fn when d ≡ 1mod 4
(or fnq2 with q2 above 2 when d ≡ 2, 3mod 4), we have that ϕnew

f is vanishing on | det(Wκi )|·
W−1

κi
· (x1, x2).

Proof Write

W−1
κi

=
(

κi,2 − λ2
Mi

κi,1 λ1

)
=:

(
x y
z w

)
with det(W−1

κi
) = 1

Mi

and for (x1, x2) =
((

a1 b1
b̄1 0

)
,

(
a2 b2
b̄2 0

))
∈ �∞\
β,∞,+, set

(x
′
1, x

′
2) =

((
a

′
1 b

′
1

b̄
′
1 d

′
1

)
,

(
a

′
2 b

′
2

b̄
′
2 d

′
2

))
:= | det(Wκi )| · W−1

κi
·
((

a1 b1
b̄1 0

)
,

(
a1 b1
b̄1 0

))
.

By (43), we have for j = 1, 2

a
′
j =|Mi |2(a j x x̄ + b̄ j x̄ y + b j x ȳ) = |Mi |2a jκi,2κ̄i,2 − Mi b̄ j κ̄i,2λ2 − Mib jκi,2λ̄2,

b
′
j =|Mi |2(a j x z̄ + b̄ j yz̄ + b j xw̄) = |Mi |2a jκi,2κ̄i,1 − Mi b̄ jλ2κ̄i,1 + |Mi |2b jκi,2λ̄1,

b̄
′
j =|Mi |2(a j x̄ z + b j ȳz + b̄ j x̄w) = |Mi |2a j κ̄i,2κi,1 − Mib j λ̄2κi,1 + |Mi |2b̄ j κ̄i,2λ1,

d
′
j =|Mi |2(a j zz̄ + b̄ j z̄w + b j zw̄) = |Mi |2(a jκi,1κ̄i,1 + b̄ j κ̄i,1λ1 + b jκi,1λ̄1).

(I) Let q a prime dividingm|dF |which is split, inert or ramified. We will only treat in details
the case when q is split with (q) = qq̄ and other cases can be treated similarly. We want
to show that if

(Mi ,m) = q, (Mi , (m)) = q̄ or (Mi ,m) = (q)

then ω(1, γ )ϕ
χ
q is vanishing on | det(Wκi )| · W−1

κi
· (x1, x2) for [γ ] ∈ �0(q)/�(q).

(I.1) Let (Mi ,m) = q and then we have

q|Mi , q̄|Mi , q̄|(κi,1), q|(κ̄i,1), q̄ � (κi,2), q � (κ̄i,2)

By Remark 5.15, there is no need to discuss the integrality of b j but we care for that
of a j .
Suppose that a j ∈ Zq . It is easy to observe that a

′
j , b

′
j , b̄

′
j , d

′
j ∈ qOq. Set

γ = (γ1, γ2) =
((

u1 v1

0 u−1
1

)
,

(
u2 v2

0 u−1
2

))

with [u1], [u2] ∈ (O/(q))× and [v1], [v2] ∈ O/(q). We write

(x
′′
1, x

′′
2) =

((
a

′′
1 b

′′
1

c
′′
1 d

′′
1

)
,

(
a

′′
2 b

′′
2

c
′′
2 d

′′
2

))
:= (γ −1

1 x
′
1
t (γ −1

2 )∗, γ −1
1 x

′
2
t (γ −1

2 )∗)

and compute
(
a

′′
j b

′′
j

c
′′
j d

′′
j

)
=

(
u−1
1 −v1
0 u1

)(
a

′
j b

′
j

b̄
′
j d

′
j

)(
u2 0
v2 u−1

2

)

=
(
u−1
1 u2a

′
j − v1u2b̄

′
j + u−1

1 v2b
′
j − v1v2d

′
j u

−1
1 u−1

2 b
′
j − v1u

−1
2 d

′
j

u1u2b̄
′
j + u1v2d

′
j u1u

−1
2 d

′
j

)
.
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Then, as a
′
j , b

′
j , b̄

′
j , d

′
j ∈ qOq, we can observe that a

′′
j , b

′′
j , c

′′
j , d

′′
j ∈ qOq as well

which implies that

a
′′
2b

′′
1 − a

′′
1b

′′
2

m
+ c

′′
2d

′
1 − c

′′
1d

′
2

m
∈ qOq.

It immediately follows thatω(1, γ )ϕ
χ,new
q is vanishing on | det(Wκi )|·W−1

κi
·(x1, x2).

Suppose that a j /∈ Zq and set lq = min{ordq(a j )} ≤ −1. Assume thatω(1, γ )ϕ
χ,new
q

is non-vanishing on | det(Wκi )| · W−1
κi

· (x1, x2) which requires that a′′
j , d

′′
j ∈ Zq and

b
′′
j , c

′′
j ∈ qOq.

• We first consider v2 ∈ (O/(q))×. Observing

c
′′
j = u1u2b̄

′
j + u1v2d

′
j and d

′′
j = u1u

−1
2 d

′
j ,

we know that for c
′′
j ∈ qOq and d

′′
j ∈ Zq we need d

′
j ∈ Zq and at least b̄

′
j ∈ Oq.

As

b̄
′
j = |Mi |2a j κ̄i,2κi,1 − Mib j λ̄2κi,1 + |Mi |2b̄ j κ̄i,2λ1

with κ̄i,2, κi,1 ∈ O×
q , we then need Mi ∈ q−lq which makes

d
′
j = |Mi |2(a jκi,1κ̄i,1 + b̄ j κ̄i,1λ1 + b jκi,1λ̄1) (q|κi,1κ̄i,1)

lie in qZq . Looking back to c
′′
j = u1u2b̄

′
j + u1v2d

′
j ∈ qOq, that d

′
j ∈ qZq

makes b̄
′
j ∈ qOq. It follows that we need Mi ∈ q−lq+1Oq, a contradiction to

thatMi is square-free.
• Let v2 = 0. Then we have

(
a

′′
j b

′′
j

c
′′
j d

′′
j

)
=

( ∗ ∗
u1u2b̄

′
j u1u

−1
2 d

′
j

)
.

For c
′′
j ∈ qOq, we need

b̄
′
j = |Mi |2a j κ̄i,2κi,1 − Mib j λ̄2κi,1 + |Mi |2b̄ j κ̄i,2λ1 ∈ qOq (κ̄i,2, κi,1 ∈ O×

q )

which requires Mi ∈ q−lq+1Oq contradicting to thatMi is square-free.
Therefore, when (Mi ,m) = q, we can deduce that ω(1, γ )ϕ

χ
q is vanishing on

| det(Wκi )| · W−1
κi

· (x1, x2).
(I.2) When (Mi ,m) = q̄, we can prove it in the same way.
(I.3) Let (Mi ,m) = q and then we have q|Mi and κi,1, κ̄i,1 ∈ O×

q . It is clear for a j ∈ Zq .
Suppose that a j /∈ Zq and set lq = min{ordq(a j )} ≤ −1. First assume v1 is a
unit. Let lq = −1. Then we have that all a

′
j , d

′
j , b

′
j , b̄

′
j are divisible by q and so are

a
′′
j , d

′′
j , b

′′
j , c

′′
j . Let lq = −2. It is clear that d

′
j ∈ Zq . Then, for b

′′
j , b̄

′′
j ∈ qOq, we need

b
′
j , b̄

′
j ∈ Oq. Expand

a
′′
2b

′′
1 − a

′′
1b

′′
2 =u−2

1 (a
′
2b

′
1 − a

′
1b

′
2) + u−1

1 v1(a
′
2d

′
1 − a

′
1d

′
2)

+ u−1
1 v1(b

′
1b̄

′
2 − b̄

′
1b

′
2) + v21(b̄

′
2d

′
1 − b̄

′
1d

′
2)

and

c
′′
2d

′′
1 − c

′′
1d

′′
2 = u21(b̄

′
2d

′
1 − b̄

′
1d

′
2).
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It is not hard to observe that a
′
2d

′
1 − a

′
1d

′
2 ∈ q2Zq and b

′
1b̄

′
2 − b̄

′
1b

′
2 ∈ q2Oq. By (44)

and (45), we have

a
′
2d

′
1 − a

′
1d

′
2 = Mi |Mi |2((a2b1 − a1b2)κ

2
i,2 + (b

′
1b̄

′
2 − b̄

′
1b

′
2)κ

2
i,2(−λ/Mi ))

and

b̄
′
2d

′
1 − b̄

′
1d

′
2 = Mi |Mi |2((a2b1 − a1b2)κ

2
i,1 + (b

′
1b̄

′
2 − b̄

′
1b

′
2)κi,1λ1),

both of which lie in q2Oq. It follows again that

a
′′
2b

′′
1 − a

′′
1b

′′
2

m
+ c

′′
2d

′
1 − c

′′
1d

′
2

m
∈ qOq.

For lq < −2 there is no chance for d
′′
j ∈ Zq as Mi,1 is square-free. It is clear for

v1 = 0. Therefore ω(1, γ )ϕ
χ
q is vanishing on | det(Wκi )| ·W−1

κi
· (x1, x2) in this case.

(II) Next we consider ϕn
q for split q|N (n) and omit details for inert q . As discussed in

Subsect. 4.3.4, we can have (n, (q)) = q, (n, (q)) = q̄ or (n, (q)) = (q). Again we want
to show that if (n, (q))|Mi then ω(1, γ )ϕn

q is vanishing on | det(Wκi )| · W−1
κi

· (x1, x2)
for [γ ] ∈ �0(q)/�(q), �0(q̄)/�(q̄) or �0(q)/�(q) respectively.
Let a j ∈ Zq . Assume that (n, (q)) = q and q|Mi . Then it is clear that b̄

′
j ∈ qOq and

d
′
j ∈ qZq . Expanding

b
′′
1c

′′
2 + b

′′
2c

′′
1 =(u−1

1 u−1
2 b

′
1 − v1u

−1
2 d

′
1)(u1u2b̄

′
2 + u1v2d

′
2)

+ (u−1
1 u−1

2 b
′
2 − v1u

−1
2 d

′
2)(u1u2b̄

′
1 + u1v2d

′
1),

we see it is in qOq. So ω(1, γ )ϕn
q is vanishing on | det(Wκi )| · W−1

κi
· (x1, x2). Also it is

clear for q̄|Mi or (q)|Mi .
Let a j /∈ Zq and set lq = min{ordq(a j )} ≤ −1. Assume that (n, (q)) = q and q|Mi .
Then we have q � κi,1. Look at

d
′
j = |Mi |2(a jκi,1κ̄i,1 + b̄ j κ̄i,1λ1 + b jκi,1λ̄1).

Then there is no chance for d
′′
j = d

′
j to be in qZq as Mi is square-free. So ω(1, γ )ϕn

q is

vanishing on | det(Wκi )| · W−1
κi

· (x1, x2). This also occurs in the case that (n, (q)) = q̄

and q̄|Mi . Now assume that (n, (q)) = (q) and (q)|Mi . If lq = −1, then we have
b

′
j , b̄

′
j ∈ qOq which implies that b

′′
1c

′′
2 + b

′′
2c

′′
1 ∈ qOq. If lq ≤ −2, we can observe that

there is no room for d
′′
j = u1u

−1
2 d

′
j ∈ qZ for square-free Mi .

Let q
′
be another prime dividing N (n) with q

′ = q
′
q̄

′
. Similarly, if q

′ |Mi , q̄
′ |Mi or

(q)|Mi , we can show that ω(1, γ )ϕn
q ′ is vanishing on | det(Wκi )| · W−1

κi
· (x1, x2).

(III) To finish our proof we consider ϕ2 if 2 is ramified with (2) = q22. Set γ =
(
u v

0 u−1

)
with

[u] ∈ (O/q2)
× and [v] ∈ O/q2. We write

(x
′′
1, x

′′
2) =

((
b̄

′′
1 a

′′
1

√
d

c
′′
1

√
d b̄

′′
1

)
,

(
b̄

′′
2 a

′′
2

√
d

c
′′
2

√
d b̄

′′
2

))
:= (γ x

′
1γ̄

∗, γ x′
2γ̄

∗).

Suppose that q2|Mi . If lq = min{ordq(a j )} ≥ −1, then we have b
′
j ∈ 1

q2
Oq2 and then

b
′′
j ∈ 1

q2
Oq2 as well. So b

′′
1b̄

′′
2 ∈ 1

2Oq2 and then b
′′
1b̄

′′
2 + b̄

′′
1b

′′
2 = 2Re(b

′′
1b̄

′′
2) ∈ Z2 which
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makes ϕ2 vanish on | det(Wκi )| ·W−1
κi

· (x1, x2). If lq = min{ordq(a j )} ≤ −2, then there

is no chance for d
′
j ∈ Z2 asMi is square-free, and so for c

′′
j . So again we have ω(1, γ )ϕ2

vanishing on | det(Wκi )| · W−1
κi

· (x1, x2).

	

If follows that Iκi is vanishing for κi �= ∞. So we have proven our main theorem:

Theorem 5.17 Suppose that F = Q(
√
d) is an imaginary quadratic field of class number

1 with the discriminant dF and denote its ring of integers by O. Let m be a square-free
product of inert or split primes, and put m = mO and f = √

dm. Choose a quadratic Hecke
character χm of conductor f. Given a square-free ideal n coprime to (m|dF |), let F be a
weight 2 Bianchi cusp form of level �0(n). Choose the Schwartz function as in Remark 5.1
and β as in Remark 5.2. Then the Fourier coefficient of the theta lift at β as in (25) is

I∞ = μβλm,nL(F, χm, 1)

2A(1, 1, χm, 1)
.

So, if L(F, χm, 1) �= 0, we can deduce the non-vanishing of our theta lifting as above.

6 Non-vanishing of theta lifting

Recall from [6] that a new form in S2(�0(n)) is an eigenform for all the Hecke operators
Tp for p not dividing n, which is not induced from in S2(�0(m)) for any level m properly
dividing n. There is an involution J induced by the action on H3 of the matrix

(
ε 0
0 1

)
, where

ε generates the unit group ofO. The effect of J on Fourier coefficients is c(α) → c(εα); the
involution commutes with the Hecke operators, and splits S2(�0(n)) into two eigenspaces,

S2(�0(n)) = S+
2 (�0(n)) ⊕ S−

2 (�0(n)).

Newforms in S+
2 (�0(n)) were called plusforms, and their Fourier coefficients satisfy the

additional condition c(εα) = c(α) for all α ∈ O. Denote by Snew2 (�0(n)) the space of
newforms in S2(�0(n)) and by Snew,+

2 (�0(n)) the space of plusforms in Snew2 (�0(n)). More
discussions on newforms and plusforms of weight 2 Bianchi modular forms can be found in
[6].

We can choose

β =
(

−dz

r
,
dr

r
,
dz̄

r

)
for (z, r) ∈ H3

as a basis for the left-invariant differential forms on H3. Let F ∈ Snew2 (�0(n)) and recall its
Mellin transform from [6, Sect. 2.5]

�(F, s) = (4π)2

|dF | ·
∫ ∞

0
t2s−2F · β (46)

for F = (F0,F1,F2).

Proposition 6.1 [6, Proposition 2.1] Let F ∈ Snew,+
2 (�0(n)). Then

(1) For Re(s) > 3/2 we have

�(F, s) = (2π)2−2s |dF |s−1�(s)2L(F, s). (47)
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(2) Assume thatF is an eigenform for theFricke involutionωn =
(
0 −1
n 0

)
, i.e.,F |ωn = εnF

with εn = ±1. Then �(F, s) satisfies the functional equation

�(F, s) = −εnN (n)1−s�(F, 2 − s). (48)

Put α(a) =
(
1 a
0 1

)
and ωN = ω(N ) =

(
0 −1
N 0

)
. Let ψ be a character of (O/mψ)× with

conductor mψ . Similar to the twisted Hilbert modular forms [22, Sect. 5], the twist of F by
ψ can be defined as, for m ∈ mψ ,

Fψ = G(ψ−1, 1/m)−1
∑

u∈(O/mψ )×
ψ−1(u)F |2α(u/m)

where G(ψ−1, 1/m)−1 is the Gauss sum of ψ−1.

Lemma 6.2 Let F ∈ S2(�0(n)), ψ a character of (O/mψ)×, and M the least common
multiple of n, m2

ψ , and mψ . Then Fψ ∈ S2(�0(M), ψ2).

Proof We will apply Miyake’s treatment in [16, Lemma 4.3.10] to our case without any new
techniques.

Let γ =
(

a b
cM d

)
∈ �0(M) where M ∈ M and put

γ ′ = α(u/m)γ α(d2u/m)−1,

then γ ′ ∈ �0(M) ⊂ �0(n). Writing γ ′ =
(
a

′
b

′

c
′
d

′

)
, we have

F |2α(u/m)γ = F |2γ ′α(d2u/m) = F |2α(d2u/m).

Therefore

Fψ |2γ = G(ψ−1, 1/m)−1
∑

u∈(O/mψ )∗
ψ−1(u)F |2α(u/m)γ

= G(ψ−1, 1/m)−1
∑

u∈(O/mψ )∗
ψ−1(u)F |2α(d2u/m)

= ψ(d2)G(ψ−1, 1/m)−1
∑

u∈(O/mψ )∗
ψ−1(d2u)F |2α(d2u/m)

= ψ2(d)Fψ

which implies that fψ ∈ S2(�0(M), ψ2). 	


Lemma 6.3 Let F ∈ S2(�0(n)) and ψ a character of (O/mψ)×. If (n,mψ) = 1, then

Fψ |2ω(nm2
ψ) = CψGψ−1

where G = F |2ωn and

Cψ = Cψ,n = ψ(n)G(ψ)/G(ψ−1).
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Proof We will apply Miyake’s treatment in [16, Lemma 4.3.11] to our case without any new
techniques.

For u ∈ O prime to m ∈ mψ , take n, v ∈ O and N ∈ n so that nm − Nuv = 1. Then

α(u/m)ω(Nm2) = m · ω(N )

(
m −v

−uN n

)
α(v/m). (49)

Since G = F |2ωn belongs to S2(�0(n)), (49) implies

F |2α(u/m)ω(Nm2) = G|2α(v/m),

so that

G(ψ−1)Fψ |2ω(Nm2) =
∑

u∈(O/mψ )×
ψ−1(u)F |2α(u/m)ω(Nm2)

=
∑

v∈(O/mψ )×
ψ(−Nv)G|2α(v/m)

=ψ(−N )
∑

v∈(O/mψ )×
ψ(v)G|2α(v/m).

Then the assertion follows immediately. 	

Combining Lemma 6.3 and Proposition 6.1, for the central value at s = 1 we obtain:

Proposition 6.4 For F ∈ Snew,+
2 (�0(n)) and ψ a quadratic Hecke character, we have

L(Fψ, 1) = −εnψ(n)L(Fψ, 1).

Let n, χm and m be as in Theorem 5.17. For F ∈ Snew,+
2 (�0(n)), it follows that for the

non-vanishing of L(F, χm, 1) = L(Fχm , 1), we need at least εnχm(n) = −1.

Lemma 6.5 Given a Bianchi modular form F ∈ Snew,+
2 (�0(n)), there always exists a

quadratic Hecke character χm of conductor m such that εnχm(n) = −1.

Proof Assume that

εnχm(n) =
∏

prime qi |n
εqi χm(qi ) = −1.

We denote, for each prime qi dividing n,

λqi := χm(qi )εqi ∈ {±1}. (50)

Recall the Chinese Remainder Theorem in the following. Let N = ∏
i ni with the ni

being pairwise coprime. Given any integer ai there exists an integer x such that x ≡ ai (mod
ni ) for every i . To solve the system of congruences consider Ni = N/ni and then there
exists integers Mi such that Ni Mi ≡ 1 (mod ni ). A solution of the system of congruences
is x = ∑

i ai Ni Mi . The way for computing the solution can also be applied into principal
ideal domains.

Recall the quadratic residue symbol from [18, Chapter V]. The quadratic residue symbol
for O is defined by, for a prime ideal p ⊂ O,

(
α

p

)
= α

Np−1
2 mod p.
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It has properties completely analogous to those of classical Legendre symbol

(
α

p

)
=

⎧
⎨

⎩

0, α ∈ p,

1, α /∈ p and ∃η ∈ O : α ≡ η2 mod p,

−1, α /∈ p and there is no such η.

The quadratic residue symbol can be extended to take non-prime ideals or non-zero elements
as its denominator, in the same way that the Jacobi symbol extends the Legendre symbol.

For 0 �= β ∈ O then we define
(

α
β

)
:=

(
α

(β)

)
where (β) is the principal ideal generated

by β. Analogous to the Jacobi symbol, this symbol is multiplicative in the top and bottom
parameters.

We are interested in the quadratic reciprocity law in the case of the imaginary quadratic
field F = Q(

√
d) with class number one (see [12, Chapter VIII]. For any α ∈ O with odd

norm we define elements tα, t
′
α ∈ Z/2Z by

α ≡ √
d
tα

(1 + 2
√
d)t

′
α ξ2 mod 4 for ξ ∈ O.

Then the quadratic reciprocity law for coprime elements of odd norm is given by
(

α

β

)(
β

α

)
= (−1)T

where

T ≡
{
tαt

′
β + t

′
αtβ + tαtβ mod 2, if d ≡ 1, 2 mod 4

tαt
′
β + t

′
αtβ mod 2, if d ≡ 3 mod 4.

In particular, if α ≡ 1 mod 4, we can observe that tα = t
′
α = 0 which implies that T ≡ 0

mod 2. It follows that
(

α

β

)(
β

α

)
= 1 for α ≡ 1 mod 4. (51)

We want to find a quadratic character defined by the quadratic residue symbol, χm =( ·
m

√
d

)
, such that χm(qi ) = εqi λqi for λqi given in (50). By our assumption m is the

product of inert or split primes. We can impose that m ≡ 1 mod 4 to get
( ·
m

) = (m
·
)
by

the above quadratic reciprocity law (51). To achieve χm(qi ) =
(
m
qi

) (
qi√
d

)
= εqi λqi , we

need
(
m
qi

)
=

(
qi√
d

)
εqi λqi which can be done via imposing congruence conditions (∗) on m

modulo qi . Therefore, by the Chinese remainder theorem, there exists a m satisfying
{
m ≡ 1 mod 4
congruence conditions (∗) on m mod qi for each prime qi |n. (52)

Now we have proven this lemma. 	

Write S := {place v : v | 2|d|n}. Let ξ be a quadratic idelic Hecke character of conductor

MξO such that Mξ ≡ 1mod 4, Mξ ≡ mmod qi for each qi |n and at v dividing
√
dO the

local component ξv is ramified with square-free conductor. Note that its conductor is coprime
to 2n and divisible by

√
dO, and so is its induced character χξ of (O/MξO)×. Also we can

observe that Mξ satisfies the conditions in (52). So, by the preceding lemma there exists a
χξ attached to ξ such that εnχξ (n) = −1. Let �(S; ξ) denote the set of quadratic characters
χξ such that χ̃ξ,v = ξv for all v ∈ S. Recall from [8, Theorem B(1)]

123



On the non-vanishing of theta lifting of Bianchi modular…

Proposition 6.6 Suppose π is a cuspidal automorphic representation of GL2(A) which is
self-contragredient. Suppose that for some quadratic character χ ∈ �(S; ξ) one has root
number ε(π ⊗ χ) = 1. Then there exist infinitely many quadratic characters χ

′ ∈ �(S; ξ)

such that L(π ⊗ χ
′
, 1) �= 0.

In Sect. 1.6 we have discussed the automorphic representation π on the space of weight 2
Bianchi modular forms. Also, we have shown that there exists a χξ ∈ �(S; ξ) such that
εnχξ (n) = −1, i.e., ε(π ⊗ χξ ) = 1. So we can apply the above proposition to deduce
that, for F ∈ Snew,+

2 , there are infinitely many quadratic characters χ ∈ �(S; ξ) such that
L(F, χ, 1) is non-vanishing.

We will explain that these infinitely many quadratic characters always include a quadratic
character with square-free conductor. This is necessary since the quadratic character χm as in
Theorem 5.17 has the square-free conductor m. Suppose that �(S; ξ) � χM : (O/M)× →
C

× is a quadratic Hecke character. Set M = ∏
prime pi |M p

ri
i with ri ≥ 1. By the Chinese

Remainder Theorem, we have (O/M)× � ∏
pi |M(O/p

ri
i )× and then can write χM =∏

χM,pi with χM,pi defined on (O/p
ri
i )×. It is known that (O/pr )× has cyclic order of

either pr (p − 1) for p above split prime p or p2(r−1)(p2 − 1) for p above inert prime p.
So χM,pi is induced from a character defined on (O/p)× which implies that χM is induced
from a primitive character χm0 of square-free conductor m0.

Wewill show that the non-vanishing of L(F, χM, 1) is equivalent to that of L(F, χm0 , 1).
Write M = m0n

2
0. It is a fact that

L(F, χM, s) = L(F, χm0 , s)
∏

v|n0

(1 − aF (pv)χm0(pv)N (pv)
−s + N (pv)

1−2s)

where aF denotes the Fourier coefficient of F . It suffices to show the non-vanishing of

1 − aF (pv)χm0(pv)N (pv)
−s + N (pv)

1−2s at s = 1

which can be rewritten as the Hecke polynomial

(1 − αF (pv)N (pv)
−s)(1 − βF (pv)N (pv)

−s).

As |αF (pv)| < N (pv) and |βF (pv)| < N (pv), we can deduce the non-vanishing of

(1 − αF (pv)N (pv)
−1)(1 − βF (pv)N (pv)

−1).

As m0 is square-free, divisible by
√
d and coprime to n such that L(F, χm0 , 1) is non-

vanishing, following Theorem 5.17 we can deduce that

Theorem 6.7 Given a Bianchi modular form F ∈ Snew,+
2 with n coprime to dFO, there

always exists a quadratic Hecke character such that the theta lifting as in Theorem 5.17 is
non-vanishing.
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