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Abstract

In this paper we study the theta lifting of a weight 2 Bianchi modular form F of level I'g(n)
with n square-free to a weight 2 holomorphic Siegel modular form. Motivated by Prasanna’s
work for the Shintani lifting, we define the local Schwartz function at finite places using a
quadratic Hecke character x of square-free conductor § coprime to level n. Then, at certain
2 by 2 g matrices B related to f, we can express the Fourier coefficient of this theta lifting
as a multiple of L(F, x, 1) by a non-zero constant. If the twisted L-value is known to be
non-vanishing, we can deduce the non-vanishing of our theta lifting.
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1 Introduction

Shimura initiated the systematic study of holomorphic modular forms of half-integral weight
and provided a correspondence between certain modular forms of even weight and modular
forms of half-integral weight. Later, in the other direction, Shintani [21] described a method
in terms of weighted periods of holomorphic cusp forms to construct modular forms of half-
integral weight. Waldspurger showed in [23] a proportional relation between special values
of L-functions attached to an eigenform of even weight and the square of the square-free
Fourier coefficients of the Shintani lifting. For the special case of modular forms on the full
modular group, Kohnen-Zagier [14] proved a simple version of Waldspurger’s theorem with
the constant of proportionality given explicitly. Inspired by their work we will analyse the theta
lifting of Bianchi modular forms to Siegel modular forms and investigate the relationship
between Fourier coefficients of this lifting and special L-values attached to the Bianchi
modular forms. This can be used to describe the non-vanishing of the theta lifting, which is
an open problem in general.

To construct the theta lifting of a weight 2 Bianchi modular form F for level I'g(n) with n
a square-free ideal for an imaginary quadratic field F of class number one, following [3] and
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[13] we consider the 4-dimensional rational quadratic space V given by Hermitian matrices
with entries in F. Its associated symmetric space D is isomorphic to the upper half space Hj.
In our theta integral we use the differential form nr attached to F defined on the arithmetic
quotient I'\ D. We choose the Schwartz form ¢ = wé(oMgo r defined on a pair of vectors in V
so that the theta kernel is given by

0(g,h,z) = Z w(g, h)e(x1,x2;z) forg e Spy, C GL4, h € SO, 1).

(x1,x2)€V?

Then the theta lifting is constructed as
0,0 = [ nr@) A6 B2
r\D

which by results of Kudla and Millson turns out to be a weight 2 holomorphic Siegel modular
form. Its Fourier coefficient at a 2 x 2 symmetric matrix 8 > 0 is given here by

> erxix) nF

(x1,x%2)€lM\Q2p Cuxy.xy)

where Qg = {(x1,X2) € vz (xi,x;)) = B} and U(x1, X2) := Span{x;,xz} C V. For
an auxiliary quadratic Hecke character x with its conductor coprime to n we define the
Schwartz form as ¢ = goEOM(pjﬁ. The choice of the Schwartz function ¢% in Sect.4 is crucial
for us to get the period integral related to some twisted L-values. With this choice we take
certain 8 > 0 (again depending on the conductor of x) at which the coefficient of ©,(nr)
is expressed as the above weighted sum of period integrals over infinite geodesics joining
two cusps. By [24, Theorem 1.8], the period integral over infinite geodesics ending in co
can be related to L(F, x, 1). We apply Atkin-Lehner operators to transform other infinite
geodesics and reduce to this case. In Sect. 5 I compute the coefficient at such a 8 as a multiple
of L(F, x, 1) by a non-vanishing number. By Friedberg-Hoffstein’s theorem [8, Theorem
B], we can deduce that there always exists a character x such that the twisted L-value is
non-vanishing which implies the non-vanishing of the corresponding theta lifting.

Theorem 1.1 (Theorem 5.17) Let F = Q(~/d) (square-free d < 0) be an imaginary
quadratic field of class number one and denote by O its ring of integers. Consider a weight 2
Bianchi cusp form F of level I'g(n) with n a square-free ideal away from ramified primes in
F/Q. Given a square-free product m of split or inert primes in F /Q such that (m,n) = 1,
form = mO we choose a quadratic Hecke character xw of conductor m«/d. Then, at certain
B > O related to m, the Fourier coefficient of the theta lifting ®,(nF) can be computed as

(%)« L(F, Xm, D
where the non-zero constant (x) is given explicitly in (38).

Constructions of congruences between automorphic forms are one of important tools, particu-
larly those between cusp forms and theta lifts on GSp,4(A). [17] gave an explicit construction
of the theta lifts of automorphic forms for imaginary quadratic fields to further study the
congruence on GSp, (A). Different to our approach to construct the Schwartz form (defining
the finite part), its choice is to define a distinguished infinite part while at each finite place
the local Schwartz function is the characteristic function in Sect. 4.3.

It is known that Bocherer formulates an equality between sums of Fourier coefficients of
Siegel modular forms and certain L-values. [5] proved a precise formula relating the Bessel
period of lifted automorphic forms on GSp,4(A) to central L-values, where the Bessel period
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On the non-vanishing of theta lifting of Bianchi modular...

is the Fourier coefficient considered by Bocherer. We have not calculated the Bessel period
of our theta lifts but in the future we expect to relate some combinations of the Fourier
coefficients of our lifts to special L-values. This would lead us to investigate the connections
between our calculations and those on the Bessel period, and how our further result would
be related to Bocherer’s conjecture.

2 Binary Hermitian form

In this section we recall some basics from linear algebra about Hermitian matrices and
Hermitian binary forms from [7, Chapter 9].

For an complex matrix A, the matrix A is obtained from A by applying complex conjuga-
tion to all entries and the matrix A’ is the transpose of A. An n x n matrix A with complex
entries is called Hermitian if A' = A. By the definition we see that an Hermitian matrix is
unchanged by taking its conjugate transpose. Note that any Hermitian matrix must have real
diagonal entries.

Let R be a subring of C with R = R. We write H(R) for the set of Hermitian 2 x 2
matrices with entries in R, i.e.

H(R) ={A € Mo(R) | A" = A}.

ab
bd
then the associated binary Hermitian form is the semi quadratic map f : C x C — R defined
by

Every f € H(R) defines a binary Hermitian form with coefficients in R. If f =

Fu,v) = (u, v) (Z Z) (i1, ) = auii + bub + bitv + dv.

We shall often call an element f € H(R) a binary hermitian form with coefficients in R. The
discriminant A(f) of f € H(R) is defined as A(f) = det(f). Set |a| = (aa)'/? fora € C
where ~ denotes the complex conjugation. We define the GL;(R)-action on H(R) given by
the formula

o - f = (ldet(0)|"?0) f(| det(3")|7/?5") = | det(o)| o f5' (1)

foro € GLy(R) and f € H(R).If o = (;g) € GL,(R) we have
L L (@B @ BY @B f §>f>
o f=|det(o)] <<y, 1@ B (.0 f7,8)

Note that A(o - f) = A(f) for every 0 € GL,(R) and f € H(R). Two elements f, g €
H(R) are called GLy(R)-equivalentif g = o - f forsome o € GL;(R); SL2(R)-equivalence
is defined analogously.

A binary Hermitian form f € H(R) is positive definite if f(u, v) > O for all (4, v) €
C x C\ {(0,0)}. If — f is positive definite f is called negative definite. If A(f) < O then f
is called indefinite.

We define

HY(R) = {f € H(R) | f is positive definite}
H™(R) ={f € H(R) | f is indefinite}.
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Clearly the group GL,(R) leaves the H* invariant. It is easy to see that f € HT(R) if
and only if @ > 0 and A(f) > 0. The group R acts on H*(C) by scalar multiplication.
Similarly R* acts on H~(C). We define

HT(C) :== HT(C)/R~o, H(C) := H (C)/R*.

For f € HE©), [ f] stands for the class of f in F1%(C). The action of GL,(C) on HE(C)
clearly induces an action of GL,(C) on HE(C). The centre of SL,(C) acts trivially on H(C),
so we get an induced action of PSL,(C) on H(C) and H*(C).

Recall the upper half space Hz = C x R. g, elements of which can be written as (z, )
withz =x +iyforx,y e R,r € R.o.

Definition 2.1 The map ® : H(C) — Hij is defined as

b A
()5S

In fact ¢ induces a map ¢ : HH(C) — Hs.

This map is a bijection since for a point (z,r) € Hj there exists f = (‘z‘z;’z i) such
that ¢ (f) = z + rj € Hjs. Therefore, this map gives a one to one correspondence between
equivalence classes of positive definite Hermitian forms and points in the upper half space.
Note that @ is the analogue of identification of the set of equivalence classes of binary positive
definite quadratic forms with points of the upper half plane.

Proposition 2.2 The map ¢ : HT(C) — H3 is a PSL:z((C)-equivariant bijection; that is
¢ - f)=0-¢(f)foreveryo € PSLy(C) and f € HT.

Proof See [7, Proposition 9.1.2, Chapter 9]. ]
Definition 2.3 For a binary Hermitian form f = (g Z) € H™(C) we define

V(f) ={z+rjeHs|a—bz—bi+dzz+r’d=0)
and G = {¢(f) | f € H™ (C)} which is a set of geodesic planes in Hj.

Remark 2.4 This map v is slightly different to the map in [7, Definition 1.3, Chapter 9] which
is given by

fi>{z+rjeHs:a+bz+bi+dzz+r’d =0}

The above map v is chosen for us to prove Proposition 3.4. In addition we will consider the
cycle Dy for positive definite U generated by f with f € H™(C).

If d # 0 then ¥ (f) is the following geodesic hemisphere
V(f) =z +rj € Hs | ldz = b +1dI’r? = =A(f)).

If d = 0 then ¥ (f) is a vertical plane. The group PSL,(C) acts on G by its induced action
on subsets of H3. Clearly ¥ induces a map ¢ : H~ (C) — G.

Proposition 2.5 The map ¥ : H~(C) — G isa PSLZN((C)-equivariant bijection; that is
V(o f)) =0 -y¥(f)foreveryo € PSLy(C) and f € H™(C).
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On the non-vanishing of theta lifting of Bianchi modular...

Proof We will prove the equivariance property only for the generators of PSL,(C).
Leto = ((1);19) where 8 € C. Then

o fo ﬂ 10\ _ (a+Bb+pb+pAd b+ pd
1)~ b+ pd d

It follows that
V(o - f)={z+rj € Hs | at+pb+pb+ pd—(b + Bd)z — (b+Bd)z + dzZ + r*d = 0}.

On the other hand, for z + rj € ¥ (f), we have o - (z +rj) = (z + B) + rj € Hjs. Setting
7z =z+ Band r = r, we observe that

a—bZ —B)—bE —P)+dZ —B)E —B)+r?d =0.

Then it is not hard to see that ¥ (o - f)) = o - ¥ (f) foro = ((1)’13)

In the same way we prove this property for o = ((1)_01).We have
e 0—1\(ab\(0-1\ _(d —b
7 =0 )\pa)\10)T\-ba)

(o - f)={z+rjeHs|d+bz+bi+azz+r’a=0}.

It follows that

Forz+rj e v (f), wehavez’—l—r’j =0- (Z+’j) \z\2+l2 + \z|2+r2J Then |2/|* +r? =

It follows that z = ~TEnE |2 7 and r = B |2 Hence the following identity holds

|z |2+ 2 +r 2
_ z/ z Z/Z/ r/2
b b d =
e e A P
Then it is not hard to see that ¥/ (o - f)) = o - ¥/(f) foro = (9. m]

3 Orthogonal group of sign (3, 1) and cycles

In this section we recall some basic aspects on orthogonal groups of signature (3,1) and cycles
in this case from [3, Sect. 4].

Let F = Q(+/d) (d < 0) be an imaginary quadratic field of class number 1. Denote by
O by its ring of integers. For an ideal n C O put

To(n) = {(‘z Z) eSL,(O):ce n} .

Assume that the four-dimensional space V over QQ is given by the hermitian matrices
V={xeM(F):x =X},
with quadratic form
X — —det(x)

and corresponding bilinear form

1
(x,y) = ) tr(xy™),
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ab\* d —b
(cd> _<—c a)' &Y
Note that this bilinear form is preserved under the action of GL,(C) where its action is given
in (1); that is, for g € GL,(C),

where

(g-xgy=( det(g>|‘1gxg’ |det(g)| ™" gyg")

——tr(|det(g)|— gxg'|det()|(8") 'y g7 det(| det(g)| "' gyg"))
l
= =5 tr(gxy” ' det(y)g ™) = (x,¥). 3)

We fix an orthogonal basis of V (Q) given by e; = (5 0 ) e = (01) e3 = ( ?F‘{)‘?) and

e = (0 i ) Z such that the discriminant of V is d. The basis of Z0 can be identified with
{e1, e2, e3}.
The symmetric space in this case can be realized as

={Z e VR) : (Z, Zy) < 0},
which is isomorphic to hyperbolic 3-space H3. The isomorphism can be given by

1 2 2
/L:z+rjeH3r—>f<|Z|_+r Z).
r z 1

“

The GL,-action on the Hermitian form deﬁned as in (1) induces that on Hj in the following.
For g = ( ﬁ) we have g - ( el 42 Z) = ( & ‘2;” : ) expand the LHS,

z 1

1 jus 35
- A(aﬁ)(IZI +r z)("fZ)
.- r( ) r~1 det(g)| RVAVE
o 1 (kP et tpzazep) (47
=r""|det(g)] <y|z‘ 2248z yz+5) ('8 ’3)
= r—1|det( )|_1 (aa\2|2+o¢o{r +apzit+aBz+pB aylz| +ayr2+ﬁyz+a57+/%)
8 aylzP+ayr’+asz+Byz+Bs yylzl*+y pri+ysitysz+ss
and then

P (@4 BFI+Y +ayrt s — Bylr

o= :
lyz+ 81> + |y [>r? lyz+ 81> + |y [>r?

By (4), we can define the action of GL,(C) on Hj to be as

<a ,8) ((az+ﬁ)(172+5)+a17r2 las — By|r )
. (Z, r) —

s 5
y lyz+ 81>+ |yl>r? lyz+ 812+ |yl>r? ©)

Proposition 3.1 The above map w as in (4) intertwines the GL; (C)-action on V (R) and Hj3;
thatis u(g - (z,1)) = g - u(z, r) for g € GL2(O).

Proof See [26, Proposition 4.2.1]. O

The set Iso(V) of all isotropic lines (1-dimensional x € V such that g(x) = 0) in V(Q) can
be identified with P1(F) = F U oo (0o = [1 : 0]). Assume that the cusp oo corresponds
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On the non-vanishing of theta lifting of Bianchi modular...

to the isotropic line spanned by us = (). Given an element g = (; s ) € SLy(F)
transforming the cusp oo to another cusp ¥ = [« : y], we can see that

. _ (o B (10 fay) _ (oaxay
§e=\ys5)\00)\gs) " \ayvi)
Hence we can identify the cusp with the isotropic line by means of the map
aa ab

v:la:b]l+— span(ab b

) € Tso(V). ©)

Proposition 3.2 The above map v satisfies
v(g-la:b]) =g-v(la:b])
for g € GLa(F) and [a : b] € PL(F).
Proof See [26, Proposition 4.2.2]. O

Let U C V be a Q-subspace with dimg U = 2 such that ( )|y is positive definite; say
U = (x1, x2). Define the special cycle as

Dy={ZeD:Z1U}.

Let I" be a torsion-free congruence subgroup of GL(V) preserving the quadratic form on V
and let I'y be the stabilizer of U in I' N1 SO (3, 1) (R), where SOy is the identity component
of SO. We denote the image of the quotient I'y\ Dy in I'\D by Cy. The stabilizer I'y is
either trivial (if the orthogonal complement U C V is split over Q) or infinite cyclic (if U~
is non-split over Q) (see [11, Lemma 4.2]). If ['y is infinite, then Cy is a closed geodesic in
I'\D, while Cy is infinite if 'y is trivial (see [3, Sect. 4.3]).

Lemma3.3 For U = (x1,X2) C V as above. Then the following two statements are
equivalent:

(1) UL is split over Q,
(2) disc(U) € —d(Q*)?.

Proof For an arbitrary subspace U of a non-degenerate quadratic space V we have dim(V) =
dim(U) + dim(U~). Thus U~ is also 2-dimensional. By assumption U~ is a hyperbolic
plane. By Witt’s Theorem (a 2-dimensional quadratic space over a field F is a hyperbolic
plane if and only if its discriminant lies in —(F*)?) we have disc(U+) € —(Q*)2. Thus
disc(U) € —d(Q*)? as disc(V) = disc(U)disc(UL).

Conversely suppose disc(U) € —d(@x)z. Again by disc(V) = disc(U)disc(UL), we
have disc(UL) € —(Q*)? implying that Ulis split over Q. O

We orient Dy by requiring that a tangent vector v € Tz(Dy) ~ Z+ N U+ followed by
Z1 N U gives a properly oriented basis of Tz (D) ~ Z+. Then (Z- NU*, ZL N U, Z) has
the same orientation as (e, e2, €3, e4), i.e. the determinant of the base change is positive.

For B = B' € M>(Q) a positive definite symmetric matrix, let

Qp = {(x1.%2) € VZ(Q) : (xi, %)) = B} .

Consider the subspace U (x1, X2) := (X1, Xp) C V. For a fixed cusp «; corresponding to the
isotropic line I, , we write

Qp i, ={(x1,x2) € Qg : U(X1,x2) L[}
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From now on, fix a 8 such that disc(U) € —d(Q*)?,i.e.det B € —d(Q*)2. Let (x1, X2) €
Qgand U = U(x1, X2) = (X1, X2). Given a vector x € U, by Lemma 3.3, it is orthogonal to
two isotropic lines /,, and /., generated by u,, and u,, respectively associated to two cusps k1
and k7. Again, if these two cusps are not equivalent with respect to I', we can give a positive
orientation to U to distinguish the cusps in the sense that the new base (u,,, X1, X2, U, )
preserves the orientation of (ey, e, e3, e4). For a fixed cusp «; corresponding to the isotropic
line [,;, we write

Qg i+ ={(X1,X2) €Qp ; : Uy, ,qu) LU(X1,x2), {1y, , X1 ,Xz,u,(j)has a positive orientation}.

It should be mentioned here that (u,,, X1, X2, qu) and (u,, —X1, —X2, qu) have the same
orientation which means that we need to count (X, X2) and (—X;, —X») simultaneously in
Qg «;,+- Alternatively, the following Lemma 3.7 describes the orientations associated to
two pairs (X1, X2) and (—Xi, —X2) in Qg o 4+ in a different way. Note that the stabilizer
Iy, C To(n) of the cusp «; acts on Qg + as GLy(C) preserves bilinear forms and the
orientation.

Proposition 3.4 For det 8 € —d(Q*)?, we have

MNQg= Y T\
K €D\P!(F)

Proof Given a representative [(X1, X2)] in I'\2g such that U (x1, x2) L u,;, we consider its
I-orbit I" - (X1, X2). The corresponding Dy for U = (T" - (X1, X»)) has the image Cx, x,) in
I"\H3 under the natural projection H3 — I'\H3. Foray € I we have Ur.x; x,) L ¥ - ;.
By Proposition 3.1, we know that y - u,;, = uy .. It follows that y - (X1, X2) liesin Qg ; +.
Thus, modulo the I'-action, we have a well-defined map:

Qg — [ T\
K €T\PL(F)
If two pairs (X1, X2) and (y1, y2) are not I'-equivalent then they are not I',, -equivalent since

I', C I'. Hence this map is injective.

1

We will show that the inverse map ¢~ is injective in the following. For x = (g Z), we

calculate its orthogonal complement in H3, due to the isomorphism (4),
XU NH; = {z+rj eHy 1 d(|z]> +7°) —bZ —bz+a =0} = y(x)

where 1 is defined as in Definition 2.3. Observe that xlL N le NHz = ¢ (x1) N ¢¥(xz) of
which one boundary point on the complex plane is ;. Suppose that two pairs (X1, X) and
(¥1,y2) are not I'y; -equivalent in I, \ Qg «, +. Note that ¥ (x1) N ¥ (x2) and ¥ (y1) N ¥ (y2)
have a boundary point in common, the cusp k;. Assume that there exists an element y € I’
such that y - (x1, X2) = (y1, y2). Then, by Proposition 2.5, we have y - ¥ (x1) = ¥ (y1) and
y - ¥ (x2) = ¥ (y2). It is easy to observe that

Y- NY &) =y -v&) Ny -¥x2) =¥y Ny(y2).

It follows that y must be in I'y,, which is a contradiction to that (X1, X2) and (y, y2) are not
'y, -equivalent. So such a y does not exist. We have proven the injectivity of s O

Set det(8) € —d(Q*)%. Itis easy to observe that, for the cusp oo,
Qpoo = {((Zl %‘) , (Zz b02>) € Qp : det(B) € —d(Q*)?, ar, a2 € Q, by, by € F} :
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Setting (X1, X2) € Q2,00 = ((Z: bO' ) , (Zz lg )) the associated Gram matrix is of form

B = (x1,X1) (Xl,X2)> _ biby g(biba+ biba)
(x1,%2) (x2,%2) 2(b1by + byby) baby '
of which the determinant is

1 — -
det(B) = disc(U (x1, X2)) = _Z(blbz —b1by)*.

We are not interested in the case when b b € Q since then det(8) = 0.
Let U = U(x1, x2) for (X1, X2) € g, 0. We will calculate its corresponding special cycle
1z? 4+ 72 z
Z 1

VP +r2 2\ (e b1\ _ 1 (1zP+r22\ (0 —=b\_1[(-bz =
r Z 1 b1 O T r 4 1 —by a1 ) r * —biz+a1/)’

Thus we have

Dy in the following. Given a point z+rj € Hj identified with } ( ) , We compute

X]l:{z+rj€H3 :al—b12—51z=0},
and similarly,
Xé—:{z+rj€H3 :az—bzz—l;zz:O}.

Then, solving above equations, we can deduce that the special cycle Dy consists of the
infinite geodesic line joining two cusps oo and

axby —a1b

_ @bz aiby 7
U by — biby M

Lemma 3.5 Suppose that O = Z[w] with w is either Jd or % and denote the stabilizer

of the cusp oo by ' = {(é ?) NS (9}. Denote

Lo+ = a by , e by ray,ap € Z,by, by € O, the condition T holds
’ b 0 b, 0

where the condition T is given by
b1\ _ aB) (1
()= 5) () ®

witha, B,y,8 € Z, a8 — By = 1 and m € F. Then the cusp zy associated to I'oo\ Loo,t
runs through all the representatives in (mi/dg|) =10/ O.

Proof Write U = U (X1, X2). The I's-action on (x1, Xp) is given explicitly by

la (%1, %) = a1+al§1—|—6{b1 by a2+aliz+&b2b2
01 132 = by o)’ by 0))

Under the I'o-action, the cusp zy becomes z’U; that is

Z, _ (az + Oll;z + aby)b; — (a1 + Oll;1 + aby)by
v biby — biby
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_a2b1 + abob; — a1by — abiby
B bi1by — b1y

By our assumption, the cusp zy can be rewritten as

=zy +o.

may(a + Bw) — mai(y + dw)
—mm(a + pw)(y + o) + mm(a + Bo)(y + dw)
@@+ fo) —ai(y +80)  ax@+ o) —ai(y + dw)
o s - py)@—o) m/dp
of which the numerator ranges over the whole O.

Thus, modulo the I'-action, the corresponding cusp zy runs through all the representa-
tives in (m/dp)~10/0. O

U =

Remark 3.6 Let m be a square-free product of split or inert primes.

(1) Let d = 1 mod4 and then dr = d. The above zy ranges over (md)~L0. Writing
f = (mv/d)O, we have

arby — a1by axby —a1b
wi= (e ) 1= ()0
bi1by — b1by m
(2) Let d = 2,3mod4 and then dr = 4d. Note that in this case prime 2 is ramified in
F = Q(+/d). Rewrite (8) above as

b\ _ lm o B 1

b)) 27 \yé)\w
witha, B, v, 8 € Z,a8 — By = 1. Then the above zy ranges over (m~/d) ™' ©. Writing
f = (m+/d)O, we have

arby —aiby 2(azby — a1by)
ZUf= _ f= ———10.
bi1by — b1by m

arbj—aiby or 2(azbi—aiby)
m

In Sect. 4 we will define the Schwartz function evaluated at m

depending on d.

LetU = (X1, Xp) = <(gi lz)l >, (gzlg»whereal,ag € Qand by, by € F*. We have seen
that Dy consists of the infinite geodesic line joining the cusps co and zy as in (7). Choose
a point Z = zy + rj on Dy and then the orientation of 77z (Dy) depends on the sign of

Im(b1by) (assuming Im(b;b») # 0) by the following lemma.

Lemma3.7 Let U, Dy, Z be as above. Then the sign 0f1m(b152) (assuming Im(blgz) #0)
determines the orientation of Tz(Dy).

Proof Here we sketch the proof and for more details see [26, Lemma 4.2.7].
> 2
Let Z = zy + rj be a point on Dy which can be identified with % (ZUZ[ZJ tr ZlU)
U

Suppose that <% §) € Z* and we compute, recalling  action in (2)

<Of/3 wiv+rtw\ _ (e—Biu . * >
B s Zu 1) = x  —Pzy +8Guiv +r2))"

@ Springer



On the non-vanishing of theta lifting of Bianchi modular...

It follows that

B s

We describe the subspace Z+ N U as

zt = {(a ﬂ) ia—ﬂEU—BZU-i-(S(ZUZU-i-VZ):O}~

ZLOU:{(aﬂ>:a—ﬁZU—BzUZO,aeR,/BeC}

B0
{07
B 0

1 1 - 1. _
Ztnu = <5a1(e1 +ea) 5 (b1 +ber = Sibr = bies,

where B € Span{b|, by}. We see that

1 1 — 1 _
5“2(31 +eq) + E(bz +Dby)exs — Ei(bz - b2)€3>

P . _ a1 b] az b2
is identical to U = <<51 0>, (52 0>>

Similarly, we have that
zZtnut
e _ 2 1 _ 1, _ e _ 2
= E(ZUZU —r° = De; + E(ZU +zZy)ez — EZ(ZU —zZy) + egi(zuzu —r°+ Dea
where & = 41 describes the orientation of 77 (Dy) >~ Z LNUL. If the cycle Dy is directed
from zy to oo then we take ¢ = —1. For a different direction of Dy we take ¢ = 1.

Then we consider the base change, which describes the orientation related to introducing
Qg «; +» given by

ztnut el
zinu | =m |
z €

€4

where the determinnant of M can ba calculated as
1 - - 1 -
det M = _Srii(ble —bi1by) = Esrlm(blbz) > 0.

It is obvious that the sign of Im(b;b;) determines the orientation & of 7z (Dy). m}

4 Schwartz function

In this paper we need to consider the pair Sp, x SO(3, 1) to construct the theta liftings of
weight 2 Bianchi modular forms. In the following Subsects. 4.1, 4.2 and 4.3, we define local
Schwartz functions at split primes dividing m, inert primes dividing m and ramified primes
away from 2 respectively. In Sect. 5 we will construct the theta lifting of a weight 2 Bianchi
modular form of I'g(n) with square-free n coprime to (m|dr|). To avoid the vanishing of our
theta lifting, in Subsect. 4.4 we define the local Schwartz function at each place dividing N (n)
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(norm of n) and ramified prime 2, to be different to the characteristic function of integral
lattice. In Subsect. 4.5 we consider all other finite places.

Let F = Q(+/d) be an imaginary quadratic field and denote by O its ring of integers.
Choose m € Z as a square-free product of inert or split primes and put m = mO. Let xm be
a finite order Hecke character of conductor m+/d. Denote by ¥ the induced idelic one and
by Xm.v its local component. In this section we will define a Schwartz function pX™ related
to this character xyy,.

We first describe how to localise the quadratic space in the following proposition. In
Sect. 3 we have chosen the rational quadratic space of dimension 4 such that (V (Q), g¢) ~
(H(F), —det). Thus, to extend it to the 4-dimensional quadratic space over p-adic numbers
Qp, we can consider H(F) ® Q,. Following [20, p.273], there are two four dimensional
quadratic spaces over Q,, with discriminant @ € Q;/(Q, )2 up to isometry. If 0 = 1, it is
isometric to M>2(Q,) equipped with the determinant; if 9 # 1, it is isometric to

Vi(@p) = {(gffa ff) ! ge@p,ee@p(«f)} c Mz (Qp(V))

equipped with the determinant.

Proposition 4.1 For a prime p, the four dimensional quadratic space over Q,, is isometric
to either (V1(Qp), det) when p is inert or ramified in F /Q, or (M2(Q),), det) when p splits
in F/Q.

Proof Given a diagonal quadratic form Q = ) 7, aixiz with a; € Qy;, we define the Hasse
invariant as ¢, (Q) = c(Q) = ]_[i<j (aj,aj)p = £1 where () denotes the Hilbert symbol.
The non-degenerate quadratic spaces over Q, (p < oo) are in 1-1 correspondence with the
triples (n, 0, ¢), where n is the dimension, 9 is the discriminant, and c is the Hasse invariant
[4, Theorem 1.1, Chapter 4].

Let p be inert in F/Q which implies that v/d ¢ Qpandthat F® Q, = Q,,(\/E). Then
we have

H(F) ®Q, = {(gg) ta,d €Qp.b e @p(fd)} = H(F ®Q)),

where ~ denotes the non-trivial action in Gal((@p(«f )/Qp). Equipping H(F) ® Q,

with the quadratic form being —det and choosing an orthogonal basis e; = ((1)1)

e = ((l) ,01) ez = (?0) and eq = (7%{» we have an associated diagonal form

0= —xlz—l—x%—i—x% —dxf. It follows that © = d and ¢ = (—1,—d), = 1 since
p 1 d. Similarly, for V1(Q,) with the discriminant 8 = d, choosing an orthogonal

basis e/l = (39). e = (‘{;_?/3), 6,3 = (;3?) and e; = ( ?F{) in Vi(Q))
above, we have a diagonal form Ql = x12 — dx% — dx% + dx4. Then 0 = d° and
¢ = (I, —d)(1,d)p(—d, —d)p(—d.d)> = 1 since p { d. Thus, we can deduce that
(H(F) ® Qp, —det) >~ (V1(Q,), det) if p is inertin F/Q.

Let p splitin F'/Q such that (p) = pp. Then d has a square root « in the ring Z, of p-adic
integers by Hensel’s lemma. It is known that F ® Q, = Fy, x Fg where Fy, F are both
isomorphic to Q,,. Consider the map H(F) ® Q, — M>(Q)) via ( ) RX > (Z;fc Z’;i)
where the subscripts p, p, p denote images under Q — Qp, F < Fp and F — Fg

respectively. Note that by, bg have the same image in Qp It is not hard to see the map
HF) ® Q, — M2(Q)) is surjectlve for any element ( ) A with A € Q, we can find
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its preimage (- V7 ) @ o~ xin H(F) @ Qi for (§9) 2, (§.9) - 2 and (94) - 1, we
can find their preimages (%) ® A, ((1) _01) ® A and (9}) ® A respectively in H(F) ® Qp.
Then H(F) ® Q, =~ M>(Q,) as they are both 4-dimensional over Q,. In fact M>(Q,)
equipped with the determinant is one isometric class of four dimensional quadratic spaces
of discriminant 1 [20, p.273]. Again, equipping H(F) ® Q, with minus determinant and

choosing an orthogonal basis e; = ({9),e2 = ({ % ). e3 = (9}) andes = (_?/3 ‘{)3), we
have an associated diagonal form Q = —x12 + x% + x32 — dxf. It follows that 0 = d (square
in Zp) and ¢ = (—1, —d), = 1. Choosing an orthogonal basis e,1 =(39). e,2 =(§29).
e; = (?(1)) and ‘3;1 = (_01 (l)) in M>(Q,) we have ? = 1landc = 1. Thus we can deduce
that (H(F) ® Qp, —det) = (M2(Q),), det) if p splits in F'/Q.

Suppose that p is ramified in F'/Q, and then we have F® Q) = Qp(\/g). As in the inert
case, H(F)®Q, = H(F ®Q),). Corresponding to (H(F) ® Q,,, — det) the Hasse invariant
c=(-1,-d), = (—l)pT_l. For (V1(Q)), det) we calculate

p—1

¢ =d)p(—d, —d), = (1, =d) (1, =), (1, =d) p(—d, =d) , = (—d. —d) ) = (=1 T

where the last equality holds as d is square-free and divisible by ¢. Thus, if p is ramified we
have (H(F @ Qp), —det) >~ (V1(Q)), det). O

Fix the additive character ¥ = [] q Yy of Ag given by Yo (x) = exp(2mix) and, for
every rational prime g, ¥, (x) = exp(2miFr, (q’lx)) for x € Qg, where Fr, (x) denotes the
fractional part of x. In this case we have ker(y,) = gZ,. Note that computing the congruence
subgroup of Sp, under which ¢, is invariant is related to ker ().

Let xy(x) = (x,det V) : Q*\A* > {£1} be the quadratic Hecke character associated
to V. For X = (x1, x2) € V(Q)?, represent the associated Gram matrix by

X, X) = ((x;, X)) € Symy(Q),

where () is the symmetric bilinear form on V(Q)z. Letw = wy, denote the Weil represen-

tation on the Schwartz space S(V?) characterized (for every ¢) by the following actions of
Sps x SO(3, 1) locally on ¢, € S(V ® Q,)?):

a)(17 h)wq(x) = (Pq(h_IX), (9)
1
1) (((a) ta0_1> , 1) 9q(X) = xv q(det(a))] det(a)|§<pq Xa), (an
01 .
@ ((_1 0) ) 1) 0y (X) = y9,(X). (12)

Here the Fourier transform is defined by

Pq(X) = / g (V) Yq(tr(X, Y))dY
(VeQy)?

q)

and y is a certain complex number of absolute value 1.
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4.1 At split prime dividing m

Let g|m be a split prime such that (g) = qq. According to Proposition 4.1, there is an
isomorphism (H(F) ® Qg, — det) = (V1(Qy), det) for g splitin F/Q given by

ab (@ b
bd cd
where ¢ is the image of b € F under F < Fq >~ Q.

Definition 4.2 (1) Suppose that d = 1 mod4. The local Schwartz function <p3;‘“ at g is
vanishing unless

a;j € Zg,bi € q0q,c; € q0q, d; € Ly, azdy — aidy € qZq,
in which case
e ((6r0) (52)
4 c1 di 2 dy
[ G Xom) (asz;albz I czdlzcldz)’ if ebi-aby 4 od—ad ¢ 0F x OF,
0, if @hoaby 4 adioad ¢ 40, or §0O;.

where (Xm,qXm,5)(—) = Xm,q(—)Xm,5(—). Note that b; € qOq, ¢; € qOq is equivalent
to b; € qO04 x q05.
(2) Suppose that d = 2, 3mod 4. Replace above “Zb'r;a‘bz by 2(”21"”;“1}92) and Czd‘r;c‘dz by
2(c2d1—c1d2)
m

as discussed in Remark 3.6

In the following we will check the invariance properties of this local Schwartz function
under some congruence subgroups of Sp, and SO(3, 1) in details in case of d = 1 mod 4 and
the other case can be treated similarly. We need to calculate the transformation properties
(9), (10), (11) and (12). For simplicity we write ¢, = go(f‘“ and x = xm in the following
computation.

SetX = (x1,X) = ((“‘ b ) , (“2 bz)).Fora,- € Zg,bi € q0q, ¢c; € 40y, d; € Ly, itis

c1 dy cr do
not difficult to observe that
1
® ((0 L{)) 0a(X) = 9 (x1.%2) foru € Ma(qZq) (13)

as Yy (% tr(u(X, X))) is trivial for such (x1, Xp) and u.

SetY = (y1,y2) = ((;’ﬁ: ’gl‘ ) , (';2 ’gj )) Inspired by Prasanna’s computations in the

proof of [19, Proposition 3.4], we will calculate the Fourier transform

0q(Y) = / Y (tr(X, Y))p, X)dX  fori =1,2,

a; GZq,bierq
L‘,'quq ,dieZq

where
1
tr(X,Y) = —§(a151 —biy1 —c1p1 +diay + a2y — bayr — 2y + daa2).

Denote by A /7 the image of Vd in Oy. By the above definition, ¢, is invariant under the

141
transformations a; — a; + q, b; — b; + qz, b; — b; + qz}\ﬁ (or b; — b; + q2¥)
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and d; — d; + q. Sending a; — a; + q, we will have ¥, (—¢3;), factored out of the above
integral, which has to be trivial for the non-vanishing of ¢, . So for ¢, (Y) non-vanishing we
need §; € Z,. Sending by — by + qz, we get ¥, (qz(yl + B1)). For by — by + qzkﬁ and

1+A
b1 > bi+a2 5% we get Yy (42 (1 — B): yz) and Yig (g (i +B1) + 5a> (i — B 1)

respectively. For ¢, (Y) non-vanishing we need y; + B1,y1 — B1 € q*IZq which implies
Bi.v1 € q_IZq. Repeating the same argument we can deduce that for the non-vanishing of
@q the following conditions must be satisfied, fori = 1, 2,

a; € Zq,ﬁl’ S q*IZq, yi € q”Zq,Si S Zq.

It follows that w (( _01 é)) ©4(Y) is vanishing unless o; € Zy, B; € g~ Ly, vi € q_qu and
5,‘ S Zq.
Recall from (10) that

1
o((01)) e = v (3 wwev.x0) 2,0,

Seta; € Zy, pi € q’IZq, Y € q’IZq, 8; € Zy. Then when u € Mz(q3Zq) we can see that
Yy (% tr(u(Y,Y))) is trivial. Thus we can deduce that

© (((]) th) (—01 (])>) vq(Y) = <<_01 (l)>> 0q(Y) foru € Ma(q’Zy), u=u'

which implies
10 3 ‘
@\{, 0 (Y) =¢4(Y) forue My(qg Zy), u=u'. (14)

Fora = (;‘ ’g) € GL1(Z,), we compute

_ ap
Xa = (x1, X2) <y 5)
_ aay + yay aby + yby Bay + Sax Bby + by _. a/l b,l a; b/1
acy +ycy ady +ydy )7\ Ber + 8cx Bdy + 8da ' c/1 d; ’ c/] d;
due to which we obtain that

a/zb; — a/lb,Z (Bai + daz)(aby + yb2) — (aay + yaz)(Bby + 6by)

m m
_ (@8 = By)ash) — (a8 — By)aibs aby — aib
m

= det(a) -
m

and similarly that Cﬂ‘m;qdz = det(a) - ”d‘m;“dz. Then from (11) we see that if det(a) € Zj
then

2 ((Z‘, tao_l)) 04(X) = 174 (det(@)] det(@) [} (% o) (det(@)g, (X).  (15)

Combining (13), (14) and (15), we have proved the following lemma:
Lemma 4.3 We have

o (k1)py = xv q(det(A))] det(A) |7 (Xq X7) (det(A))p,
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for
k= (é g) € {(é g) € Sps(Zy) : B € Ma(qZ,),C € Mg(q3Zq)}.
Proof The assertion follows from the Iwahori decomposition of Spy. O
We next discuss the action of SO(3, 1)(Q4) on ¢, characterised by
(1, W)y (x1,%2) = ¢, (h~'x1, h71xp)  for h € SO@3, 1)(Q,).
Recall from [26, Sect. 1.2], for odd split prime ¢ we have the exact sequence

1 - (1) > SLa(Qy x Q) —> SOG3, D(Q,) - Q/Q;* — 1

from which we can deduce the isomorphism PSL>(Q,; x Q) =~ SO*(3, 1)(Qg) where
SO™ := Im(A). In this case of split ¢, we want to check congruence subgroups of PSL, (Z, x
Z4) under which the Schwartz function ¢, is invariant. Recall from [20, Sect. 2] that hlx; =
hl_lx,-’(hz_l)* for h = (hy, hy) € PSLa(Zy) x PSLy(Zy) = PSLy(Zy X Zy).

Lemma4.4 For h = (hy, ha) € PSLy(Z,) x PSLa(Zy) satisfying

hi € T(q) = {(;‘/‘ ’g) € PSLy(Z,) : + ()"/‘ §> =4 <(1) ?) modq},

we have that
(1, h)pg (X1, X2) = ¢q(X1, X2). (16)
Proof Set
h;l = (;’2 'gj) and x; = (2 Zﬁ) fori, j € {1,2}
withaj,§; = Imodg and B;, y; = Omodg.

First we assume that a;, d; € Z4 and b;, ¢; € qZ so that ¢, is non-vanishing on (X1, X2).
We compute

4 b,; e
(C- d 1 X ( ) )

1 1
_ (52(061%' + Bici) — B2l by + Brd;) —ya(ara; + Bici) + ax(ayb; +ﬁ1di))
& (via; +81¢;) — Bo(v1bi +81d;) —va(via; +81¢i) +aa(y1b; +81d;) )
It is not hard to observe thatb;., c;. € qZg as b;, ci, Bj,yj € qZg, and
a/zdi - a/ldé = 128162 (axd) — ar1dy) = apdy — a1jd, mod gq.

Modulo q2, we have

7 r 7
agby —a by
= hajax(—yaiar +ope1by +azf1dy) — Sajar(—y2onaz + g by +azf1da)
= 011206252(612171 —a1by) +ajapB182(ard; — a1dy).
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It follows that

’ ’ ! ’
a,b; —a,b a2b1—a1b2
2”1 172 - mod q.
m m

Similarly, we obtain that modulo g2

cyd, — ¢\ dy =ar81dy (Bry1a2 + 82812 — Padida) — aabidr (Sayrar + $281¢1 — Pabidy)
=288 (cad) — c1d2) + @2y18182(axd) — arda).

and

’ / ’ !
cyd; —cid cody — c1dy
271 172 mod q.

m m

Therefore, when ¢, is non-vanishing, we can deduce that
(1, h)y((X1,%2)) = g ((X1,X2)) forh = (hy, hy) € T(q) x T'(g).
When ¢, is vanishing, we consider that by € Z; and other cases that by, dj or dp in Z; can
be treated similarly. For h~! = ((‘;‘/1‘ gl' ) , (‘;; ’g; )) e T'(g), it is observed that

by = —ya(arar + Bic1) + aa(arby + idy) € Z;

which makes ¢, vanish on (h_lxl, h~1x5). Now we have proven this lemma. ]

4.2 Atinert prime dividing m

Let ¢ be an inert prime dividing m such that (¢) = q. According to Proposition 4.1, there is
an isomorphism (H(F) ® Qg, —det) >~ (V1 (Qy V/d), det) for ¢ inert in F/Q given by

(g [Z) — <c\b/¢7 a% fora,c € Qq,b € Qq(\/g)

where ~ on the right hand side denotes the non-trivial action in Gal(Qy Wd)/ Qg).

Definition 4.5 (1) Suppose that d = 1 mod4. The local Schwartz function <p3,““ at g is
vanishing unless, fori =1, 2,

a; € Zg,bi € q0q, ¢; € Zg and azc) — ajcz € qZq,
in which case
Ym by ajvd by ayv/d
Ya <(c1ﬁ by ) ’ <02«/E by ))
3 { )FZm,q (azbl—albz + 5201;5162) L if azblr;albz + 5261;5102 c O;(,

m
.o arb1—a1by brci—bicr
0, if L=k 4 ba=hio ¢ g0

(2) Suppose that d = 2, 3mod 4. We replace above “2}’1;“"’2 by 2(“21"”1_‘”172) and };2"‘;5”2
by 2(byci—bica)
m

as discussed in Remark 3.6.
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In the following we will check the invariance properties of this local Schwartz function with

respect to Sp4 x SO(3, 1) in detail in case of d = 1 mod 4 and the other case can be treated

similarly. For simplicity we write ¢, = gog'“ and ¥ = xm.

_ _ b1 aiVd by 112\/3)) . . .
Set X = (x1,x2) = ((c.ﬂ 3 ), (02\/z 5 .Fora; € Zy,b; € qOq and ¢; € Zg,
it is easy to observe that

® ((é 7)) @q(X1,X2) = @q(x1,X2) foru € Ma(qZy). )

— — Bi Oélx/g) ( B2 azﬂ)) . .
SetY = (y1,¥2) ((Vl vi i ) \avad . Consider the Fourier transform

Pq(Y) = / Vg (tr(X, Y)) gy (X)dX
where
1 _ - _ _
r(X,Y) = _E(b]ﬁl +b1B81 —a1yid —ajc1d + byfr + baffr — aryad — ancad).

By the definition, ¢, is invariant under the transformations a; — a; + q, b; — b; + q°,

b; — b; + q2«/ZZ (or b; — b; + q2 . #) and ¢; — c¢; + q. Repeating arguments in the
previous subsection, we can observe that the Fourier transform ¢(y1, y2) is vanishing unless,
fori =1,2,

@i €Zg; B, B eq ' Oqlas i + i € g2y, Bi — Bi € g7 'NdZy); vi € Zy.

It follows that, for u € M>(q3Z,) such that u = u',

(35 (4 5)) s = (%) surso

which implies

10
w ((u 1)) ¢q(1.¥2) = ¢g(y1.y2) foru € Ma(q*Zy). u=u'. (18)
. b/ a/x/cj b, a/ﬁ ’or ’ o
F GL,(Z te Xa := ST N I . Weh b, —a,b, =
ora € 2(Zy), write Xa ((c,\/ﬁ 7 > (czﬁ 7 )) ehavea,b, —a,b,

’

det(a)(azb) — a1ba), byc) — by = det(a)(bact — bicy) and ayc) — ajc, = det(a)(azc) —
ajcy). So for det(a) € Z*, we obtain

© ((3 ,ao_l) : 1) 04 (X1, %2) = v, (det(@))] det(@)] X (det(@)gy (x1, %) (19)
Combining (17),(18) and (19), we can deduce the following lemma:
Lemma 4.6 We have
o (ka)pg = xv ¢ (det(A))| det(A) |} ¥q(det(A)g,
for

A B A B
by = (C D) € {(C D) € Spy(Zy) : B € Ma(qZy), C € Mz(q3Zq)} .

@ Springer



On the non-vanishing of theta lifting of Bianchi modular...

We next discuss the action of SO(3, 1)(Q,) on ¢, characterised by
o (1, ) (X1, %2) = @g(h™'x1, k7 'x)  for h € SO(3, 1)(Q).

Due to the exceptional isomorphism PSL;(Q, (Vd)) ~ SOt (3, 1)(Qg) as in [26, Sect. 1.2],
in this case we check the invariance property under some congruence subgroups of PSL2 (Og).
Here we have that 1~ !x; := h~!x;(h~!)* fori = 1, 2 where ~ denotes the non-trivial action

in Gal(Qy (\/3)/@4) (see [20, Sect. 2]).
10
+ <0 1) modq} s

Lemma4.7 For
= N _ o B ) o B
hel(g) = {(V 8) € PSL2(Oy) : £ <y 5)
o(l, ey (X1, X2) = ¢4(x1, X2). (20)
b, a;/d
h—l — o :3 dx; = 1 i )

with e, § = 1 mod ¢ and B, y =0 mod q.
First we assume a; € Zy, b; € qOq,c; € Zg so that ¢, is non-vanishing on (x1, X2).
b; a;ﬂ we compute

cvd b ) P

l

)G
cd by ) \y 8)\eivd b -7 a
_ (ab; + Bciv/d aaid + Bb; 5 —B
“\vbi +8civd yaiNd+8bi ) \-v a
_ (S_<abl- + Bei/d) — y(aai/d + b)) —B(ab; + BeiVd) + a(waivd + ﬂ!_i))
T \8(ybi + 8civd) — 7 (yai/d + 8bj) —B(ybi +8civd) +a(yaivd +8b) )

we have that

Proof Set

Writing h~x; =

’

It is not hard to observe that a;. € Zq,b; € q0q, c; € Zq and that a/zc/1 — azlc/2 =ayc1 —aicy
mod ¢g. Then we expand

ayby — a;b,
_ (51}3[72;\&7/%{172 — Bper+ &aaZ) (Glabr + perv/d) — 7 (@arv/d + b))
_ (Mﬁ&“bl —Bper + aaal) (Glaby + Berv/d) = 7 (@arv/d + pb)).

and, modulo qz, we get
i Y =
ayb, — a b, =a as(azby — arbr) + aa,BS\/;i(azcl —ajcy).
Similarly, we have, modulo qz,
Rl B\,
=88c1(—B8coNd + a(yarvd + 8by)) — 88¢a(—BdciNd + a(yavd + 8by))

@ Springer



D.Zhang

5520_15([;261 - [;162) + (3[)/55\/5(&261 —ajcy).
Then we can deduce that
ab, —a,b- boc, — b’ c- arby — a1b bycy — bic
271 12+2] 162 201 12+21 1€2

= mod g
m m m m

which implies that

ab’, —a.b. byc — b c. arby —aiby  bac; — bica
g0q<21 172 . 224 12)_%( + )

m m m m

Next we assume b € ng so that ¢, is vanishing on (xi, X2). It follows that Sab; €
qu and then b; € qu which makes ¢, is vanishing on (h—'x1, h~1x). Other cases that

’

5/1 , b’z, 5’2 € O; can be treated in the same way and recall that a/zc/1 — a]c/2 = arc] — ajc;
mod ¢q. Hence, if ¢, is vanishing on (X1, X), so is that on (h~'x1, h~1x0).
Now we have proven this lemma. O

4.3 At ramified prime away from 2

Let ¢ be a ramified prime away from 2 such that (¢) = g°. According to Proposition 4.1,
there is an isomorphism (H(F) ® Q,, —det) ~ (V1(Qy), det) for g ramified in F/Q given

by
b b d
(g C) — (c\/g a;?_/_> fora,c € Qb€ Qu(/d)

where ~ on the right hand side denotes the non-trivial action in Gal(Qy (Vd) /Qg). Note that
when d = 2,3 (mod 4) the prime 2 is ramified and at the ramified 2 the local Schwartz
function is defined in the next subsection.

Definition 4.8 (1) Suppose that d = 1 mod4. The local Schwartz function <p3,(‘“ at g is
vanishing unless, fori =1, 2,

a; € Zq, Ci € Zq,b,‘ € Oq, bll;z — Elbz € qu,
in which case
wm (b1 arvd by a/d
i cavd by ) \e2v/d by

[ )Tm,q (azbl—albz + b2c1—b|cz) | if abi—ayby + bzm}—b]cz c Oc>|<’

m m m mn

e mbi—aiby | byci—bic)
0, if == + = € q0,.

(2) Suppose that d = 2, 3 mod 4. We replace above azb‘;‘“bz by 2(“2]"”;"‘]72) and 52”';5")2
by W as discussed in Remark 3.6.

In the following we will check the invariance properties of this local Schwartz function

with respect to Sp, x SO(3, 1) in case of d = 1 mod4 and the other case can be treated

similarly. For simplicity we write ¢, = (p,;‘“ and ¥ = xm.

@ Springer
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_ _ by aivd by az«/g) .o b it
SetX_(Xl’XQ)_«Clﬁ 5, )’(czﬁ };2 ).Fora,,c, € Zg and b;, b; € Oy, itis

easy to observe that
lu
© ((0 1)) 9q(X1,X2) = @4 (X1,%2)  foru € Ma(qZy). €2y

— — B 061«/67) ( B2 azﬁ)) : .
SetY = (y1, y2) ((V} Vi \vd B . Consider the Fourier transform

Pq(Y) = / Yy (tr(X, Y))g, (X)dX
where
T - - o
r(X,Y) = —5(171/31 +b1B1 —aryid —ajcid + by + b2y — axyed — ancad).

By the definition, ¢, is invariant under the transformations a; — a; + g, b; = b; + g,
bj +— b; + +/d and ¢; — ¢; + ¢. Repeating arguments in the previous subsection, we can
observe that the Fourier transform ¢(y1, y2) is vanishing unless, for i = 1, 2,

i, Vi €q ' Zyand By, Bi € Oq(as B; + Bi € Zy, Bi — Bi € VdZy).

It follows that, for u € Mz(qZZq) such that u = u’,

@ (((]) Lll> (—01 (])>) Pa1,y2) =@ ((_01 (1)>> ®q(¥1,¥2)

which implies
10 2 t
@\, 1 0g(y1,¥2) = 04 (y1,y2) Tforu € Ma(q°Zy), u=u. (22)

For a € GL,(Z,) with det(a) € Z;, we also have

© ((3 ,ao_l) : 1) 04(X1,X2) = xv, (det(@))] det(@)[2 Ty (det(@)g, (x1, %) (23)
Again, combining (21),(22) and (23), we can deduce the following lemma:
Lemma 4.9 We have
o (k3)pg = Xv.q(det(A))] det(A)|? Xq(det(A))p,
for

A B A B 2
k3 = (C D) € {(C D) € Spy(Zy) : B € Ma(qZy), C € Ma(q Zq)}.
We next discuss the action of SO(3, 1)(Q,) on ¢, characterised by

(1, gy (X1, %X2) = @g(h~'x1, h~'x2)  for h € SOB3, )(Q,).

In this case, we check the invariance property under congruence subgroups of PSL»(Oq)
and have that A~ 'x; := h~!x;(h~1)* for i = 1, 2 where ~ denotes the non-trivial action in

Gal(Q, (+/d)/Qy) (see [20, Sect. 2]).
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Lemma 4.10 For

heT(q) = {(;‘ ’;) € PSLy(0y) : + <;‘ §> =+ (é ?) modq},

we have that

w(1, g (X1, X2) = ¢4 (X1, X2). (24)

1_(ap - b aivd
h _(y(s)andx,_<qﬂ l;i).

with o, 6 = 1 mod q and B, y = 0 mod q.
First we assume a;, ¢; € Z4 and b;, b; € Oq so that ¢, is non-vanishing on (xi, X2).
.. b, a~/d

Writing h='x; = [ i~ "IN ), we compute

g i <C Ja b ) p

i i

)T
eNd by ) \y 8)\eivd b -7 a
_ (ab; + Bciv/d aaid + Bb; 5 —B
“\vbi +8civd yaiNd+ b ) \-v a
_ (S«xbl- + Beiv/d) — y(aai/d + b)) —B(ab; + BeiNd) + a(waivd + ﬂi_%))
T \8(ybi + 8civd) — 7 (yai/d + 8bj) —B(ybi +8civd) +a(yaivd +8b) )"

Proof Set

It is not hard to observe that a;, c;. € Zy, b;., 15;. € Oq4 and b;l;; — 15/119/2 = b1by — b1by mod
g. Modulo g, we have

aby —ayb,
- & Bby, — Bab - % Bb; — Bab
Saby (M N mZ) _ Saby <M N &m)
Jd Jd
=a’ad(arbi — a1br) — a@B8/Nd(b1bs — biby),
and
cyb) — ¢, b
_ = (Syby—8yby ) o7 <f§)/bl—3)751 - )
=wdb <7—|—8562 —adby | ————=—— + 86cy
Jd Jd

=52ad(caby — c1ba) 4+ ay85/vd(b1by — biby).

So, modulo g, we get

/o ;= 7 = - —
a,b, —ab _-axby —ai1by cyb, —cb _=caby —c1by
it s et Rk St et e BEPYY: Bt S s R V- St B ot

m m m m
It follows that

ab, —da b cob, — b, arby —aiby  caby — c1by
(pq(zl 1% | &0 12>=<pq< I .

m m m m

Next we assume b € q’1 (’)qX so that ¢ is vanishing on (xp, X2). It follows that Sab; €
q_IOCT and then b/1 € q_lO; which makes ¢, be vanishing on (h~'x1, h~'x5). Other cases
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fora;, ci, by, by, by can be treated in the same way. Hence, if ¢, is vanishing on (x1, X3), so
is that on (A~ !x;, A~ !xp).
Now we have proven this lemma. O

4.4 At places dividing N(n) and ramified 2

In this subsection we consider the local Schwartz function at finite places dividing N (n) and
at ramified prime 2 (when d = 2, 3 mod 4). For a place ¢ and an integral lattice X on V, we
put Xy = X ®z Zy.

Definition 4.11 (1) Let ¢|N (n) be split with (¢) = qd.

e Suppose that (n,(q)) = gq. Define the local Schwartz function ¢, to be the
characteristic function of

ar by ar by 2.
{((Cl dl) , <C2 dz)) IS Xq tbicy +c1by € O:,di Equ}.

o Suppose that (n, (¢)) = q. Define ¢, to be the characteristic function of

ay by a by 2. x
() (25)) 33 e 0.0

o Suppose that (n, (¢)) = (¢). Define ¢, to be the characteristic function of

ay by az by 2. x x
{((Cl d]) , (02 dz)) € Xq :bicr +c1by € Oq X Oﬁ ,d; € qu} .

(2) Atinert place g|n with (g) = q, we define ¢, to be the characteristic function of

b1 a1vd by ax~/d 2 - = x
- — X2 :bby + b1b ; Z
{<(C1\/E’ by ) \cavd by € Xqihibatbibr € Og.ci € aly

(3) If 2 is ramified with (2) = q%, we define ¢, to be the characteristic function of

b1 a1v/d by an/d 1 - - |
A 3 cai.ci €. b € = 2 )
{((Cl\/ﬁ bl ) ’ <c2«/57 b2 dis ¢i € Z,bl € Zoqz, b1b2 b1b2 < 20‘“

Note that if we take the local Schwartz function at finite places dividing N (n) and ramified
2 as the characteristic function of integral lattice, the resulting theta lifting would be vanishing.

In the following we will check the invariance properties of this local Schwartz function
with respect to Sp, x SO(3, 1).

Lemma4.12 (1) For ¢4 as in above Definition 4.11 (1) and (2), We have
w(ka)pg = ¢q
for
ky € {(2 g) €Spy(Zy) : A € <qZqu CIZZ;> . B € My(qZ,),C € Mz(qu)}.
(2) At ramified 2, we have
w(ks)p2 = ¢2

@ Springer



D.Zhang

for

A B ) Zo 27 4
k5€{<c D) eSpA‘(Zq).AE<222 Zz)’BEMZ(z Zo) ¢ .

Proof (1) We prove this lemma in details only for split ¢ with (n, (¢)) = ¢ and other cases

(@)

can be treated similarly. Set X = (x1, X3) = ((f} Zi ) , (2 Zi )) € X;. It is not difficult
to observe that

1) (((l) Lf)) ©0q(X) = @q(x1,%2) foru € Ma(qZy).

SetY = (y1,y2) = ((‘;: f;l‘ ) , (‘;2 g; )) Consider the Fourier transform

@q(Y) =/ Y (tr(X, Y))@, (X)dX  fori =1, 2,
X%,u
where

1
(X, Y) = —5(0151 —biy1 —capr +diar + axdy — bayr — 2 + doan).

By the above definition, ¢, is invariant under the transformations a; — a; + Zy, b; —

141
bi+q,b; — bi—i-q)»ﬁ (orb; — bi+q +2ﬁ)andd,~ > di+q.Notethatbicr+c1by €

(9; is not preserved under b; — b; + q or b; — b; + q. Then we can deduce that

o ((%§)) @g(Y) is vanishing unless o; € Zg, Bi € Zg, ¥; € Zg and & € qZg. It
follows that

® <<(1) Ll‘> (_01 é)) 0, (Y) = ((_01 é)) 0, (Y) foru € My(qZy), u=u'

which implies

® ((; ?)) 0 (Y) = ¢4(Y) foru € Ma(qZy), u=u'.

Fora = ()"/‘ lg) € GLy(Zy), set <<a/1 Z}> ’ (a[z b;)) := (X1, Xp)a. It is clear that
171

¢y dy
dy = ad) + Bdy and dy = yd; + 8d,
lie in ¢Z,. Also we have
bycy + c1by = (aby + yb)(Ber + 8¢2) + (Bby + 8by) (et + yea).

If B, y = 0mod ¢ and det(a) € qu, then b/] c/2 + c/1 b/2 € (9;. We can deduce that

a 0 = Zq qu] X
w ((O ’a”)) 0g(X) = ¢4(X) fora e (qu z, and det(a) € Zq.

_ _ b alﬁ) ( by a2«/67>) o el it
Set X = (X1, X2) = ((cn/ﬁ o ) \ed b .Fora;, c; € Z and b; € 50y,, itis
easy to observe that

1
® ((0 b{)) 0q(X1.X2) = g (X1, X2)  foru € Mr(2*Zs).
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_ — Bi Oélx/g) ( B azﬁ)) : :
SetY = (y1,¥2) ((y} vi i ) \avad . Consider the Fourier transform

Da(Y) = / Vg (X, )y (X)dX
where
1 - .
r(X,Y) = _E(blﬂl +b1B1 —aryid —ajcid +bafr + b2y — asyrd — ancad).

By the definition, ¢, is invariant under the transformations a; > a; +Z, b; — b; +7Z,
bj > b; + Zy~/d and ¢; +> c¢; + Z. Repeating arguments in the previous subsection,
we can observe that the Fourier transform ¢(yj, y») is vanishing unless, fori = 1, 2,

i, Vi € 472 and B; € 40q, (as B; + Bi € 4Zy, Bi — Bi € W dZy).

It follows that, for u € M»(Z;) such that u = u’,

Lu\ (0 1 01
a)((o 7) (_1 0)) ©q(¥1,¥2) = a)((_l 0))%(}’1,)’2)

which implies

w ((i ?)) Pg(Y1,¥2) = 0g(y1,¥2) foru € Ma(Zy), u =u'.
Fora = (‘; §) € GL)(Z,). set <<C/]b:1/3a/ll;/|/2) ’ <c;b\/2/aa;5f>) = (X1, X2)a. We have
by = aby + by and by = by + 5by
and then
byby + byby = (aby + yb2)(Bby + 8b2) + (aby + yb2)(Bby + 8b2).
If B,y € 2Z; and ay € Z5 , we have

w (((a) ta0—1> ) 1) ©2(X1, X2) = @2(X1, X2).

Lemma4.13 (1) Let q|N (n) split with (q) = qq.
e Suppose that (n, (q)) = q. We have
o (1, h)ey (X1, X2) = @4 (X1, X2)
for hy = hy,1 X hyp with

hi;eT(q) = {(;‘j ‘;) € PSLo(0y) : £ (;‘j ?) =+ (é ?) modq} )

e If(n, (q)) = q, we have
(1, h2)pg (X1, X2) = @q(X1,X2) for hy € T(@).
e If(n, (q)) = (q), we have

(1, h3)eq (X1, X2) = ¢4 (X1,X2) for h3 € T(q).
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(2) Forinert q|N (n) with (q) = q, we have

(1, ha)q (X1, X2) = @4 (X1, X2) for hy € T(q).
(3) For 2 ramified with (2) = q%, we have

(1, hs)py (X1, X2) = @4 (X1,X2) for hs € T(q2).

Proof In part (1), we prove the first statement and other cases can be treated similarly. Let

(9) = qq. Set h;l = <;'jf /§1> and x; = (Z’ Z’) with @j,8; = Imodq and B;,y; =
J0J i di
O mod q. We compute

al/‘ b; ':h71 1 h71 *
(&) =it
_ (%2(a1ai + Brci) = Ba(arbi + Prdi) —ya(aiai + Pici) + aa(arbi + prdi)
S (y1ai +81¢i) — Ba(1bi + 81di) —y2(viai + 81¢i) + ax(yibi + 81d;)

[ * b,’

= <Ci di) mod g.
So the conditions on bjcy + byc; and dlf for ¢, non-vanishing are preserved.
b,’ a,-\/g
y 4 civd b
g and B, y = 0 mod q. It suffices to show that

(2 T =C ) (s (5 7)

_(S_(ab,-+;3cz-«/3)—)7(aam/3+ﬁ{3,-) i * i )
T \8(bi +8ciVd) — 7 (yaiNd + 8b;)) —B(yb; + Scivd) + a(yaid + 8b;)

Let g be an inert prime. Set A~ = (a 'B) and x; = ( ) with @, § = 1 mod

bl’ *
= i/d by mod ¢.
It is clear that if ¢, is vanishing on (X1, X2), then so is w (1, &)@, on (X1, X3) in the same

way as dicussed in previous subsections. Similarly at ramified 2 we obtain the same result. O

4.5 At other finite places

We consider non-archimedean places away from m|dr|N (n). For such a place g and an
integral lattice X on V, we put X, = X ®z Z,. Define its dual lattice

Xi={xeV®Q,: (xy) €ZVy € X,}

and let (q’lq) be the Z,-module generated by {(x,x) : x € Xg}. In [3, Lemma 27], it is
shown that /, = 0 at these places. At each place g, we define the local Schwartz function ¢,
to be the characteristic function of X ;. Note that ¢, is invariant under PSL,(Z,) x PSL,(Z,)
for split ¢ and PSL;(Oy) for inert or ramified g due to I, = O (see [3, Sect. 5.2]).

Lemma 4.14 ( [25, Lemma 2.1]) At non-archimedean q t m|dp|N (n) we have

A B
w(0)py = xv.q(det A)p, foro = <C D) € Spy(Zy).
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5 Theta lift and Fourier coefficient

Let F = Q(+/d) be an imaginary quadratic field of class number 1. Denote its ring of
integers by O = Z[w] and the discriminant by dr. Let m be a product of distinct inert or
split primes as introduced in Sect. 4 and choose a quadratic Hecke character xn, (m = mQO)
of conductor f = J/dm. Let n be square-free and coprime to (m|dr|). Suppose that F =
(Fo, F1, F>) : H3 —> C3isa weight 2 cusp form for Fo(n) with the corresponding I'g(n)-
invariant differential n  of the form —Fy<* dz 4 F1 dr + ]-'2 on H3. More detailed discussion
on Bianchi modular form can be found in [26 Chapter 1]

Remark 5.1 (1) Suppose that d = 1 mod4 with dr = d. We choose the local Schwartz
function ¢; Xm at each place ¢ dividing m|d| as defined in Definition 4.2, 4.5 and 4.8.
At each place g dividing N (n), the local Schwartz function (p(‘; is chosen to be as in
Definition 4.11. For all other finite places we take the local Schwartz function as in
Sect. 4.5.

(2) Suppose thatd = 2, 3 mod 4 with dr = 4d. We choose the local Schwartz function (p,; "
at each place ¢ dividing m as defined in Definition 4.2 and 4.5, and that at ramified place
away from 2 as in Definition 4.8. At each place ¢ dividing 2N (n), the local Schwartz
functions ¢y and ¢ are chosen to be as in Definition 4.11. For all other places we take
the local Schwartz function as in Sect. 4.5.

It has been shown in Lemma 4.4, 4.7, 4.10 and 4.13 that the local Schwartz function ¢,
at each place v dividing m|dF|N (n) is invariant under the action of the principal congruence
subgroup T'(q,) C SO (3, 1)(V(Q,)). We now consider a '¢(q,)-invariant local Schwartz
function @)% at these places defined by

oV xLx) = Y ol Y)ey(x1, %)
[¥1€Co(av)/T(qw)

where the sum is taken over all the representatives of I'g (9v) /T(qy). With this new local

Schwartz function we know that (p’}cw is invariant under I'g(fn) when d = 1 mod 4 or

Fo(fnqz) when d = 2, 3 mod 4.

Give the Schwartz form ¢, € S(V(]R)z) ® Qz(D) as constructed in [13, Sect. 5], [9,
Sect. 4] and [10, Sect. 5], and the above finite Schwartz function w‘}ew on V(A f)z, we Nnow
consider a Schwartz form

9(X.2) =@ ®¢}Y € S(V(A)*) ® Q*(D) forX € V(A% z € D.

Then we consider the theta series in this case is given by

0. oF".2) = Y w(@)eX,2) forg eSpA)
XeV(Q)?

which defines a closed differential 2-form on T'o(2mN)\D.
Following [13, Theorem 1], the theta lifting of F, which is a holomophic Siegel modular
form of weight 2, is given by

O, (nF)(g) = /r\ () AO(g . o5, 2)

where ' = T(fn) N To(n) = To(fn) when d = 1 mod 4 or I' = Ty(fngz) N To(n) =
Io(fngz) when d = 2, 3 mod 4. Moreover, the Fourier coefficients are given as periods of
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nF over certain special cycles Cg in I'\ D attached to positive definite 8 € Sym,(Q), i.e.,

OMF)(g) =Y apglnF)e*™ rbe)
B>0

By Lemma 4.3, 4.6, 4.9 and 4.14, we can determine that it has level

_J(AB . Z nNnZ
L = {(c D) €Sp4(Z) - A € (nlN(n)Z z )

B € My(nym|d|N()Z), C € My(m>d*N(m)Z)}
with

ny=ny=1, ifd=1mod4
ny=2,np=2% ifd =2,3mod4.

Recall

(x1,x2) (X2, X2)

Qf} = [(X17X2) = V(Q)2 . <(X17 X1) (XI,X2)> _ ,B} )

By [3, Theorem 9], the Fourier coefficient of the theta lifting ®,(n#) at 8 > 0 is given by

Coymmp= Y. ¢F & x) 0y
(x1,x2)€lM\Qp Cuxy.xp)
= Z Z P (x1, X2) nr (25)
[Ki]EF\PI(F) (X],X2)€l—‘,(i\§2‘gvkiy+ CU(xl,xz)

where the second equality is the consequence of Proposition 3.4. For simplicity we will
denote Conew (n).8 = I = Y[, 1er\P! () Tc; Where

I, = Yoo e x) nr. (26)

(X1,%2) €T \Qp e+ Cueix

We will first express I in terms of the twisted L-value L(F, xm, 1) in Subsect. 5.1 and
then use Atkin-Lehner operators to calculate /,, for ; 7 oo in Subsect. 5.2.

Remark 5.2 'We will describe how to choose the Gram matrix 8 for which we will show that
Co,(nx),p is non-vanishing.

o Let det B € —d(Q*)2. Then for (x1,X)) € Qg, U(xq, x)t is split over Q due to
Proposition 3.3 and U(x1, x2)1 has signature (1,1). The stabilizer 'y C T of U =
U(x1, xp) is trivial if UL is split over Q, see [11, Lemma 4.2].

e For (x1,x)) = ((Zi %‘ ) , (Zzboz)) € Qg 00, +, We have

B = (ﬁn 512) _ ( _b1l31_ %(b]l;z —f51b2)>
B2 B2 3(b1bay + bi1by) baby )

We want this pair to satisfy the condition 1 as in Remark 3.6. This will allow us to
apply Lemma 3.5 to deduce that the corresponding cusp zy (x,.x,) runs through all the
representatives in ! /. For the non-vanishing of <p31<'“ at split or inert g dividing f, we
only count (X1, xp) such that b; (i = 1, 2) is divisible by m. Via imposing conditions
on B itself, we can achieve that for any pair (X, X2) in €4 «,+ the assumption 7 holds.
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Explicit examples of S will be given at the end of the Subsect. 5.1, see from Example
5.6to5.11.

Assume that 8 is given as in above Remark 5.2. For (x1, X2) in g, 0, +, we have

<Z;> =m ()Z“ 5}) (;) ifd =1 7)
b] _ 1 Xy 1 . _
(bz) = om (Z w) (w) itd =23 (28)

with x, y, z, w € Z and xw — yz = +1. We want to find out if there is another pair (y;, y2)
in g 0, + such that it gives rise to the same cycle Dy as that generated by (x1, X2).

Assume that such a pair (yy, y2) exists in Qg o, +. For U (X1, X2) = U (y1, y2) we consider
anelement o = (45) € GL2(Q) such that

(a) ()=C2) @

To make (1, X1, X2, qu) and (U0, ¥1, Y2, qu) represent the same orientation, we need
o€ GL%L (Q). Additionally the Gram matrix 8’s corresponding to (X1, X) and (y;, y2) must
be identical.

Expressing (y;, y;) in terms of (x;, X;) and using bilinearity, we have

or

V1, ¥1) = a*(x1, X1) + 2ab(x, X2) + b* (X2, X2),
(¥2,¥2) = 2(x1, X1) + 2cd (x1, X2) + d* (%2, %),
(¥1,¥2) = ac(x1,X1) + (ad + be)(X1, X2) + bd (X2, X2).

Consider that det § is preserved; more explicitly,

det B =det((yi,y/) = (y1. y)(¥2. ¥2) — (1. ¥2)?
=a?c?(x1, x1)% + b2d* (x2, X2)? + 4abed (x1, X2)* + (@d? + b>P)(x1, x1) (X2, X2)
+ 2ac(ad + be)(x1, X1) (X1, X2) 4+ 2bd(ad + bc) (X1, X2) (X2, X2)
— azcz(xl, X1)2 — b2d2(X2, X2)2 — (ad + bc)z(xl, X2)2 — 2abcd(x1, X1) (X2, X2)
— 2ac(ad + bc)(x1, X1) (X1, X2) — 2bd(ad + bc)(X1, X2) (X2, X2)
=(det 0)* det((x;, X)) = det((x;, X,)).

Since o has positive determinant we know that o € SL,(Q).
Moreover, to preserve B the following identities must hold:

(x1,X1) = a’(x1, X1) + 2ab(x1, X2) + b*(x2, X2), (30)
(X2, %2) = ¢*(x1, X)) + 2cd (X1, X2) 4 d* (X2, X2), 31
(X1, X2) = ac(xy,X1) + (ad + bec)(x1, X2) + bd (X2, X2). (32)

As deto = ad — bc = 1, we can rewrite (32) as
ac(xy, X1) + 2bc(x1, X2) + bd (x2, x2) = 0. (33)

We will describe o in different cases in the following.
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(D) Let b be 0. From (30) we know that ¢®> = 1, and from (32) we have that (x, X3) =
ac(xy, X1) + (x1, x2) which impliesc = 0. Soo = £+ (é?) In the same way, if c = 0
theno = + ((1)?)

(IT) Assume that bc # 0. Substituting (x1, X2) in (30), we have

(X1, X1) = a*(x1, X1) + b* (%2, X2) — %(aC(m . X1) + bd (%2, X2))
which is simplified to be
c(x1,Xx1) + b(x2,x2) = 0. (34)
Combining (33) and (34) we have
ac(X1,X1) + 2bc(x1, x2) —cd(x1,x1) =0
and then d = a + 2632 Aq ad — bd = 1, we have

(x1,X1)

(x1,X2) b2 (x2,%2) _
(x1, X1) (x1, x1)

Setx| = (,a;i Zi),Xz = (,a;z Z),yl = <Z} Z}) andy, = (;,2 Z?).Combining (27) and
1 %1

272

a* + 2ab 1. (35)

(29), we can rewrite
by = aby + bby = m((ax + bz) + (ay + bw)w)
or combining (28) and (29)

, 1
by =aby + bby = E((ax + bz) + (ay + bw)w).

Then we need ax + bz = u € Z and ay + bw = v € Z. Solving these two equations we
get
5§ — _
a=7ﬂ vyeZ and b=7va 1p
ad — By ad — By
Similarly, we can deduce that ¢, d € Z when treating b/z. Therefore, the linear transform
o € SLy(Q) on (x1, X2) € Qg + generates the same cycle, but the Schwartz function
on (y1, y2) vanishesif o ¢ SL,(Z). For particular choices of Swe get limited possibilities
of above 0. We can rewrite (35) as

<a+b(X1,Xz)>2+b2 (X1, X1) (%2, X2) — (X1, %) _

(x1, X1) (x1,X1)?

€ 7.

1. (36)

(IL1) If (x1,x2) = 0 and (X1, X1) = (X2, X2), then a? = 0 as bc # (0 by our assumption.
Soin this case 0 = £ ( % {).

(I1.2) If (x1,x2) = 0 and (x1, X1) < (X2, X2), i.e. (xii?)Z > 1, then there is no such a o
that bc # 0.

(IL3) If (xi, %) # O and GLXDC2¥)—@1.X)’ o 1 then p has to be 0 which is a

.. (x1,%1)?
contradiction to bc # 0.

Remark 5.3 The possibilities of o in (29) will determine the constant pg in Proposition
5.5. After the whole treatment of this section, we will see that this ug does not effect the
non-vanishing of our theta liftings since it appears in the Fourier coefficient as a non-zero
multiplier. In Example from 5.6 to 5.11, we will show how to get the exact values of .
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5.1 On cycles through oo

We will first calculate the part I, corresponding to the cusp oo as in (26). We pick a funda-
mental domain for I'so\ Dy and integrate with respect to the cycle. Since we are integrating
along a vertical path with z-coordinate constant, we can ignore dz and dz. We obtain

Io = Z new(xl, X3) l.7-"1 (z,r)dr. (37)

(X1,X2)€T 0\ 2, 00+ @.r€Cux;xy)
Lemma 5.4 For (X1,X2) € I'oo\ Q28 00,4, We have
P (X1, X2) = Amn@s (X1, X2)
where

Amon = 1_[ [To(q1) : T(qD)] 1_[ [To(q2) : T(a2)] 1_[ [To(a3) : T(g3)].

q1lmld| q2 above ramified 2 q3ln

Proof Note that any pair (X, X») in g o is of form ((Zi %‘ ) , (gz lg )) Recall from [26,

Sect. 1.3], for a € O satisfying ((a), f) = 1 we have

[[x@) =]]% " @) =x".
vlf vtf

Then, for our choice of finite Schwartz function ¢ , we have

~ axby —ayby
0r(x1,x2) = l_IXm,v <7)

m
v|f

_ 1—[ <a2b1 - albz) — ((azbl ;alb2>)

vif

_1{ (2(a2by — a1b2)
@rx1,%x2) = x —)-
m
Let g be the split prime dividing m. Consider the representative
1 Yy, Xy,2 Yy,2
V=(J/1,)’2)=(( o 1) < 1))
0 X, 0 X,

for To(q)/T(q) with [xy,;1 € (O/(g))* and [y,,;] € O/(g). By the computation in the
proof of Lemma 4.4, we can observe that

or

arby — albz)

KmomeW (y yoy = AR N
Vg (x1,x2) Z (Xm,qu,q)( },‘1)(Xm,qu,q)< "

[y1€To(q)/T(q)

- o~ axby —ayby
= } (Xm,qu,q)
m

[y1eTo(g)/T(q)
= [To(q) : T(@)lgl™ (x1.%2)
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Similarly we have for inert g|m
QLI (x1, %2) = [To(g) : T(@lpf™ (x1,%2),
and for ramified prime g with (q) = 2
QXY (x1, %) = [To(q) : T()]ef™ (X1, X2).
At the place ¢|N (n) we will show that

n,new

0" =[To(@) : T(@ley.

a; b;

CiO

w(l,y) - (X1, %) = * x;llx;zlbl * x;llx;zlbz .
’ 7 Xy ¥pcl 0 T\ Xy, 02 0

Itis not hard to observe that the condition on byc; +bacy is preserved as x,, j € Z ; . It follow
that

For ¢ split, set x; = < ) and compute

w(l, Y)og (X1, X2) = @4 (X1, X2)

which implies the assertion. For g inert, set x; = (%’ aiﬁ) and compute
i

1= 1=
-1 (% Xy by * X, Xy b *
14 (x1, %) = << 0 xyiyllﬂ) ’ ( 0 xyi;lbz ’

Again the condition on b 1By + biby is preserved and so the assertion follows. The case at
ramified 2 can be treated similarly.
Now we have proven the lemma. O

Proposition 5.5 Assume that the Gram matrix 8 is chosen so that the condition T in Lemma
3.5 is satisfied. Then we can calculate

_ MprmaLl(F, xm, D

I = 38
°° 2A(1, 1, xm, 1) G8

where g is a non-zero integer depending on B as stated in Remark 5.3 and A(1, 1, xm, 1)
is given explicitly in [24, Theorem 1.8].

Proof By the above lemma, we can express

1
Ioo = > @7 (X1, X2) SFi(z, r)dr

(X1,X2) €00\ 26,00, + (@nECux X

1
=Am,n Z o r(X1,X2) =Fi(z,r)dr.

(X1,%2)€000\ 25,00, + @nECux X

Under our assumption on 8, by Lemma 3.5 we have

o0
_ |
Io = Mﬂ}um,n } Xml(ZU]()/ E]-"l(z,r)dr
leulef~1/0.Guf.p=1 0
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where g is a non-zero integer depending on the possibilities of o as discussed in Remark
5.3. At last, by [24, Theorem 1.8] with n = 1, we can compute

Mﬂkm,nL(}—v Xm, D)
2A(1, 1, xm, D

o0
loo = phm,n 2. X&l(zvf)/ > Fi(@ rdr =
ev1ef~1/O, @y f.PH=1 0

[m}

For a diagonal Gram matrix f, the pair (X1, X3) € €28, o0, + has biby+biby = 0. It follows
that gog is vanishing on such a pair (X1, X2). So, for the non-vanishing of /,, the Gram matrix
B being diagonal is ruled out of our consideration. In the following we give some examples
of B satisfying the condition § (as promised in Remark 5.2) for which I, can be expressed
in terms of L(F, xm, 1).

Example 5.6 Let F = Q(+/—3) with dr = —3 and O = Z[w] with v = HT‘E Suppose

that
= biby %(b152+51b2) _ m? %mz
T\ 3G +bib) b ~\gm? m* )
We have
4)\m,nL(]:a Xm, 1)
Ioo = —02 - 2 2me 7
AL 1, xm, D

Proof For the non-vanishing of (pg'“, we need m|b;. Solving b;b; = m?, we must take

b;i = £m, Xmw or ma. Observing

1 _ - 1
(x1,%2) = S (biby + bib2) = Em?,

we can determine b; with the condition { as in Proposition 3.5 satisfied:
by=m by 10 1

~ -m
by = mw by 01
biy=m _ (b
by =mw by 1 —1 w
by=-m _ (b
by = —mw by O —1
by =—m b] —m —10
by = —ma by —11

by = mw or md {b1 = —mwor —mo

by =m, by =—m

We have seen in Lemma 3.7 that the sign of Im(b;by) determines the orientation & of
Tz(Dy) via elm(b1by) > 0. If the cycle Dy integrated over is directed from the cusp on the
complex plane to the cusp oo, we need ¢ < 0 which implies Im(b1b>) < 0. We will list all
pairs in ['oo\2g, 00, + With Im(b1b7) < 0.

First we consider one pair

(a1 m ayp mo
(x1,1,X12) = << " 0) , <md) 0 ))
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with aj,1,a12 € Z which gives rise to the cycle Dy, x,,) directed from the cusp
a,|jw—aj2

WX = 3 € F to the cusp oo. Rewriting (35) as a> —ab+b* =1, we
have either a®> = 1,5 = 0 ora’? = 0,b> = 1 and then o = £ () or = (% ). So the
following four pairs give rise to the same cycle Dy (x, | ,x;5):

(X1,1, X1,2), (=X1,1, =X1,2), (X1,2, —=X1,1), (—X1,2, X1,1). (39)

Lemma 3.5 tells us that for (x1,1, X1,2) € I'oo\28,00,+> ZU(x),1,x ») TANEES OVET f_l/O with

(x2,1,%2,2) = ((Cizni _0m> ; <_a,2ni) _’(7)1&)>>

Suppose that
with ap 1, a22 € Z is another pair in Qg o0 4+ Which gives rise to the cycle Dy, .x,,)
a2 10—az2

my 3

directed from the cusp zy(x,;.x,2) = € F to the cusp oco. Similarly we have

following pairs

(x2,1,%2,2), (—X2,1, —X2,2), (X2,2, —X2,1), (—X22,X2,1) (40)

giving rise to the same cycle Dy (x, | x,,)- Also for (x2,1,%22) € I'oo\2p,00,+ We have
ZU(x1 1,x1») Tunning through §=!/O with f = v/=3m.

Itis obvious that the eight pairs in (39) and (40) are not I' o -equivalent since the I'o,-action
on the pair preserves off-diagonal entries of each component of the pair. Then we can split
Iy as

Too =Itxy 1 x12) + L—x1.1.—x12) T Lxi2o—x1,0) T Lxi2.x10)
o 1x0) T lx-x0) T lxo—x0) T lxox00):

where the subscript (—, —) indicates the sum as in (37) over [zy(— )] € f_l/O. By [24,
Theorem 1.8] with n = 1, we can calculate

)\m,nL(]:a Xm, 1)
I(X1.1,X1,2) = 1(x2,1,x2,2) = 2A(L, 1, xm, 1) :
L) ’ ms

So, in this case we have g = 8 and then we can deduce that

A n L(F, Xm. 1)

IOO=8'I(X1‘|,X|,2)= AL, xm, D)
> Ly Xms

Detailed calculations in the following examples can be found in [26, Sect. 4.4.1].

Example 5.7 Let F = Q(+/d) with d = 1 (mod 4) and d # —3 in which case dr = d and
O =Zlw] withw = #. Suppose that

=\1,21=d 2]
e mm

I — 2 m n L(F, Xm, 1)
o = —phme 0 AT 7
AL L xm, D

We have
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Example 5.8 Let F = Q(+/d) with d = 2,3 (mod 4) and d # —1 in which case dp = 4d
and O = Z[d]. Let

1.2 1 2
im°  znm
p= (ilinm2 g(n2 — d)mz)
with n € Z coprime to 2n (for the non-vanishing of got'; and ¢;). We have
2 mnL(F, xm, 1)
Ioo = —————
AL L xm, D

Example 5.9 Let F = Q(i) with dp = —4 and O = Z][i]. Set

1,2 1,2
p <}‘nm2 %(n2 + l)m2>
with 1 < n € Z coprime to 2n (for the non-vanishing of <p; and ¢, at ramified 2). We have
4)\m,nL(‘7:y Xm, 1)
Iop = —2R2 A0 2
A(la 17 Xm, 1)
Example 5.10 Let F = Q(+/d) with d = 1 (mod 4) and d # —3 in which case dr = d and

0 = Zlw] with ® = /2. Set
= 2 27d 2
- tEm

with 1 < n € Z coprime to g,. We have
2hm n L(F, Xm, 1)
[ = oz > A 77
AL 1, Xm, D)

Example 5.11 Let F = Q(v/—3) withdr = d = —3 and O = Z[w] with » = 153 Set

2
_ m2 nrg
B= nm? n2—dm2
2 4

with odd n € Z greater than 1 and coprime to n. We have
3)\m,nL(}-a Xm> 1)

Ioo = ——7—.
AL L1 Xm, 1)

Remark We can swap the diagonal entries of each 8 in Example from 5.6 to 5.11 and obtain
same results.

5.2 On other cycles

We introduce the Atkin-Lehner operator as defined in Lingham’s thesis [15, Sect. 5.3]. Ling-
ham developed this for all odd class numbers while we shall only use results for class number
1 since then we can follow Asai’s treatment of cusps (see [ 1, Sect. 1.1]) in the case of principal
ideal domain. For m in O dividing n such that m and - are coprime, take

—(*Y
Wi = (Z w) (1)

wherex em,y € O,z e nw € mand (xw — yz)O = m.
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Proposition 5.12 (1) For any ideal m dividing n such that m and % are coprime, we can
find a matrix of the form (41).

(2) W is an involution (i.e. W‘% (modulo scalars) lies in To(n)), normalizes T'o(n) and is
independent of the particular choice of x, y, z, w.

Proof See[15, Lemma 5.3.1 and Lemma 5.3.2]. O

In particular if we take m = O we get an element of I'g(n) and if we take m = n we get
the analogue of the classical Fricke involution. One can check that the Fricke involution can
be formed as a product of Atkin-Lehner involutions, where m runs over prime power divisors
of n.

Lemma5.13 Let o) = %, a = % be two cusps such that {p1, q1) = {(p2, q2) = O. Then

the following are equivalent
(1) ay = Moy for some M € To(n);
(2) q2s1 — q152 € q1920 + n, where s; satisfies p;s;i = 1 (mod q; ).

Proof See [15, Lemma 1.5.1] for a more general version holding over any number field. O

It follows that two cusps are equivalent relative to I'g(n) if and only if the ideals generated
by the denominators have the same ‘greatest common divisor’ with n, so each equivalence
class of cusps is in one-to-one correspondence with each ordered decomposition n = 91.L.
Following Asai’s treatment (see [1, Sect. 1.1]) we say a cusp «3/x1 belongs to £-class if
gcd(x10, n) = £. For each decomposition n = ML with I = MO and any cusp k = k2 /K
of £-class, we can take a typical matrix W, which transforms « to co:

W, = ((1) 1?4) o with o = (Af I?l‘ ii) € SLy(0). (42)

As (k1,Kk2) = (k1, M) = O there exist b, c € O such that bky =1 (mod k1) and cM = 1
(mod «1). Taking Ay = bc € O we observe that Ay = HLI& belongs to O. So W, is
well-defined. It is not difficult to see that W, is of type of Atkin-Lehner operator as defined
in (41).

Fix a representative k; = k; 2/ki 1 € P!(F)/T of each equivalence class of cusps corre-
sponding to the ordered decomposition m+/drn = 9; £; with M; generated by M; and £;
by L;. Write as defined in (42)

10 Midi Ao
W, =
i (0 Mi) (—Ki,l Ki2
which transforms «; to oco.

It is well known that the fractional linear transformation on the extended upper half space
is composition of an even number of inversions (see e.g. [2, Sect. 2.3]). So the action of
GL>(C) on the subspace U preserves the orientation. By Proposition 3.2 we know that if
U(x1,x3) L v(co) then U(W,gl -(X1,x2)) L v(WKj1 - 00). We have proven that the bilinear
form on a pair of vectors is preserved under the action of GL,(C) in (3) and hence so is the
Gram matrix 8. Thus for (X1, X2) € Qg 00,+ We have | det(W,,)] - WK_!_1 (X1, X2) € Q84+
Then we obtain

I = Yo e x) nF
(x1.%2)€ \ Qi+ Comx
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= > PFN (| det(Wee)| - W'+ (x1,%2)) nr
(x1,%2) €00\ 28,00, + CU(\ det(Wi; >|«W;I.1 (x1.,%2))
=Y e W ) [ nr
C

(X1,X2) €00\ 28,00, + U(W,;l_‘.(xl,xz))

where the last equality is the consequence of U (| det(W,;)| - We Lox1,x) = U (W,; L.
(x1,%2)).

Remark 5.14 We introduce the factor | det(W,, )| to make sure that for (x1, X2) € I'; \28 ;. +»
| det(W,,)| ™1 - W, - (x1, X2) lies in V(Q)? (s0 in I's\24,00,+) but not just in V (R)2.

Next we will analyze w}ew(| det(W,,)| - WK_,'l - (X1, x2)) for (X1, X2) € I'oo\2p,00,+. For
simplicity we write X = xm-

We begin the calculation in a slightly more general setting. Given g = <x Y ) and

w
xi.x2) = (£ b (2 b , we compute
b1 0) \b 0 P
a0\ (4 02)) L gt~ 0. (B 01) (%12
((b}di)’(b’zd; =ldetgl g (15, 0) 5y 0

=| det( )|_2 ((“IXJEH_;NWH’IX? arxz+biyz+bixi ) <a2xi+§2iy+h2xy arxZ+byyz+brx ))
8 aFz b\ Fwby 72 a1274b1 2w b zi @Rzt R Wby iz ayzi by w bz
(43)
and then
(ayb| — ayby) =| det(g)| " *[(azxX + baky + brxy)(a1xZ + b1yZ + by x)
— (@1 xX + b1 %y + b1x3)(axxZ + byyZ + boxw)]

| det(g)|_4[a2b1 (xxxw — xyxz) —arby(xxxw — xyxz)
+ bbby (xXyW — x3xZ) + biba(xyyZ — Xyxw)]
=det(g) > det(2) ' [(a2b1 — a1b2)x* + (biby — bibo)xy]l,  (44)
(bydy — bydy) =| det(g)| " *[(a2iz + brXw + ba§z)(a12Z + b1Zw + byzid)
— (a15z + b1x¥w + b1y2)(a2zZ + bazw + bpzw)]

| det(g)| ™ *axby (¥zz — yz27) — ayby(¥zzW — yz27)]
+ biby(Xwz — yzZw) — b1by(Xwz — yzZw)
=det(g) 2 det() " '[(aab1 — a1h2)z® + (b1by — bib2)wz].  (45)

Remark 5.15 With our choice of B, the pair (X1, X) € 'oo\$28,00,+ satisfies the condition f
as in Remark 3.6. It means that b; € qOq x 4Oy (i.e. g|b;) for split g|m with () = qq, and
b; € qOq for inert g|m with (g) = q. So biby — b1by appearing in (44) and (45) turns out to
be divisible by g for each prime g|m.

Recall the ordered decomposition fn = 91, £; (or fngy = M; £; with qo above 2 when
d = 2,3 mod 4) and its corresponding representative x; = 2—7 of equivalence class of cusps
with «; 1 and k; » coprime.
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Lemma5.16 For (X1, X2) € I'oo\ R, 00,4+ and non-trivial M; dividing fn when d = 1 mod 4
(orfnqp with q2 above 2 whend = 2, 3 mod 4), we have that ¢;¢w is vanishing on | det(Wy,)|-

Wl (xi, x).

Proof Write
1 Ki?2 —22 Xy 1 1
w-l _ (ki2 =) ith det(W ") = —
i (Ki,l A ) (Z w) with det(W, ) M;
b b
and for (X1, X2) = ((gi Ol> , <gz 02)> € I'oo\ 28,00, + Set

N AN TN Cw-l ((a1 b1\ (a1 b
G1. %) = <(51 di) ’ (5’2 ay)) =1t Wl W ({5, 0 ) A5y 0))-
By (43), we have for j = 1,2

a; =|M;|*(a;xX + b;Xy + b;x¥) = |Mi[*ajk; 2ki» — Mibjici 2hy — Mibjki 22,

by =IM;*(a;xZ + b;yZ + bjxw) = |M;|*ajk; 2ki 1 — Mibjhaki1 + |Mil*bjki 2k,
5,- =|M;|*(a;%z + bjyz + bjxw) = |M;*ajk; 2ki1 — Mibjhoki + |Mi|*bjki o),
d; =|M;|*(@;2z + bjzw + bjzi) = |M; |*(ajki ki1 + bjici At + bjki 1h1).

(I) Letgq aprime dividing m|dr| which is split, inert or ramified. We will only treat in details
the case when ¢ is split with (¢) = qq and other cases can be treated similarly. We want
to show that if

(M, m) = q, (M, (m)) = g or (M;, m) = (q)
then w (1, y)g; is vanishing on | det(W,,)| - W' - (x1, x2) for [y] € To(g)/T'(q).
(I.1) Let (9;, m) = q and then we have
a9, a0, a0, qlGin), G4 ki), a1 (&i2)

By Remark 5.15, there is no need to discuss the integrality of b; but we care for that
ofaj.
Suppose that a; € Zg. It is easy to observe that a;, b/j, l;/j, d;. € q0y. Set

. _ up vp uz v
Yy =Wy = 0ur') Lo uy!

with [u1], [u2] € (O/(¢))* and [v1], [v2] € O/(q). We write
” ” _ a/l, b/{ a; b; — —1.'t —1\x —1."t —1\*
(x1,%3) ((Cl/ di) , (C; dg =0 X (1 )Ny X))

and compute

a; b; . <M1_1 —Ul) a//. b/] <u2 0 >
'’ '’ _ g 7 71
¢; a'j 0 up bj dj V2 Uy

—1 / =/ —1 / ’ —1. =14/ —14
z(”l urd; vluzbj—i—ul vzbj vlvzdj u; u, bj ViU, a'j>'

- / —14
uluzbj—i—ulvzdj uiu, dj

@ Springer



On the non-vanishing of theta lifting of Bianchi modular...

"

Then, as al., b/<, B’j, d; € qOy, we can observe that a;, b;, c;, d}’ € qO0yq as well
which implies that '

i "non "ot

4
/
ayby —a, b, n Cdy —¢yd,

Oq.
m 1™a

It immediately follows that w (1, y)(p,; MW is vanishing on | det(W,,)|- We L (x1, x0).
Suppose thata; ¢ Z, and setl; = min{ord,(a;)} < —1. Assume thatw(1, y)q)g’"ew
is non-vanishing on | det(W,;)| - W, - (x1, x2) which requires that @, d; € Z, and
b}, ¢ €q0,.

e We first consider vy € (O/(g))*. Observing

" =/ ’ "o 14
cj—uluzbj—l—ulvzdj and dj—uluz dj,

we know that for c; € q04 and d;./ € Z4 we need d} € Z4 and at least 15//. € Oy.
As
= 2 - T 27 -
b =|M;il"ajki ki1 — Mibjhoki + |Mi|"bjki 2k
with k; 2, ki1 € OF, we then need M; € q_lfl which makes
d; = |Mi|2(aj1<i,1l?i,1 +bjki 1M +bjkiak) (qlkiikin)

lie in gZ,. Looking back to c; = uluzg/j + ulvzd; € q0y, that d;- € qZy

makes E;. € qOy. It follows that we need M; € q’qu(’)q, a contradiction to
that 901; 1s square-free.
e Let v = 0. Then we have

" "
a/. bj ( * * )
Q 7" = = —1 4 .
Cj dj uluzbj Uiy, dj
"
For c; € qOy, we need

= 2 - z 27 - _
b; = |M;| ajii ki — Mibjhaki1 + |Mi|"bjki 2k € q0q (ki ki1 € OF)

which requires M; € q~la! Oy contradicting to that 9)1; is square-free.
Therefore, when (91;, m) = ¢, we can deduce that w(l1, y)gptf is vanishing on
| det(We)| - Wb+ (x1, %0).
(1.2) When (901;, m) = g, we can prove it in the same way.
(1.3) Let (M;, m) = g and then we have ¢|M; and «; 1, ki1 € qu. Itisclearfora; € Z,.
Suppose that a; ¢ Z, and set [; = min{ord,(a;)} < —1. First assume vy is a

unit. Let [, = —1. Then we have that all a’j, d}, b/j, 15;. are divisible by ¢g and so are
a;, c_l; b;, c;. Letl, = —2.1Itis clear that d;. € Zg. Then, for b;, 15/; € qO0q, we need
bi,bj € O4. Expand

"non "non

a)b; —ab, :ufz(a/zb/l — a/lb/z) + uf]vl(aéd; — a/ldé)
+u i (byby — byby) + vi(byd; — bydy)
and

i "o

cyd) — c\dy = ud(byd, — byd)).
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axn

(III)

It is not hard to observe that alzdi — a’ld; € qZZq and b/ll;,2 — l;’lb’2 € qz(’)q. By (44)
and (45), we have

ardy — aydy = Mi|M;1*((a2by — arba)ity + (byby — byby)i? 5 (—1/My))
and
byd, — bydy = M;|M; | ((axby — arbo)i?| + (byby — byby)i i),

both of which lie in g>Oy. It follows again that

i "o "ot "o

ayb, —ab, i Cd) —¢d, c

qOq.

m

For I, < —2 there is no chance for d}/ € Zq as M; 1 is square-free. It is clear for
v1 = 0. Therefore w(1, y)(p,); is vanishing on | det(W,, )| - W,(jl - (X1, X») in this case.
Next we consider (,0“]1 for split ¢g|N(n) and omit details for inert g. As discussed in

Subsect. 4.3.4, we can have (n, (¢)) = q, (n, (¢)) = qor (n, (¢)) = (¢). Again we want
to show that if (n, (¢))|9%; then w(1, y)gol;‘ is vanishing on | det(W,, )| - WKTI - (X1, X2)

for [y] € To(9)/T' (1), To(@)/T (@) or To(q)/T (¢) respectively. ,
Leta; € Z,. Assume that (n, (¢)) = q and q|91;. Then it is clear that bj € qO0q and

d;. € qZ4. Expanding

"non "

bicy, + bzc/l/ =(u1_1u2_1b/1 - vluz_ldi)(uluzl;/z + ulvzdé)
+ (ul_luz_lblz - v]uz_ldé)(uluzl;/l + ulvzd;),
we see it is in qOq. So w(1, )/)go(;l is vanishing on | det(W,;)| - WK_’,1 - (X1, X2). Also it is
clear for q|97%; or (g)|9N;.

Leta; ¢ Z, and set [, = min{ord,(a;)} < —1. Assume that (n, (¢)) = q and q|90;.
Then we have ¢ 1 «; 1. Look at

d; = |M; 1> (ajii ki) + ki ihy + bjki 1)

Then there is no chance for d;./ = d; to be in gZ, as M; is square-free. So w(1, y)gu(']‘ is
vanishing on | det(W,;)| - W,;l - (X1, X2). This also occurs in the case that (n, (¢)) = q
and q|91;. Now assume that (n, (7)) = (¢) and (¢)|9;. If [, = —1, then we have
b/j, l;/j € qOq4 which implies that b/l/c; + bgc/l/ € q0q. If l; < —2, we can observe that
there is no room for d; = ulugld;. € qZ for square-free M;.

Let ¢’ be another prime dividing N (n) with ¢ = q'q . Similarly, if g |9, § |90 or
(g)|9M;, we can show that w(1, y)go;, is vanishing on | det(W,;)| - WK‘X,l - (X1, X2).

To finish our proof we consider ¢; if 2 is ramified with (2) = q%. Sety = (g ul_)]> with
[u] € (O/q2)* and [v] € O/q>. We write

" " _ Z;/l/ a/l/ d E; a;\/a . —— ! =%
(X1, %) = ((CI\/J E{) ) <c;«/3 I;; =Xy v yh).

Suppose that q>|9;. If I, = min{ord, (a;)} > —1, then we have b/j € qizOq2 and then

=

b € L0, as well. So b b, € §Oq, and then by b, + by b, = 2Re(b|b,) € Z; which
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makes ¢> vanish on | det(W,;)| - W,;l - (X1, x2). If [; = min{ord, (a;)} < —2, then there
is no chance for d} € Zo as IM; is square-free, and so for c;. So again we have w (1, y)¢»
vanishing on | det(W,,)| - W,gl - (X1,X2).

If follows that I, is vanishing for k; # 00. So we have proven our main theorem:

Theorem 5.17 Suppose that F = Q(v/d) is an imaginary quadratic field of class number
1 with the discriminant dr and denote its ring of integers by O. Let m be a square-free
product of inert or split primes, and put m = mO and § = v/dw. Choose a quadratic Hecke
character yum of conductor . Given a square-free ideal n coprime to (m|drl), let F be a
weight 2 Bianchi cusp form of level T'g(n). Choose the Schwartz function as in Remark 5.1
and B as in Remark 5.2. Then the Fourier coefficient of the theta lift at B as in (25) is

,U«ﬂ)tm,nL(]:v Xm,> D)
I = .
2A(1, 1, xm, )

So, if L(F, xm, 1) # 0, we can deduce the non-vanishing of our theta lifting as above.

6 Non-vanishing of theta lifting

Recall from [6] that a new form in S>(I'g(n)) is an eigenform for all the Hecke operators
T, for p not dividing n, which is not induced from in S>(I'o(m)) for any level m properly
dividing n. There is an involution J induced by the action on Hlz of the matrix (6 (1)), where
€ generates the unit group of O. The effect of J on Fourier coefficients is c(«) — c(ea); the
involution commutes with the Hecke operators, and splits S>(I'g(n)) into two eigenspaces,

$2(To(n)) = S5 (Co(n)) @ S5 (To(n).

Newforms in S;r (To(n)) were called plusforms, and their Fourier coefficients satisfy the
additional condition c(ea) = c(a) for all « € O. Denote by S3°¥(I'g(n)) the space of
newforms in S>(I'g(n)) and by S;ew""(l"o(n)) the space of plusforms in S3°% (I'o(n)). More
discussions on newforms and plusforms of weight 2 Bianchi modular forms can be found in
[6].

‘We can choose
B = (——, —, —) for (z,r) € Hj
r

as a basis for the left-invariant differential forms on Hj3. Let 7 € S)*(I'o(n)) and recall its
Mellin transform from [6, Sect. 2.5]

2 [ee)
AGJF:%H'/ 2TF B (46)
ldrl Jo

for F = (Fo, F1, F2).

Proposition 6.1 [6, Proposition 2.1] Let F € S;ew’+(F0(n)). Then
(1) For Re(s) > 3/2 we have
A(F.5) = Qm)* Z|dp T ()2 L(F, 5). 47

@ Springer



D.Zhang

0-1

n 0 ),i.e.,}'la)n =enF

(2) Assume that F is an eigenform for the Fricke involution w, = (

with en = £1. Then A(F, s) satisfies the functional equation

A(F,s) = —ea N TS A(F, 2 —5). (48)
la 0 -1 o
Puta(a) = and oy = o(N) = . Let ¢ be a character of (O/my,)* with
01 N 0 v

conductor my,. Similar to the twisted Hilbert modular forms [22, Sect. 5], the twist of F by
¥ can be defined as, for m € my,

Fo=Gu L iym™" Yy wFhau/m)

ue(O/my)x
where G(y~!, 1/m)~! is the Gauss sum of .

Lemma6.2 Let F € S>(T'o(n), ¥ a character of (O/my)*, and M the least common
multiple of n, mfb, and wy,. Then Fy € Sy(To(M), ¥?).

Proof We will apply Miyake’s treatment in [16, Lemma 4.3.10] to our case without any new
techniques.

Lety = (c?\l Z) € Tp(M) where M € M and put
y' = a/myadu/m,

then y’ € To(IM) C To(n). Writing y’ = (a, Z), we have
c

Fha(u/m)y = Floy'a(d*u/m) = Fla(d*u/m).

Therefore
Fyly =G~ 1i/m™ Yy @) Flhau/my
ue(O/my)*
=G L iym™ Yy W Flha(du/m)
ue(O/my)*
=y@HGW " ym™ >y P Fladu/m)
ue(O/my)*
=y d)Fy
which implies that fy € S(Io(9N), ¥2). O

Lemma 6.3 Let F € S>(I'o(n)) and Y a character of (O/my)*. If (n, my,) = 1, then
Fyhommy) = CyGy
where G = Flrwy and

Cy =Cyn=vMGHY)/GY ).
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Proof We will apply Miyake’s treatment in [16, Lemma 4.3.11] to our case without any new
techniques.
Foru € O prime tom € my,, take n,v € O and N € n so that nm — Nuv = 1. Then

m —v

a(u/m)w(Nmz) =m-w(N) (—uN " )a(v/m). 49)

Since G = Flrwy belongs to S>(Tp(n)), (49) implies
Flaa(u/myo(Nm?) = Gha(v/m),

so that
G HFyhoNm*) = Y ¥ @Fhatu/myo(Nm?)
ue(O/my)*
= > Y(=Nv)Gha(v/m)
ve(O/my)*
=Y(=N) > Y@3Gha/m).
ve(O/my)>
Then the assertion follows immediately. O

Combining Lemma 6.3 and Proposition 6.1, for the central value at s = 1 we obtain:
Proposition 6.4 For F € Sgew’+(l‘o(n)) and  a quadratic Hecke character, we have
L(Fy, 1) = —eny (W) L(Fy, D).

Let n, x;m and m be as in Theorem 5.17. For F € S;eW’Jr(Fo(n)), it follows that for the
non-vanishing of L(F, xm, 1) = L(F,,,, 1), we need at least &, xm(n) = —1.

Lemma 6.5 Given a Bianchi modular form F € S;ew’+(Fo(n)), there always exists a

quadratic Hecke character xw of conductor m such that e, xm(n) = —1.

Proof Assume that

eaxm =[] eqxm@)=-1.

prime q;|n

We denote, for each prime g; dividing n,
b, = Km (@), € (1), (50)

Recall the Chinese Remainder Theorem in the following. Let N = [[; n; with the n;
being pairwise coprime. Given any integer a; there exists an integer x such that x = a; (mod
n;) for every i. To solve the system of congruences consider N; = N /n; and then there
exists integers M; such that N;M; = 1 (mod n;). A solution of the system of congruences
isx = ), a;N;M;. The way for computing the solution can also be applied into principal
ideal domains.

Recall the quadratic residue symbol from [18, Chapter V]. The quadratic residue symbol
for O is defined by, for a prime ideal p C O,

o Np—1
— ) =a 2 modp.
5)
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It has properties completely analogous to those of classical Legendre symbol

o 0, a €p,
<7): l,a¢pandIn € O :a =n?modyp,

p —1, « ¢ p and there is no such 7.

The quadratic residue symbol can be extended to take non-prime ideals or non-zero elements
as its denominator, in the same way that the Jacobi symbol extends the Legendre symbol.
For 0 # B € O then we define (g) = ([:7)) where (B) is the principal ideal generated

B
by B. Analogous to the Jacobi symbol, this symbol is multiplicative in the top and bottom

parameters.

We are interested in the quadratic reciprocity law in the case of the imaginary quadratic
field F = Q(\/E) with class number one (see [12, Chapter VIII]. For any @ € O with odd
norm we define elements 7, t‘; € Z/27 by

@ =+d“(1+2J/d)«e>mod 4 for e O.

Then the quadratic reciprocity law for coprime elements of odd norm is given by

()

where

_ | taty + 115 + tatg mod 2, ifd = 1,2 mod 4
"~ | tatg + 115 mod 2, if d = 3 mod 4.

In particular, if « = 1 mod 4, we can observe that f, = to/[ = 0 which implies that 7 = 0

mod 2. It follows that
EN(PY=1 fora=1modd. (51)
B o

We want to find a quadratic character defined by the quadratic residue symbol, xm =
(m), such that xm(q;) = &q;Aq; for Aq; given in (50). By our assumption m is the
product of inert or split primes. We can impose that m = 1 mod 4 to get () = () by

the above quadratic reciprocity law (51). To achieve xm(q;) = (%) (%) = &q;Aq;» WE

need (?) = (%) &£q; Aq; Which can be done via imposing congruence conditions (x) on m
modulo g;. Therefore, by the Chinese remainder theorem, there exists a m satisfying

m = 1mod 4 (52)
congruence conditions (x) on m mod g; for each prime g;|n.
Now we have proven this lemma. O

Write S := {place v : v | 2|d|n}. Let £ be a quadratic idelic Hecke character of conductor
M:O such that My = 1mod4, Mg = mmod g; for each g;|n and at v dividing VdO the
local component &, is ramified with square-free conductor. Note that its conductor is coprime
to 2n and divisible by +/dO, and so is its induced character xz of (O/Ms©0)*. Also we can
observe that M¢ satisfies the conditions in (52). So, by the preceding lemma there exists a
Xe attached to & such that &, xg (n) = —1. Let W(S; &) denote the set of quadratic characters
Xe such that X¢ , = &, forall v € S. Recall from [8, Theorem B(1)]
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Proposition 6.6 Suppose m is a cuspidal automorphic representation of GLa(A) which is
self-contragredient. Suppose that for some quadratic character x € W(S; &) one has root
number €(r @ x) = 1. Then there exist infinitely many quadratic characters X/ e U (S; &)
such that L(t ® ', 1) # 0.

In Sect. 1.6 we have discussed the automorphic representation 7 on the space of weight 2
Bianchi modular forms. Also, we have shown that there exists a xz¢ € W(S; &) such that
enxe(m) = —1,1ie., €(w ® x¢) = 1. So we can apply the above proposition to deduce
that, for F € S;ew’+, there are infinitely many quadratic characters ¥ € W (S; &) such that
L(F, x, 1) is non-vanishing.

We will explain that these infinitely many quadratic characters always include a quadratic
character with square-free conductor. This is necessary since the quadratic character x, as in
Theorem 5.17 has the square-free conductor m. Suppose that W (S; £) 3 xon : (O/9MM)* —
C* is a quadratic Hecke character. Set 9t = ]_[prime pilo p." with r; > 1. By the Chinese
Remainder Theorem, we have (O/9%)* =~ ]_[pi|5m((9/p?")X and then can write xgn =
[T xom.p; with xon p, defined on (O/p;)*. It is known that (O/p")* has cyclic order of
either p"(p — 1) for p above split prime p or p>*~D(p? — 1) for p above inert prime p.
So xon,p, is induced from a character defined on (O/p)* which implies that xgy is induced
from a primitive character xm, of square-free conductor my.

We will show that the non-vanishing of L(F, xon, 1) is equivalent to that of L(F, Xmg, 1).
Write 9t = mon(%. It is a fact that

L(F. xom. $) = L(F. Xmg-$) [ [ (1 = az®0) xme (0u) N (90) ™ + N(py)' %)
v|ng

where ar denotes the Fourier coefficient of F. It suffices to show the non-vanishing of

1 — azr(Py) Xme PN M) ™ + N@p)' ™% ats =1

which can be rewritten as the Hecke polynomial
(I —ar(Pu)N P )L = Brpu) NPy ™).
As lar(py)| < N(py) and |B£(py)| < N(py), we can deduce the non-vanishing of

(1 — arP)NP) D1 = BrEINP) .

As my is square-free, divisible by Vd and coprime to n such that L(F, xm,, 1) is non-
vanishing, following Theorem 5.17 we can deduce that

Theorem 6.7 Given a Bianchi modular form F € S;ew’+ with n coprime to drO, there

always exists a quadratic Hecke character such that the theta lifting as in Theorem 5.17 is
non-vanishing.
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