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Abstract
Let K be a number field and G a finitely generated torsion-free subgroup of K×. Given a
prime p of K we denote by indp(G) the index of the subgroup (G mod p) of themultiplicative
group of the residue field at p. Under the Generalized Riemann Hypothesis we determine the
natural density of primes of K for which this index is in a prescribed set S and has prescribed
Frobenius in a finite Galois extension F of K . We study in detail the natural density in case
S is an arithmetic progression, in particular its positivity.

Keywords Reductions of algebraic numbers · Multiplicative index and order · Primes in
arithmetic progression · Natural density

Mathematics Subject Classification Primary: 11R45 · Secondary: 11A07, 11R44

1 Introduction

The distribution of the multiplicative index of an integer seems to have been first studied
by Pappalardi [17] in 1995. Under the Generalized Riemann Hypothesis (GRH) he provided
asymptotic formulae for

∑
p≤x f (indp(g)), for f satisfying fairly mild restrictions (here and

in the sequel we denote the rational primes by p). This line of investigation was continued in
2012 by Felix and Murty [5] and later by Felix for higher rank in [3]. Given a set of integers
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2 P. Moree et al.

S and a natural number g, in [5] it was proven that

πg,S(x) := ∣
∣{p ≤ x : indg(p) ∈ S}∣∣ = cg,S Li(x) + O

(
x

(log x)2−ε

)

, (1)

where cg,S is a constant defined by a series whose terms depend on the set S, Li(x) :=∫ x
2 dt/ log t denotes the logarithmic integral and ε > 0 is arbitrary. It is a difficult problem
to determine whether cg,S is positive or not, cf. Felix [4]. The special case where S is an
arithmetic progression was already considered by Moree [12, Thm.5] in 2005. For example,
he proved Theorem 8 below in case G = 〈g〉, F = K = Q.

In this paper we consider the behavior of πg,S(x), with Q replaced by a number field
K and g by a finitely generated torsion-free subgroup G of K×. Instead of over rational
primes, we sum now over primes p of norm ≤ x . Under GRH we establish in Theorem 1, see
Sect. 2, an asymptotics similar to (1), but with a weaker error term depending on the rank of
G. Notice that our result relies on variations for number fields of Hooley’s proof of Artin’s
primitive root conjecture under the assumption of GRH [8]. In Sect. 3 we then restrict to the
case where S consists of integers in an arithmetic progression a mod d . In Theorem 8 we
show that in this case the natural density can be expressed as a linear combination of at most
ϕ(d ′) − 1 Artin-type constants, with d ′ = d/(a, d). The positivity of the density is studied
in Sect. 4, the numerical evaluation of the Artin-type constants in Sect. 5. In the final section
we demonstrate our results by determining the density for two examples and compare the
outcome with an experimental approximation.

We take G to be fixed, but one can also ask what happens for a “typical" G. Ambrose [1]
considered the average index of the group generated by a finite number of elements in the
residue field at a prime of a number field and provided asymptotic formulae for the average
order of this quantity.

Likewise we can wonder about the above questions, but for the multiplicative order, rather
than the index. As far as the authors know, these were first studied by Chinen and Murata [2]
for d = 4, and a little later by Moree by a simpler method. Both Chinen and Murata, and
independentlyMoree, went on towrite various further papers (he surveyed his results in [15]).
Under an appropriate generalization of the Riemann Hypothesis it turns out that the natural
density of primes p ≤ x such that the multiplicative order of g modulo p is congruent to
a mod d exists. Denote it by δg(a, d) and the associated counting function by Ng(a, d)(x).
The proof of the existence of δg(a, d) by Moree is based on the identity

Ng(a, d)(x) =
∞∑

t=1

∣
∣{p ≤ x : indp(g) = t, p ≡ 1 + ta mod dt}∣∣ .

The average density of elements of order congruent to a mod d in a field of prime character-
istic also exists, but is a much simpler quantity, see Moree [11]. It has very similar features
to δg(a, d).

In the special case where d divides a, we are just asking for the density of primes p
such that d divides the multiplicative order of g modulo p. This density is much easier to
deal with and turns out to be a rational number. This can be proven unconditionally, see for
example [14, 22, 23].

Ziegler [24], using the approach of Moree, was the first to study the order in arithmetic
progression problem in the setting of number fields. His work was generalized by Perucca
and Sgobba in [19, 20], who obtained in particular uniformity results for the distribution of
the order. It is expected that, likewise, some uniformity also holds for the distribution of the
index into suitably related congruence classes, however at the moment it is not clear how to
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The distribution of the multiplicative index of algebraic… 3

obtain such a result. For example, it does not follow from [19, Cor. 5.2], in spite of the fact
that congruence conditions on both the order and the size of the multiplicative group lead
to congruence conditions on the index. We leave this as a research direction and as an open
problem to the reader.

It is also still unknownwhether this kind of results can be provenunconditionally.Although
the results of this paper mostly rely on GRH, there are fundamental papers on Artin’s con-
jecture for primitive roots providing unconditional results, see for example [6] by Gupta
and Murty, and [7] by Heath-Brown. However, the contrast between what can be proven
conditionally versus unconditionally in this area is quite dramatic. We note though that the
infinitude of primes p in a prescribed arithmetic progression with indp(g) 	= t , with t pre-
scribed, can be unconditionally determined (however, not its density) [16]. Last but not least,
Pappalardi obtained quantitative results without relying on GRH under certain convergence
conditions, see for example [17, Thm. 1], from which one can determine the density for
indp(g) being squarefree (and, more generally, k-free with k ≥ 2).

2 The existence of the density of primes with prescribed index and
Frobenius

Let K be a number field, and F/K a finite Galois extension. LetG be a finitely generated and
torsion-free subgroup of K× having positive rank r . Our goal is to determine the density of the
set P of primes p of K (defined in the next theorem)with prescribed index and Frobenius. The
notation F, K ,G and r will be maintained throughout. We also set Km,n := K (ζm,G1/n)

for m | n, and similarly for Fm,n . Further we make use of the following usual notation: ζn
denotes an n-th primitive root of unity,μ the Möbius function, and ϕ Euler’s totient function.
We write loga x as shorthand for (log x)a , and (a, b) for gcd(a, b).

We recall that Landau’s prime ideal theorem states that

|{p : N p ≤ x}| = Li(x) + OK (xe−cK
√
log x ), (2)

where cK > 0 is a constant depending on K .

Theorem 1 (under GRH). Let K be a number field, and let G be a finitely generated and
torsion-free subgroup of K× of positive rank r. Let F/K be a finite Galois extension, and
let C be a union of conjugacy classes in Gal(F/K ). Let S be a non-empty set of positive
integers. Define

P := {p : indp(G) ∈ S, FrobF/K (p) ∈ C},
where p ranges over the primes of K unramified in F and for which indp(G) is well-defined.
We let P(x) be the number of prime ideals in P of norm≤ x.We have the asymptotic estimate

P(x) = x

log x

∑

t∈S

∞∑

v=1

μ(v)c(vt)

[Fvt,vt : K ] + O

(
x

log2−
1

r+1 x

)

,

where

c(n) = ∣
∣{σ ∈ Gal(Fn,n/K ) : σ |Kn,n = id, σ |F ∈ C}∣∣ .

The implicit constant in the O-term depends only on K , F and G.

This result in combination with the prime ideal theorem leads to the following corollary.
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4 P. Moree et al.

Corollary 2 (under GRH). Let S be a non-empty set of positive integers. The natural density
of the primes p of K such that indp(G) ∈ S and FrobF/K (p) ∈ C exists and is given by

∑

t∈S

∞∑

v=1

μ(v)c(vt)

[Fvt,vt : K ] .

We will now formulate some preliminaries required for the proof of Theorem 1. Our
starting point is [19, Prop. 5.1], which was established for rank 1 in [24, Prop. 1].

Theorem 3 (under GRH). For x ≥ t3, the number Rt (x) of primes p with norm up to x,
unramified in F, and such that indp(G) = t and FrobF/K (p) ∈ C satisfies

Rt (x) = Li(x)
∞∑

v=1

μ(v)c(vt)

[Fvt,vt : K ] + O

(
x

log2 x

)

+ O

(
x log log x

ϕ(t) log2 x

)

.

The implicit constant in the O-term depends only on K , F and G.

The following lemma is a straightforward generalization of [12, Lem. 6], taking into
account that for every natural number n, the ratio

C(n) := ϕ(n)nr

[Kn,n : K ] (3)

is bounded above by some constant D, depending only on K and G (see [19, Thm. 1.1]).

Lemma 4 For every real number y ≥ 1 we have

∑

t≤y

∞∑

n=1

μ(n)

[Knt,nt : K ] = 1 + O

(
D

yr

)

,

where the implicit constant is absolute.

Proof We claim that

∑

n>y

1

nrϕ(n)
= O

( 1

yr

)
.

For r = 1 this is due to Landau [10], who first proved that

∑

n≤x

1

ϕ(n)
= A log x + B + O

( log x

x

)
, (4)

with A and B explicit constants, and then applied partial integration. The proof for arbitrary
r is completely analogous. Since ϕ(nt) ≥ ϕ(n)ϕ(t), we obtain

∑

t>y

∞∑

n=1

1

[Knt,nt : K ] ≤ D
∑

t>y

1

trϕ(t)

∞∑

n=1

1

nrϕ(n)
�

∑

t>y

D

trϕ(t)
� D

yr
, (5)

where we used that the fourth sum is bounded above by a constant not depending on r . The
estimate (5) shows that the double sum in the statement of Lemma 4 is absolutely convergent
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The distribution of the multiplicative index of algebraic… 5

for all y. Thus, we may rearrange the double sum as follows:

∞∑

t=1

∞∑

n=1

μ(n)

[Knt,nt : K ] =
∞∑

m=1

∑

s|m

μ(m/s)

[Km,m : K ] =
∞∑

m=1

∑

d|m

μ(d)

[Km,m : K ]

=
∞∑

m=1

1

[Km,m : K ]
∑

d|m
μ(d) = 1

[K1,1 : K ] = 1,

completing the proof.

The following is a generalization of Ziegler [24, Lem. 13].

Lemma 5 (under GRH). We have

∣
∣
∣
{
p : N p ≤ x, indp(G) > (log x)

1
r+1

}∣
∣
∣ = O

(
x

log2−
1

r+1 x

)

,

where the primes p of K are restricted to those for which indp(G) is well-defined. The implicit
constant in the O-term depends only on K and G.

Proof The number of primes with ramification index or residue class degree at least 2 is of
order O(

∑
p≤√

x 1) = O
(√

x/ log x
)
. We make use of the functions Rt (x) from Theorem 3

with F = K . For any real number y ≥ 1, let Ey(x) be the number of primes p with N p ≤ x
and such that indp(G) > y. Notice that

Ey(x) = |{p : N p ≤ x}| −
∑

t≤y

Rt (x) + O

( √
x

log x

)

.

Landau’s prime ideal theorem (2) implies the (much) weaker estimate

|{p : N p ≤ x}| = Li(x) + O

(
x

log2 x

)

= x

log x
+ O

(
x

log2 x

)

, (6)

which is all we need. By Theorem 3 and Lemma 4 we obtain

∑

t≤y

Rt (x) = Li(x)
∑

t≤y

∞∑

n=1

μ(n)

[Knt,nt : K ] + O

(
xy

log2 x

)

+ O

(
x log log x

log2 x

∑

t≤y

1

ϕ(t)

)

= Li(x) + O

(
x

yr log x

)

+ O

(
xy

log2 x

)

+ O

(
x log log x

log2 x

∑

t≤y

1

ϕ(t)

)

.

On taking y = (log x)1/(r+1), we now obtain on invoking (6) and (4), the estimate

Ey(x) = O

(
x

yr log x

)

+ O

(
xy

log2 x

)

+ O

(
x(log log x)2

log2 x

)

= O

(
x

log2−
1

r+1 x

)

,

completing the proof.
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6 P. Moree et al.

Proof of Theorem 1 Set ρ = 2 − 1
r+1 . Lemma 5 with y = (log x)

1
r+1 yields

P(x) =
∑

t≤y
t∈S

Rt (x) + O

(
x

logρ x

)

.

Estimating the sum as in the proof of Lemma 5, we obtain

P(x) = Li(x)
∑

t≤y
t∈S

∞∑

v=1

μ(v)c(vt)

[Fvt,vt : K ] + O

(
x

logρ x

)

.

Now we focus on the main term. We have

∣
∣
∣
∣

∑

t∈S

∞∑

v=1

μ(v)c(vt)

[Fvt,vt : K ] −
∑

t≤y
t∈S

∞∑

v=1

μ(v)c(vt)

[Fvt,vt : K ]
∣
∣
∣
∣ ≤

∑

t>y

∞∑

v=1

1

[Fvt,vt : F]

By (5) the right-hand side is bounded by � y−r . Using this estimate the proof is easily
completed.

3 The distribution of the index over residue classes

Let a, d be integers with d ≥ 2. We study the density densG(a, d) of primes p of K such
that indp(G) ≡ a mod d . Under GRH, by Theorem 1 this density exists and we have

densG(a, d) =
∑

t≡a mod d

∑

v≥1

μ(v)

[Kvt,vt : K ] . (7)

The goal of this section is to prove Theorem 8, which expresses densG(a, d) as a finite sum
of terms depending on Dirichlet characters χ of modulus d . These terms involve Artin-type
constants Bχ (r) that can be evaluated with multi-precision using Theorem 16, thus allowing
one to evaluate densG(a, d) with multi-precision.

We start by explaining our notation. Given an integer n ≥ 1 we let Gn be the group of
characters defined on (Z/nZ)×, so that Gn ∼= (Z/nZ)×. For a Dirichlet character χ we
denote by hχ the (Dirichlet) convolution μ ∗ χ of the Möbius function μ with χ , that is
μ ∗ χ(n) = ∑

d|n μ(d)χ(n/d). Recall that the Dirichlet convolution of two multiplicative
functions is again a multiplicative function.

Put w = gcd(a, d), a′ = a/w and d ′ = d/w. The integers t ≡ a mod d are of the form
wt ′ with t ′ ≡ a′ mod d ′. Thus we can rewrite densG(a, d) as

densG(a, d) =
∑

t≡a′ mod d ′

∑

v≥1

μ(v)

[Kvwt,vwt : K ] .
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The distribution of the multiplicative index of algebraic… 7

This expression on its turn can be rewritten as

densG(a, d) =
∑

t≡a′ mod d ′

∑

v1≥1
t |v1

μ(v1/t)

[Kv1w,v1w : K ]

=
∑

v1≥1

∑

t≡a′ mod d ′
t |v1

μ(v1/t)

[Kv1w,v1w : K ]

=
∑

v1≥1

⎛

⎝ 1

ϕ(d ′)
∑

χ∈Gd′
χ(a′)hχ (v1)

⎞

⎠ 1

[Kv1w,v1w : K ]

= 1

ϕ(d ′)
∑

χ∈Gd′
χ(a′)

∑

v1≥1

hχ (v1)

[Kv1w,v1w : K ] . (8)

In the second step we used that the double series is absolutely convergent (see the proof of
Lemma 4). In the third step we used [12, Lem. 9], where χ runs over the Dirichlet characters
modulo d ′.

We now focus on the final sum in (8). Recall the definition (3) of C(n). By Perucca et
al. [21, Thm. 1.1] there exists an integer n0 (depending only on G and K ) such that

C(n) = C(gcd(n, n0)) . (9)

One can easily show that for m | n, one has C(m) | C(n), and hence n0 can be taken to be
the minimal integer satisfying

C(n0) = max
n≥1

ϕ(n)nr

[Kn,n : K ] .

By (9) we have

1

[Kn,n : K ] = C(gcd(n, n0))

ϕ(n)nr
,

and therefore
∑

n≥1

1

[Kn,n : K ] =
∑

g|n0

∑

n≥1
(n,n0)=g

C(g)

ϕ(n)nr
.

In our case,
∑

v≥1

hχ (v)

[Kvw,vw : K ] =
∑

g|n0

∑

v≥1
(vw,n0)=g

C(g)hχ (v)

ϕ(vw)vrwr
. (10)

If
∑

v≥1 f (v) is some absolute convergent series, we have
∑

v≥1
(vw,n0)=g

f (v) =
∑

v≥1
( vw

g ,
n0
g )=1

f (v) =
∑

v≥1

f (v)
∑

n| n0g , n| vw
g

μ(n)

=
∑

n| n0g
μ(n)

∑

v≥1
n| vw

g

f (v) =
∑

n| n0g
μ(n)

∑

v≥1
gn

(gn,w)
|v

f (v),
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8 P. Moree et al.

where we used that n divides the integer vw/g if and only if gn/(gn, w) divides v. Thus, in
particular,

∑

v≥1
(vw,n0)=g

C(g)hχ (v)

ϕ(vw)vrwr
= C(g)

wr

∑

n| n0g
μ(n)

∑

v≥1
gn

(gn,w)
|v

hχ (v)

ϕ(vw)vr
.

Inserting the right-hand side into (10) and inserting the resulting expression into (8) yields

densG(a, d) = 1

ϕ(d ′)
∑

χ∈Gd′
χ(a′)

∑

g|n0

C(g)

wr

∑

n| n0g
μ(n)

∑

v≥1
gn

(gn,w)
|v

hχ (v)

ϕ(vw)vr
.

Denoting

Cχ (N , w, r) =
∑

v≥1
N |v

hχ (v)

ϕ(vw)vr
,

we can write this as

densG(a, d) = 1

ϕ(d ′)
∑

χ∈Gd′
χ(a′)

∑

g|n0

C(g)

wr

∑

n| n0g
μ(n)Cχ

(
gn

(gn, w)
,w, r

)

. (11)

Let κ(n) = ∏
p|n p denote the squarefree kernel of n. Recall that hχ = μ ∗ χ . The

following result is a special case of [12, Lem. 10] and expresses Cχ (N , w, r) as an Euler
product.

Lemma 6 We have

Cχ (N , w, r) = cχ (N , w, r)Bχ (r),

where

cχ (N , w, r)= hχ (N )κ(Nw)

Nr+1w

∏

p|N

pr+1

pr+2 − pr+1− p+χ(p)

∏

p�N
p|w

pr+1 − 1

pr+2 − pr+1− p+χ(p)
,

and

Bχ (r) =
∏

p

(

1 + p(χ(p) − 1)

(p − 1)(pr+1 − χ(p))

)

, (12)

where p runs over all rational prime numbers.

Corollary 7 We have Cχ (1, 1, r) = ∑
v≥1

hχ (v)

vϕ(v)
= Bχ (r).

Proof of Lemma 6 We distinguish two cases:
a) The case where hχ (N ) = 0.

Wehave to verify thatCχ (N , w, r) = 0. Since hχ is multiplicative andwe have hχ (pk) =
χ(p)k−1(χ(p) − 1), it follows that if hχ (N ) = 0, then there is a prime divisor p of N with
χ(p) = 1. Hence, hχ (v) = 0 for all v that are divisible by N and so Cχ (N , w, r) = 0.
b) The case where hχ (N ) 	= 0.
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The distribution of the multiplicative index of algebraic… 9

We rewrite Cχ (N , w, r) as

Cχ (N , w, r) = hχ (N )

ϕ(Nw)Nr

∑

v≥1

hχ (Nv)ϕ(Nw)

hχ (N )ϕ(Nvw)vr
, (13)

and note that the argument is a multiplicative function in v. We apply the Euler product
identity to evaluate the sum and obtain

∏

p|N

pr+1

pr+1 − χ(p)

∏

p�N
p|w

(
1 + (χ(p) − 1)

pr+1 − χ(p)

) ∏

p�Nw

(
1 + p(χ(p) − 1)

(p − 1)(pr+1 − χ(p))

)
,

which can be rewritten as

Bχ (r)
∏

p|N

pr+1(p − 1)

pr+2 − pr+1 − p + χ(p)

∏

p�N
p|w

(p − 1)(pr+1 − 1)

pr+2 − pr+1 − p + χ(p)
.

On inserting this in (13) and noting that

ϕ(κ(Nw)) =
∏

p|N
(p − 1)

∏

p�N
p|w

(p − 1),
ϕ(κ(Nw))

ϕ(Nw)
= κ(Nw)

Nw
,

the proof is completed.

The density densG(a, d) can be expressed as a finite linear combination involving the
constants Bχ (r). Our result generalizes [12, Thm. 5] by Moree, who dealt with the case
F = K = Q and G of rank 1.

Theorem 8 (under GRH). Let a and d be two natural numbers. Put d ′ = d/(a, d). Assuming
that the function C(n), defined in (3), is explicitly given, we can write

densG(a, d) =
∑

χ∈Gd′
dχ Bχ (r),

with the dχ ’s explicit complex numbers (they can be determined using (11) and Lemma 6).

The equality of the series given in (7) and the linear combination of Theorem 8 is uncon-
ditional: it is establishing that these two quantities are densities that requires assuming GRH.

Proof In the identity (11) for densG(a, d) we make the substitution

Cχ

(
gn

(gn, w)
,w, r

)

= cχ

(
gn

(gn, w)
,w, r

)

Bχ (r)

(which is allowed by Lemma 6). The constants dχ are obtained by factoring out the terms
Bχ (r), so that for each χ ∈ Gd ′ we have

dχ = χ(a′)
ϕ(d ′)

∑

g|n0

C(g)

wr

∑

n| n0g
μ(n)cχ

(
gn

(gn, w)
,w, r

)

.
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10 P. Moree et al.

3.1 Generic aspects of the behaviour of densG(a, d)

Generically the degree [Kvt,vt : K ] equals vtϕ(vt) if G has rank 1. If every degree occurring
in (7) satisfied this, then we would obtain

ρ(a, d) :=
∑

t≡a mod d

∑

v≥1

μ(v)

vtϕ(vt)
.

The inner sum is easily seen to equal A · r(t), with

r(t) = 1

t2
∏

p|t

p2 − 1

p2 − p − 1
.

Thus we can alternatively write

ρ(a, d) = A1

∑

t≡a mod d

r(t),

with

Ar :=
∏

p

(

1 − 1

pr (p − 1)

)

(14)

the rank r Artin constant. The “incomplete" rank r Artin constant, defined by restricting to
p odd, appears also in other works, such as in Pappalardi [18]. For every B > 0 we have, see
[11, Thm. 4],

∑

p≤x

ρ(p; a, d) = ρ(a, d)Li(x) + O
( x

logB x

)
,

with ρ(p; a, d) the density of elements of F×
p having index congruent to a mod d . Thus on

average a finite field of prime order has ρ(a, d) elements having index congruent to a mod d .
Two cases are particularly easy.

Proposition 9 ([11, Prop. 4]). One has

ρ(0, d) = 1

dϕ(d)
and ρ(d, 2d) =

{
ρ(0, 2d) if d is odd;
3ρ(0, 2d) if d is even.

In the remaining cases it is not difficult to express ρ(a, d) in terms of the Bχ (1)’s, see
[11, Prop. 6]. When (a, d) = 1, this expression takes a particularly simple form, namely

ρ(a, d) = 1

ϕ(d)

∑

χ mod d

χ(a)Bχ (1) . (15)

In the examples in Sect. 6 we will meet ρ(a, d) again.

4 The positivity of densG(a,d)

As in the previous section we consider a number field K , a finitely generated and torsion-
free subgroup G of K×, and the natural density densG(a, d) of the primes p of K such that
indp(G) ≡ a mod d . We are interested in characterizing when this density is positive.
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The distribution of the multiplicative index of algebraic… 11

Example 10 Recall that for a prime p of K of degree 1 such that indp(G) is well-defined,
we have d | indp(G) if and only if p splits completely in Kd,d (cf. [24, Lem. 2]). So by
Chebotarev’s density theorem we have (without relying on GRH)

densG(0, d) = 1

[Kd,d : K ] > 0, (16)

In view of the above example, we may suppose in the following that 0 < a < d .
We denote by densG(h) the density of primes p such that indp(G) = h, with h a prescribed

integer, and by n0 an integer satisfying C(n) = C(gcd(n, n0)) for all n ≥ 1, whereC(n)was
defined in (3). With this notation we are ready to recall the following result by Järviniemi
and Perucca:

Theorem 11 ([9, Main Thm. and Rem.4.2], under GRH). The density densG(h) is well-
defined for all h ≥ 1, and we have densG(h) > 0 if and only if densG(gcd(h, n0)) > 0. For
any set S of positive integers the following holds: if the density of primes p of K such that
indp(G) ∈ S is positive, then there is some h ∈ S such that densG(h) > 0.

Proposition 12 (under GRH). If d ≥ 2 is coprime to n0, then densG(a, d) > 0.

Proof By Theorem 11 (taking S to be the set of all positive integers) we know that there is
some h ≥ 1 such that densG(h) > 0. Moreover, we deduce that there is an integer h0 | n0
such that for every integer t coprime to n0 we have densG(th0) > 0. We conclude by taking
t ≡ 1 mod n0 and t ≡ ah−1

0 mod d .

The following result tells us in particular that for every prime number � and for every
e � 0 there is a positive density of primes p of K such that v�(indp(G)) = e.

Proposition 13 For every prime number � there is some non-negative integer e� (and we can
take e� = 0 for all but finitely many �) such that for every e ≥ e� we have

densG(0, �e) > densG(0, �e+1).

Under GRH, for every n > 0 and for every integer z, we have densG(z�e� , �n) > 0.

Proof By Chebotarev’s density theorem the primes p of K such that v�(indp(G)) = e have
density 1/[K�e,�e : K ] − 1/[K�e+1,�e+1 : K ], so the first assertion follows from the eventual
maximal growth of the Kummer degrees, see [19, Lem. 3.2]. By the first assertion (and
by applying Theorem 11 to the set S of positive integers having �-adic valuation equal to
e) for every e ≥ e� there is some b coprime to � such that densG(b�e) > 0. Then, for
every prime q coprime to n0 we have densG(qb�e) > 0, so we may conclude by selecting
q ≡ b−1z�−v�(z) mod �n , which is possible by Dirichlet’s theorem on primes in arithmetic
progressions.

If x, y are positive integers, then we use the notation gcd(x, y∞) to denote the positive
integer obtained from x by removing the prime factors that do not divide y.

Theorem 14 (under GRH). We have densG(a, d) > 0 if and only if

densG(a, gcd(d, n∞
0 )) > 0.
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12 P. Moree et al.

Proof Set d0 = gcd(d, n∞
0 ). The former inequality in the statement clearly implies the latter

because the integers congruent to a mod d are also congruent to a mod d0. Now suppose that
there is a positive density of primes p of K such that indp(G) ≡ a mod d0. From Theorem 11
we deduce that there exists h ≥ 1 such that h ≡ a mod d0 and densG(h) > 0. For every pair
of positive integers t, s coprime to n0 such that s | th, we have densG(th/s) > 0. If we choose
t ≡ s mod d0, then th/s ≡ a mod d0. We claim that we may also choose t, s so that th/s ≡
a mod d/d0. Because of the Chinese remainder theorem it will be possible to simultaneously
ensure that the two conditions hold, and hence densG(th/s) > 0 implies densG(a, d) > 0.
To prove the claim, we first choose t, s so that gcd(a, d/d0) = gcd(th/s, d/d0), and then
multiply t by an integer invertible modulo d/d0 to obtain the requested congruence.

Theorem 15 (under GRH). The following conditions are equivalent:

(1) the density densG(a, d) is positive;
(2) there is an integer A such that A ≡ a mod d and densG(gcd(A, n0)) is positive.

Proof Write D := lcm(d, n0). By Theorem 11 the density densG(a, d) is positive if and
only if there is an integer A ≡ a mod d for which densG(A, D) > 0. The latter holds if and
only if there is an index h such that h ≡ A mod D and densG(h) > 0. Since n0 | D, we
have gcd(h, n0) = gcd(A, n0), and hence by Theorem 11 we have that densG(h) is positive
if and only if densG(gcd(A, n0)) is positive.

Since the properties in (2) only depend on A modulo lcm(d, n0), we see that it actually
suffices to consider A modulo lcm(d, n0).

5 The Artin-type constants B�(r)

Let r ≥ 1 be an integer. Recall the Euler product definition (12) of Bχ (r). For r = 1 this was
introduced in [11, Sec. 6] and denoted by Bχ , along with a variant Aχ , where p is restricted
to those primes for which χ(p) 	= 0. We have

Bχ (1) = Aχ

∏

p|d

(

1 − 1

p(p − 1)

)

,

where d is the modulus of the character. Note that Aχ = 1 in case χ is the principal character.
If χ0 is the principal character, then Bχ0(r) is a rational number. This leaves at most

ϕ(d ′) − 1 linearly independent Artin-type constants, with d ′ = d/(a, d). For example, in
case d ′ = 3 and d ′ = 4 only one Artin-type constant is involved. They are real numbers. As
an illustration we point out the result that the average density of elements of multiplicative
order ±1 mod 3 equals 5

16 ± 3
10 Bχ3(1), where χ3 is the non-principal character modulo 3

and Bχ3(1) = 5
6 Aχ3 = 0.1449809353580 . . ., see [11].

Approximating the numerical value of Bχ (r) by computing partial Euler products, gives
a quite poor accuracy. The following result allows us to do rather better and generalizes [11,
Thm.6] to arbitrary r . It involves special values of Dirichlet L-series. Recall that for�(s) > 1
and χ a Dirichlet character, we have

L(s, χ) =
∞∑

n=1

χ(n)

ns
=

∏

p

(

1 − χ(p)

ps

)−1

.
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Theorem 16 Let p1(= 2), p2, . . . denote the sequence of consecutive primes and χ be any
Dirichlet character. Put

�r = Ar L(r + 1, χ)L(r + 2, χ)L(r + 3, χ).

Then

Bχ (r) = Er ,n �r

n∏

k=1

(

1 + χ(pk)

pk(p
r+1
k − prk − 1)

) (

1 − χ(pk)

pr+2
k

) (

1 − χ(pk)

pr+3
k

)

with

1 − 1

pr+2
n+1

≤ |Er ,n | ≤ 1 + 1

pr+2
n+1

,

provided that r = 1 and pn+1 ≥ 5, or r = 2 and pn+1 ≥ 3.

Proof Recall the definition (14) of Ar . Noting that

(1 − ytr+1)

⎛

⎝
1 + (y−1)tr+1

(1−ytr+1)(1−t)

1 − tr+1

1−t

⎞

⎠ = 1 + ytr+2

1 − t − tr+1 ,

we obtain

Bχ (r) = Ar L(r + 1, χ)

∞∏

k=1

(

1 + χ(pk)

pk(p
r+1
k − prk − 1)

)

, (17)

on setting y = χ(pk) and t = 1
pk
. We rewrite the infinite product as

L(r + 2, χ)L(r + 3, χ)

∞∏

k=1

(

1 + χ(pk)

pk(p
r+1
k − prk − 1)

) (

1 − χ(pk)

pr+2
k

) (

1 − χ(pk)

pr+3
k

)

in order to improve its convergence. Denoting the k-th term in the infinite product by Pr ,k ,
we see that (17) holds with Er ,n = ∏

k≥n+1 Pr ,k .
It remains to estimate the relative error Er ,n (which in general is a complex number).

Multiplying out

(1 − t − tr+1 + ytr+2)(1 − ytr+2)(1 − ytr+3)/(1 − t − tr+1)

gives

1 + ytr+4

1 − t − tr+1

(
1 + tr−1 + (1 − y)tr − ytr+2 − yt2r+2 + y2t2r+3

)
,

and leads to the estimate

|Pr ,k | ≤ 1 + tr+3Gr (t),

with

Gr (t) = t(1 + tr−1 + 2tr + tr+2 + t2r+2 + t2r+3)

1 − t − tr+1

and t = 1
pk
. Note that Gr (t) is increasing in t and decreasing in r in the region 0 < t < 1

and r ≥ 1. Thus

|Pr ,k | ≤ 1 + p−r−3
k Gr (p

−1
k ) ≤ 1 + p−r−3

k Gr (p
−1
n+1) for every k ≥ n + 1.
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14 P. Moree et al.

Table 1 Examples of densities densG (a, 5) with K = Q(
√
5)

G densG (0, 5) densG (1, 5) densG (2, 5) densG (3, 5) densG (4, 5)
P0,5(10

6)

πK (106)
P1,5(10

6)

πK (106)
P2,5(10

6)

πK (106)
P3,5(10

6)

πK (106)
P4,5(10

6)

πK (106)

〈 1+
√
5

2 〉 0.100000 0.418205 0.296724 0.0950872 0.0899840

0.100093 0.419351 0.296954 0.0947177 0.0888838

〈− 5+√
5

2 〉 0.100000 0.451872 0.266393 0.0995570 0.0821785

0.099787 0.450979 0.267518 0.0996599 0.0820564

As t tends to zero, Gr (t) tends to zero, and so we can choose n so large that Gr (p
−1
n+1) ≤ 1.

Now

|Er ,n | =
∏

k≥n+1

|Pr ,k | <
∏

p>pn

(

1 + 1

pr+3

)

< 1 +
∑

m>pn

1

mr+3 .

Comparing the sum with an integral leads to the final estimate

|Er ,n | ≤ 1 + 1

pr+3
n+1

+
∫ ∞

pn+1

dz

zr+3 ≤ 1 + 1

pr+2
n+1

,

where the sum is over the integers m > pn . Similarly,

|Er ,n | >
∏

p>pn

(

1 − 1

pr+3

)

> 1 −
∑

m>pn

1

mr+3 > 1 − 1

pr+2
n+1

.

Some calculus shows that Gr (
1
p ) ≤ 1 if and only if r = 1 and p ≥ 5 or r ≥ 2 and p ≥ 3.

The proof is now completed on invoking the if-part of this statement.

Remark 17 In the proof of [11, Thm.6] there are a few typos:
For “2 + 2t + t3 + t5” read “2 + 2t + t3 + t4 + t5”.
For “t ≥ 127” read “t ≤ 1/127”.
For “pn+!” read “pn+1”.

6 Two examples

In this section we demonstrate our results by two relatively easy, but illustrative, examples
for K = Q(

√
5), r = 1 and d = 5. Some examples for the same r and d values, but with

K = Q are given in Moree [13, Table 2].
In Table 1 we denote by Pa,d(x) the number of primes p of K of norm up to x such that

indp(G) ≡ a mod d , and by πK (x) the number of primes p of K with norm up to x . The top
row gives the theoretical density, the second row an experimental approximation (both with
rounding of the final decimal).

We will now treat these two examples without using the machinery of Sect. 3 (however,
with complicated enough examples this becomes unavoidable). Our approach requires some
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Table 2 The constants Bχ (1) for d = 5

χ Bχ (1)

ψ 0.34645514515465 . . . + i · 0.21283903970350 . . .

ψ2 0.12284254160167 . . .

ψ3 0.34645514515465 . . . − i · 0.21283903970350 . . .

ψ4 0.95

further notation. Given a divisor δ of an integer d1, we put

ρδ,d1(a, d) :=
∑

t≡a mod d

∑

v≥1
(v,d1)=δ

μ(v)

vtϕ(vt)
.

6.1 First example

Proposition 18 Set K = Q(
√
5) and G = 〈 1+

√
5

2 〉. We have

densG(0, 5) = 1

10
= 2ρ(0, 5)

and, for 1 ≤ a ≤ 4, assuming GRH,

densG(a, 5) = 18

19
ρ(a, 5) = 9

38

(
19

20
+ ψ(a)Bψ(1) + ψ(a)Bψ3(1) + ψ2(a)Bψ2(1)

)

.

Proof The first claim follows from (16) and Proposition 9. Next assume that 1 ≤ a ≤ 4. We
have ρ(a, 5) = ρ1,5(a, 5) + ρ5,5(a, 5). If 5 � t , then

∑

5|v

μ(v)

vtϕ(vt)
=

∑

w

μ(5w)

5wtϕ(5wt)
= − 1

20

∑

5�w

μ(w)

wtϕ(wt)
.

We conclude that ρ5,5(a, 5) = − 1
20ρ1,5(a, 5). It thus follows that ρ1,5(a, 5) = 20

19ρ(a, 5)
and ρ5,5(a, 5) = − 1

19ρ(a, 5). Since the degree [Kn,n : K ] equals ϕ(n)n if 5 � n and 1
2nϕ(n)

otherwise, we infer that densG(a, 5) = ρ1,5(a, 5) + 2ρ5,5(a, 5) = 18
19ρ(a, 5). The proof is

completed on invoking (15) and noting that ψ2(a) is real and ψ3(a) = ψ(a).

Approximations to Bχ (1) can be found in Table 2, where ψ denotes the character modulo
5 determined uniquely by ψ(2) = i .

The character group has ψ,ψ2, ψ3 and ψ4 as elements, with ψ4 being the principal
character. The table is taken from [11, Table 3], where for d ≤ 12 further approximations can
be found. It was kindly verified by Alessandro Languasco using Theorem 16 with n = 106.

6.2 Second example

Proposition 19 Set K = Q(
√
5) and G = 〈− 5+√

5
2 〉. Let 1 ≤ a ≤ 4. One of a and a + 5 is

even. Denoting this number by a1, assuming GRH, we have

densG(a, 5) = 20

19
ρ(a, 5) − 4

19
ρ(a1, 10).
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16 P. Moree et al.

Furthermore, densG(0, 5) = 1
10 .

Proof Using (16) we see that densG(0, 5) = 1
10 . We will determine densG(a, 10) in case

5 � a. The result then follows on adding densG(a, 10) and densG(a + 5, 10).

Since Q

(√

− 5+√
5

2

)
= Q(ζ5), the degree [Kn,n : K ] equals ϕ(n)n if 5 � n, it equals

1
2nϕ(n) if (n, 10) = 5, and it equals 1

4nϕ(n) if 10 | n. These degree considerations lead to

densG(a, 10) =
{

ρ1,5(a, 10) + 4ρ5,5(a, 10) if 2 | a;
ρ1,5(a, 10) + 2ρ5,10(a, 10) + 4ρ10,10(a, 10) if 2 � a.

Reasoning as in the proof of Proposition 18 we deduce that ρ5,5(a, 10) = − 1
20ρ1,5(a, 10)

and ρ1,5(a, 10) = 20
19ρ(a, 10). It follows that densG(a, 10) = 4

5ρ1,5(a, 10) = 16
19ρ(a, 10) in

case a is even.
If a is odd, then so are the integers t ≡ a mod 10 and so ρ10,10(a, 10) = − 1

2ρ5,10(a, 10),
leading to densG(a, 10) = ρ1,5(a, 10). Reasoning as in the proof of Proposition 18, we then
deduce that densG(a, 10) = 20

19ρ(a, 10).

For reasons of space we refrain here from explicitly writing out densG(a, 5) as a linear
sum in the Bχ ’s, but we will indicate how this is done. For ρ(a, 5) we use (15). For a with
5 � a we have by [11, Prop. 6] with w = 5 and δ = 2,

ρ(2a, 10) = 3

8

∑

χ mod 5

χ(a)
Bχ (1)

2 + χ(2)
.
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