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Abstract
Let X be a K3 surface, let C be a smooth curve of genus g on X , and let A be a line bundle
of degree d on C . Then a line bundle M on X with M ⊗OC = A is called a lift of A. In this
paper, we prove that if the dimension of the linear system |A| is r ≥ 2, g > 2d −3+(r −1)2,
d ≥ 2r + 4, and A computes the Clifford index of C , then there exists a base point free lift
M of A such that the general member of |M | is a smooth curve of genus r . In particular,
if |A| is a base point free net which defines a double covering π : C −→ C0 of a smooth
curve C0 ⊂ P

2 of degree k ≥ 4 branched at distinct 6k points on C0, then, by using the
aforementioned result, we can also show that there exists a 2:1 morphism π̃ : X −→ P

2

such that π̃ |C = π .

Keywords K3 extension · LM bundle · Brill–Noether theory · Donagi–Morrison lift ·
Double covering

Mathematics Subject Classification 14J28 · 14J60 · 14H60

1 Introduction

Let C be a smooth projective curve of genus g. Then the Brill–Noether locus W r
d (C) con-

sisting of line bundles of degree d on C which have at least r +1 linearly independent global
sections has expected dimension ρ(g, r , d) = g − (r + 1)(g − d + r), where ρ(g, r , d) is
the Brill–Noether number. If C is a general curve in the moduli spaceMg of smooth curves
of genus g, there is no line bundle gr

d on C with ρ(g, r , d) < 0. Therefore, a smooth curve
which admits such a line bundle is called Brill–Noether special. In particular, if such a curve
C is contained in a K3 surface X , the problem of whether a line bundle on C with negative
Brill–Noether number is obtained by a restriction to C of a line bundle on X is interesting
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in the point of view of the knowledge of the relationship between the Brill–Noether theory
of polarized K3 surfaces and the Brill–Noether theory of smooth curves obtained as their
hyperplane sections.

Let X be a K3 surface, and let L be a base point free and big line bundle of sectional genus
g on X . Then the polarized K3 surface (X , L) is called Brill–Noether special if there exists a
non-trivial line bundle M on X with M �= L such that h0(M)h0(L ⊗ M∨) ≥ h0(L) = g +1.
If (X , L) is Brill–Noether special, then any smooth curve C ∈ |L| is Brill–Noether special.
Because, the Brill–Noether number of M ⊗ OC is negative. However, the converse is still
open.

Conjecture 1.1 Let (X , L) be a polarized K3 surface, and letC ∈ |L| be a smooth irreducible
curve. If C is Brill–Noether special, then (X , L) is Brill–Noether special.

The fact that if the Picard number of X is one, then Conjecture 1.1 is correct is known as a
classical result ([8]). Recently, it is known that Conjecture 1.1 is correct for several polarized
K3 surfaces of genus≤ 22 (cf. [1, Theorem 1.3], [5, Theorem 1], [6, Remark 1.4]). However,
in general, it is difficult to discriminate whether (X , L) is Brill–Noether special for a given
polarized K3 surface (X , L).

For a line bundle A on a smooth curveC contained in a K3 surface X , we call a line bundle
M on X with M ⊗OC = A a lift of A. If the Brill–Noether number of A is negative, and there
exists a lift M of A satisfying h0(M) ≥ 2, h0(L ⊗ M∨) ≥ 2, and h1(L ⊗ M∨) = h1(M) = 0,
then (X , L) is Brill–Noether special. However, the existence of such a lift can not always
be expected. Thus, Donagi and Morrison have introduced a weak notion of a lift. If a line
bundle M on X satisfies the following conditions, we say that M is adapted to |L|.
• h0(M) ≥ 2 and h0(L ⊗ M∨) ≥ 2;
• Cliff(M ⊗ OC ) is independent of the smooth curve C ∈ |L|, where Cliff(A) is the

Clifford index of a line bundle A on C (see Notations and conventions for the definition
of the Clifford index of a line bundle on a curve).

We note that deg(M ⊗OC ) ≤ g −1 or deg(L ⊗ M∨ ⊗OC ) ≤ g −1, and that if a line bundle
A on C satisfies h0(A) ≥ 2 and deg(A) ≤ g − 1, then A contributes to the Clifford index of
C . Donagi and Morrison have conjectured the following.

Conjecture 1.2 Let (X , L) be a polarized K3 surface, and let C ∈ |L| be a smooth curve of
genus g ≥ 2. If a base point free line bundle A on C satisfying deg(A) ≤ g −1 has a negative
Brill–Noether number, then there exists a line bundle M on X adapted to |L| which satisfies
the following conditions.

• |A| is contained in the restriction of |M | to C ;
• Cliff(M ⊗ OC ) ≤ Cliff(A).

The line bundle M on X as in Conjecture 1.2 is called a Donagi–Morrison lift. Lelli-Chiesa
gave a necessary and sufficient condition for A to have a Donagi–Morrison lift, in the case
where L is ample and A computes the Clifford index of C ([9, Theorem 1.1]). However, if
L is not ample, the existence of such a lift is still not mentioned. In this paper, we show that
any line bundle A which computes the Clifford index of a smooth curve C ∈ |L| has a lift,
under some strong conditions concerning the degree of A and the genus g of C , in the case
where L is not necessarily ample. Our main result is the following.

Theorem 1.1 Let X be a K3 surface, let C be a smooth curve of genus g on X, and let A be
a complete linear system of dimension r ≥ 2 on C with g > 2 deg(A) − 3 + (r − 1)2 and
deg(A) ≥ 2r + 4. If Cliff(A) = Cliff(C), then there exists a smooth curve B of genus r on
X with |OC (B)| = A. In particular, the consequence of Conjecture 1.2 is correct.
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Lifts of line bundles… 97

If A is a base point free pencil of degree d on a smooth curve C ∈ |L| of genus g, and

g > d2

4 + d + 2, then there exists an elliptic curve � on X such that OX (�) is a lift of
A ([10, Theorem 1]). Hence, the consequence of Conjecture 1.2 holds for A. On the other

hand, there exists a smooth curve C of genus g = d2

4 + d + 2 on a K3 surface X admitting
a base point free pencil of degree d on C which does not have such a lift. Indeed, we can
construct a double covering π : C −→ C0 of a smooth plane curve C0 of degree k ≥ 4
branched at distinct 6k points on C0 as such a curve (Proposition 5.2). Then C has a gonality
pencil which admits no lift, and since C is a smooth curve of genus g = k2 + 1 and gonality

d = 2k − 2, we have g = d2

4 + d + 2. By Theorem 1.1, if the double covering π is the
morphism associated with a net Z on C , there exists a lift M of Z defined by a smooth curve
of genus 2 on X (Proposition 5.4). Hence, it turns out that the morphism π̃ : X −→ P

2

associated with such a lift M is a 2:1 map with π̃ |C = π .
Our plan of this paper is as follows. In Sect. 2,we recall some fundamental facts concerning

vector bundles on K3 surfaces. In Sect. 3, we recall the definition of the Lazarsfeld-Mukai
bundle associated with a smooth curve on a K3 surface and a base point free linear system
on it, and several known results about it. In Sect. 4, we prove Theorem 1.1. In Sect. 5,
we compute the maximum genus of smooth curves on K3 surfaces which are obtained as
double coverings of smooth plane curves. Moreover, we characterize such double coverings
of maximum genus.
Notations and conventions. We work over the complex number field C. In this paper, a
curve and a surface are smooth and projective. Let X be a curve or a surface. We denote by
K X the canonical line bundle of X . If two divisors D1 and D2 on X are linearly equivalent,
then we will write as D1 ∼ D2. We denote by |L| the linear system associated with a divisor
or a line bundle L on X . We call a linear system of dimension one a pencil, and call a linear
system of dimension two a net. For a torsion free sheaf E on X , we denote the rank of E , the
dual of E , and the i-th Chern class of E , by rk(E), E∨, and ci (E), respectively.

Let C be a curve. Then the gonality of C is the minimum degree of pencils on C , and we
denote it by gon(C).We note that the gonality of a smooth plane curve of degree k ≥ 4 is k−1.
We say that a base point free line bundle A onC is primitive if |KC ⊗A∨| is base point free. For
a line bundle A on C , we denote the Clifford index of A by Cliff(A) := deg(A) − 2 dim |A|.
We say that A contributes to the Clifford index of C if h0(A) ≥ 2 and h1(A) ≥ 2. Then the
Clifford index ofC is theminimumvalue of theClifford indices of such line bundles onC , and
we denote it by Cliff(C). We note that gon(C) − 3 ≤ Cliff(C) ≤ gon(C) − 2. The Clifford
dimension of C is the minimum dimension of complete linear systems on C which compute
the Clifford index of C . If the Clifford dimension of C is one, then Cliff(C) = gon(C) − 2.

Let X be a surface. Then we denote by Pic(X) the Picard group of X , and call its rank the
Picard number of X . We denote by JW the ideal sheaf of a subscheme W of X . X is called a
regular surface if h1(OX ) = 0. Moreover, if K X is trivial, then we call X a K3 surface. We
call a K3 surface containing a smooth curve C a K3 extension of C .

2 Vector bundles on K3 surfaces

In this section, we recall several classical results about vector bundles on K3 surfaces. Let
X be a K3 surface, and let E be a vector bundle on X . First of all, by the Riemann-Roch
theorem, we obtain the following equality.
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98 K. Watanabe, J. Komeda

χ(E) = 2 rk(E) + c1(E)2

2
− c2(E),

where χ(E) = h0(E) − h1(E) + h2(E). Since K X is trivial, by the Serre duality, we have

hi (E) = h2−i (E∨) (0 ≤ i ≤ 2).

In particular, if D is a divisor on X , then

hi (OX (D)) = h2−i (OX (−D)) (0 ≤ i ≤ 2).

Hence, if D2 ≥ −2, then h0(OX (D)) > 0 or h0(OX (−D)) > 0. If D is a non-zero effective
divisor on X , then D2 = 2Pa(D) − 2, by the adjunction formula, where Pa(D) is the
arithmetic genus of D.

Proposition 2.1 ([11, Proposition 2.6]). Let L be a non-trivial line bundle on X. If |L| �= ∅
and |L| has no fixed component, then one of the following cases occurs.

(i) L2 > 0 and the general member of |L| is a smooth irreducible curve of genus L2

2 + 1. In
this case, h1(L) = 0.

(ii) If L2 = 0, then there exist an elliptic curve � on X and an integer k ≥ 1 satisfying
L ∼= OX (k�). In this case, h1(L) = k − 1.

If C is an irreducible curve on X with C2 ≥ 0, then |C | has no base point ([11, Theorem
3.1]). Therefore, by Proposition 2.1, we obtain the following proposition.

Proposition 2.2 ([11, Corollary 3.2]). Let L be a non-trivial line bundle on X with |L| �= ∅.
Then |L| has no base point outside of its fixed components.

Note that if a non-trivial line bundle L on X with |L| �= ∅ has no base point, then it is nef.

3 Lazarsfeld–Mukai bundles on K3 surfaces

In this section, we recall the definition of a Lazarsfeld-Mukai bundle, and several important
results about it. Let X be a K3 surface, and let C be a smooth curve of genus g ≥ 2 on X . Let
Z be a non-zero effective divisor of degree d on C such that |Z | has no base point, and let
V ⊂ H0(OC (Z)) be a subspace which forms a base point free linear system of dimension
r ≥ 1 on C . Then we denote by EC,(Z ,V ) the dual of the kernel of the evaluation map
V ⊗OX −→ OC (Z). We call it the Lazarsfeld-Mukai (LM for short) bundle on X associated
with (Z , V ). In particular, there exists the following exact sequence.

0 −→ V ∨ ⊗ OX −→ EC,(Z ,V ) −→ KC ⊗ OC (−Z) −→ 0.

Here, we note that V ∨ defines an (r + 1)-dimensional subspace of H0(EC,(Z ,V )). Since
(Z , V ) has no base point, the evaluation map associated with it is surjective, and hence,
EC,(Z ,V ) is locally free. If V = H0(OC (Z)), then we denote its LM bundle merely by EC,Z .
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Lifts of line bundles… 99

Proposition 3.1 ([9, Proposition 2.1]). Any LM bundle EC,(Z ,V ) on X has the following
properties.

(i) rk EC,(Z ,V ) = r + 1, c1(EC,(Z ,V )) = OX (C), and c2(EC,(Z ,V )) = d.
(ii) h1(EC,(Z ,V )) = h0(OC (Z)) − r − 1, and h2(EC,(Z ,V )) = 0.
(iii) EC,(Z ,V ) is globally generated off the set of base points of |KC ⊗ OC (−Z)|.
(iv) χ(E∨

C,(Z ,V ) ⊗ EC,(Z ,V )) = 2(1 − ρ(g, r , d)).

If OC (Z) computes the Clifford index of C , it is primitive. Then, by the assertion (iii) as in
Proposition 3.1, EC,(Z ,V ) is generated by its global sections. Moreover, if V = H0(OC (Z)),
then, by the assertion (ii), we have h1(EC,Z ) = h2(EC,Z ) = 0. We obtain the following
characterization.

Proposition 3.2 ([2, Lemma 1.2]). If a vector bundle E on X satisfying h1(E) = h2(E) = 0
is globally generated, then E is the LM bundle EC,Z associated with a smooth curve C on
X and a base point free effective divisor Z on C.

By the assertion (iv) as in Proposition 3.1, if ρ(g, r , d) < 0, then EC,(Z ,V ) is not simple.
Therefore, there exists a non-zero morphism f ∈ End(EC,(Z ,V )) dropping the rank every-
where. Moreover, if r = 1 (i.e., rk EC,(Z ,V ) = 2), then, by the assertion (ii) and (iii), the
image of f is a torsion free sheaf of rank one on X whose first Chern class is not trivial and
base point free. In particular, the following assertion follows.

Proposition 3.3 ([2, Lemma 2.1], [3, Lemma 4.4]). Assume that the rank of EC,(Z ,V ) is two.
If ρ(g, 1, d) < 0, then there exist two line bundles M, N ∈ Pic(X) satisfying h0(M) ≥ 2,
h0(N ) ≥ 2, and M2 ≥ N 2, and a zero-dimensional subscheme W ⊂ X such that N has no
base point and EC,(Z ,V ) sits in the following exact sequence.

0 −→ M −→ EC,(Z ,V ) −→ N ⊗ JW −→ 0.

By the assertion of (ii) and (iii) as in Proposition 3.1, the definition of a LM bundle on X can
be generalized as follows.

Definition 3.1 ([9, Definition 1]). Let E be a torsion free sheaf on X with h2(E) = 0. If one
of the following conditions is satisfied, E is called a generalized Lazarsfeld-Mukai (g.LM
for short) bundle on X .

(i) E is a locally free sheaf which is globally generated off a finite set.
(ii) E is globally generated.

Next we recall the following result about a g.LM bundle E on X with c1(E)2 = 0.

Proposition 3.4 ([9, Proposition 2.7]). Let E be a g.LM bundle on X with c1(E)2 = 0.
Then E is a locally free sheaf with c2(E) = 0 generated by its global sections. Moreover, if
h1(E) = 0, then there exists an elliptic curve � on X satisfying E = OX (�)⊕ rk E .

Since, by Proposition 3.1 (i), Cliff(OC (Z)) = c2(EC,Z )−2(rk E(C,Z)−1), we can generalize
the notion of the Clifford index of a smooth curve on X as follows, by using the notion of a
g.LM bundle on X .

Definition 3.2 ([9, Definition 2]). We denote the Clifford index of a g.LM bundle E on X by
Cliff(E) := c2(E) − 2(rk E − 1).
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100 K. Watanabe, J. Komeda

If E is a g.LM bundle on X , then h2(E∨∨) = 0 and E∨∨ is globally generated off a finite set,
and hence, E∨∨ is also a g.LM bundle on X . Moreover, we obtain the following proposition.

Proposition 3.5 ([9, Proposition 2.4]). Let E be a g.LM bundle on X with c1(E)2 > 0. Then
the following are satisfied:

(i) If E is of type (i) as in Definition 3.1, then Cliff(E) ≥ 2h1(E).
(ii) If E is of type (ii) as in Definition 3.1, then Cliff(E) ≥ Cliff(E∨∨).

4 Proof of Theorem 1.1

Let X be a K3 surface, let C be a smooth curve of genus g on X , and let A be a line bundle
of degree d on C such that dim |A| = r ≥ 2, g > 2d − 3 + (r − 1)2, and d ≥ 2r + 4. Then
we note that ρ(g, r , d) < 0 and d < g − 1. From now on, we assume that A computes the
Clifford index of C , and let Z be an effective divisor on C satisfying A = OC (Z).

Lemma 4.1 Let EC,Z be the LM bundle on X associated with C and Z. Then there exist a
torsion free sheaf F of rank r on X generated by its global sections, and a saturated line
bundle M ⊂ EC,Z such that h0(M) ≥ 2 and EC,Z sits in the following exact sequence.

0 −→ M −→ EC,Z −→ F −→ 0. (1)

Proof First of all, since A computes the Clifford index of C , A is base point free and prim-
itive. By Proposition 3.1, EC,Z is globally generated. Here, we show that EC,Z contains
a line bundle on X which has at least two linearly independent global sections. We take a
general subspace V ∈ Grass(2, H0(A)), where Grass(t, H0(A)) is the Grassmann manifold
consisting of t-dimensional subspaces of H0(A). Then it forms a base point free pencil |V |
on C . We set

FC,Z := ker(ev : H0(A) ⊗ OX −→ A),

FC,(Z ,V ) := ker(ẽv : V ⊗ OX −→ A),

where ev and ẽv are the evaluation maps associated with H0(A) and V , respectively. Since
|V | has no base point, FC,(Z ,V ) is locally free. Since ev|V ⊗OX = ẽv, we have FC,(Z ,V ) ⊂
FC,Z . By the snake lemma, we have FC,Z /FC,(Z ,V )

∼= O⊕r−1
X . Since EC,Z = F∨

C,Z and
EC,(Z ,V ) = F∨

C,(Z ,V ), we have the following exact sequence.

0 −→ O⊕r−1
X −→ EC,Z −→ EC,(Z ,V ) −→ 0. (2)

By the hypothesis, we have ρ(g, 1, d) = 2d − g − 2 < 1 − (r − 1)2. By Proposition 3.1,
we have h0(FC,(Z ,V ) ⊗ EC,(Z ,V )) ≥ 1 − ρ(g, 1, d) ≥ 1 + (r − 1)2. If we apply the functor
⊗FC,(Z ,V ) to the exact sequence (2), we have the following exact sequence.

0 −→ F⊕r−1
C,(Z ,V ) −→ FC,(Z ,V ) ⊗ EC,Z −→ FC,(Z ,V ) ⊗ EC,(Z ,V ) −→ 0.

Since h1(EC,Z ) = h2(EC,Z ) = 0, we get h1(FC,(Z ,V )) = h1(EC,(Z ,V )) = r − 1,
by the sequence (2). We have h1(F⊕r−1

C,(Z ,V )) ≤ (r − 1)2. Since h0(FC,(Z ,V )) = 0, we

have h0(FC,(Z ,V ) ⊗ EC,Z ) ≥ h0(FC,(Z ,V ) ⊗ EC,(Z ,V )) − (r − 1)2 ≥ 1. Here, let
f ∈ Hom(EC,(Z ,V ), EC,Z ) be a non-zero map.
If we assume that the rank of f is one, then there exist N ∈ Pic(X) and a zero-dimensional

subscheme W ⊂ X such that the image of f coincides with N ⊗ JW . Since, by Proposition
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Lifts of line bundles… 101

3.1, EC,(Z ,V ) is globally generated, |N | is base point free.Moreover, since h2(EC,(Z ,V )) = 0,
N is not trivial, and hence, h0(N ) ≥ 2. Since (N ⊗JW )∨∨ ⊂ E∨∨

C,Z and (N ⊗JW )∨∨ = N ,
we have N ⊂ EC,Z .

Assume that the rank of f is two. Since ρ(g, 1, d) < 0, by Proposition 3.3, there exist line
bundles M, N ∈ Pic(X) and a zero-dimensional subscheme W ⊂ X such that h0(M) ≥ 2,
h0(N ) ≥ 2, and EC,(Z ,V ) sits in the following exact sequence.

0 −→ M −→ EC,(Z ,V ) −→ N ⊗ JW −→ 0.

Since f is injective, we have M ⊂ EC,Z .
In any case, if we take a line bundle M on X to be the saturation of the sub line bundles

of EC,Z found above, and set F = EC,Z /M , then F is a torsion free sheaf of rank r on X
generated by its global sections. �

Lemma 4.2 Keeping the notation from Lemma 4.1, there exist a smooth curve B on X, and
an effective divisor Z

′
of degree 2r − 2 on B which forms a base point free linear system of

dimension r − 1 on B such that F ∼= EB,Z ′ . Moreover, h1(M) = 0.

Proof The torsion free sheaf F on X as in Lemma 4.1 sits in the following exact sequence.

0 −→ F −→ F∨∨ −→ S −→ 0, (3)

where S is a coherent sheaf of finite length on X . We set c1(F∨∨) = N and let W be the
support of S. Then, by [4, (0.3)], we have

c2(EC,Z ) = deg Z = d = M .N + �(W ) + c2(F∨∨), (4)

where �(W ) is the length of W . Since h2(EC,Z ) = 0, by the exact sequence (1), we have
h2(F) = 0. Moreover, by the sequence (3), we have h2(F∨∨) = 0. On the other hand, since
h1(EC,Z ) = 0, by the exact sequence (1), we have h1(F) = 0. Since F is generated by its
global sections, N is base point free. Indeed, since c1(F∨∨) = det(F∨∨) is base point free
off the set W , by Proposition 2.2, it is base point free everywhere.

Assume that N 2 = 0. By Proposition 3.4, there exists an elliptic curve � on X such that
F = F∨∨ ∼= OX (�)⊕r . Then we have c2(F∨∨) = 0 and �(W ) = 0. Since N ∼= OX (r�),
deg(OC (r�)) = M .N = d . Since h0(OC (�)) ≥ 2 and gon(C) ≥ d − 2r + 2, we have
d − 2r + 2 ≤ deg(OC (�)) = d

r . However, this contradicts the assumption d ≥ 2r + 4.
Hence, we have

N 2 > 0. (5)

On the other hand, since h0(M) ≥ 2 and h0(N ) ≥ 2, M ⊗OC contributes to the Clifford
index of C . Since N has no base point, by the inequality (5) and Proposition 2.1, we have
h1(N ) = 0, and hence, we have h0(N ⊗OC ) = h0(N ) + h1(M). Therefore, by the equality
(4), we have
d − 2r = Cliff(C) ≤ Cliff(M ⊗ OC ) = Cliff(KC ⊗ M∨) = Cliff(N ⊗ OC )

= N .C − 2(h0(N ) + h1(M) − 1)
= N .C − N 2 − 2 − 2h1(M) = M .N − 2 − 2h1(M)

= d − �(W ) − c2(F∨∨) − 2 − 2h1(M).
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102 K. Watanabe, J. Komeda

Hence, we have

�(W ) + c2(F∨∨) + 2h1(M) ≤ 2r − 2. (6)

Since h2(F∨∨) = 0 and F∨∨ is globally generated off a finite set, by the inequality (5) and
Proposition 3.5, we have c2(F∨∨) ≥ 2r − 2. By the inequality (6), we obtain �(W ) = 0,
h1(M) = 0, c2(F∨∨) = 2r − 2 and h1(F∨∨) = 0. Moreover, since F = F∨∨, F∨∨ is
globally generated. By Proposition 3.2, there exist a smooth curve B ∈ |N | and an effective
divisor Z

′
of degree 2r −2 on B such that |Z ′ | is a base point free linear system of dimension

r − 1 on B, and F∨∨ ∼= EB,Z ′ . �
Lemma 4.3 In the above situation, the genus of B is r or r − 1.

Proof Let g(B) be the genus of B, and let Z
′
be as in Lemma 4.2. Since h0(OB(Z

′
)) = r ,

by the Riemann-Roch theorem, we have g(B) = r − 1+ h1(OB(Z
′
)) ≥ r − 1. Assume that

g(B) > r . Then OB(Z
′
) contributes to the Clifford index of B. Since Cliff(OB(Z

′
)) = 0,

we have Cliff(B) = 0. By [7, Theorem 2, Proposition 4.1], B is a hyperelliptic curve. Since
r ≥ 2, we have g(B) ≥ 3. By [11, Theorem 5.2], one of the following cases occurs.

(i) There exists a smooth genus 2 curve B0 on X such that B ∼ 2B0.
(ii) There exists an elliptic curve � on X such that B.� = 2.

We consider the case of (i). First of all, we have B2 = 8. Since c1(F) = OX (B), we obtain
C ∼ M + B. By Lemma 4.1, Lemma 4.2, and the equality (4), we have M .B = d − 2r + 2.
Hence, C .B = M .B + B2 = d − 2r + 10. Since h0(OC (B0)) ≥ 3 and

h0(KC ⊗ OC (−B0)) = h0(OX (C − B0)) > h0(M) ≥ 2,

OC (B0) contributes to the Clifford index of C . Since deg(OC (B0)) = d
2 − r + 5, we have

d − 2r ≤ Cliff(OC (B0)) ≤ d
2 − r + 1. Therefore, we have d ≤ 2r + 2. However, this

contradicts the hypothesis d ≥ 2r + 4.
We consider the case of (ii). Since B2 is even and B2 ≥ 4, there exists a natural number

s ∈ N such that B2 = 4s or 4s + 2. Then we have (B − s�)2 = B2 − 4s ≥ 0 and
�.(B −s�) = 2 > 0. Since� is nef, we have h0(OX (B −s�)) ≥ 2. By the exact sequence

0 −→ OX (−s�) ⊗ M∨ −→ OX (B − s�) −→ OC (B − s�) −→ 0,

we have h0(OC (B − s�)) ≥ h0(OX (B − s�)) ≥ χ(OX (B − s�)) = B2

2 − 2 s + 2. Since
Cliff(OC (B − s�)) ≥ d − 2r and h0(OC (B − s�)) ≥ 2, we have

C .(B − s�) − (d − 2r + 2) ≥ h0(OC (B − s�)) − 2 ≥ B2

2
− 2s.

Since C .B = B2 + B.M = B2 + d − 2r + 2 and B.� = 2, we obtain B2 ≥ 2s M .�. Hence,
we have

M .� ≤ 3. (7)

On the other hand, since �.(� − C) = −�.C < 0, we have h0(OX (� − C)) = 0, and
hence, by the exact sequence

0 −→ OX (� − C) −→ OX (�) −→ OC (�) −→ 0,

we have h0(OC (�)) ≥ h0(OX (�)) = 2. Since Cliff(OC (�)) ≥ d − 2r , we have C .� ≥
d − 2r + 2, and hence, M .� ≥ d − 2r . By the inequality (7), we have d ≤ 2r + 3. This
contradicts the hypothesis d ≥ 2r +4. By the above observation, we have g(B) = r or r −1.
�
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Proof of Theorem 1.1 If we apply the functor ⊗M∨ to the exact sequence

0 −→ H0(A)∨ ⊗ OX −→ EC,Z −→ KC ⊗ A∨ −→ 0,

we obtain the exact sequence

0 −→ H0(A)∨ ⊗ M∨ −→ EC,Z ⊗ M∨ −→ N ⊗ OC ⊗ A∨ −→ 0.

Since, by Lemma 4.2, h1(M) = 0, we have h0(N ⊗ OC ⊗ A∨) = h0(EC,Z ⊗ M∨). On
the other hand, since M ⊂ EC,Z , we have h0(EC,Z ⊗ M∨) > 0. In particular, we have
N .C ≥ deg(A). By Lemma 4.2, the first Chern class N of the sheaf F which appears in the
exact sequence (1) coincides withOX (B). Since, by Lemma 4.3, B2 = 2r − 2 or 2r − 4, we
obtain

deg(A) = M .N + 2r − 2 ≥ M .N + N 2 = N .C = deg(OC (B)).

Therefore, we have N ⊗ OC ∼= A, and the genus of B is r . �

Corollary 4.1 Let X be a K3 surface, and let C be a smooth curve of genus g on X. We set
L = OX (C). If there exists a complete linear system A of degree d and dimension r ≥ 2 on
C which computes the Clifford index of C such that g > 2d − 3+ (r − 1)2 and d ≥ 2r + 4,
then the polarized K3 surface (X , L) is Brill–Noether special.

Proof By Theorem 1.1, there exists a base point free line bundle B of sectional genus r on
X satisfying |B ⊗ OC | = A. Since B is nef and d ≥ 2r + 4, by the Serre duality, we have
h2(L ⊗ B∨) = 0. By the Riemann-Roch theorem, we have h0(L ⊗ B∨) ≥ g −d + r . Hence,
we have

h0(B)h0(L ⊗ B∨) − h0(L) ≥ (r + 1)(g − d + r) − g − 1 = −ρ(g, r , d) − 1 > 0.

Therefore, we obtain the consequence. �

5 Double coverings of plane curves admitting K3 extensions

In this section, we compute the maximum genus of double coverings of smooth plane curves
contained in K3 surfaces. Moreover, we characterize such double coverings of maximum
genus. First of all, we prove the following proposition.

Proposition 5.1 Let π : C −→ C0 be a double covering of a smooth plane curve C0 of
degree k ≥ 3, and let g be the genus of C. If C is contained in a K3 surface, then g ≤ k2 +1.

Proof Let d be the gonality of C , and let g0 be the genus of C0. Since the gonality of C0

is k − 1, we have d ≤ 2k − 2. Assume that g > k2 + 1. Since g0 = 1
2 (k − 1)(k − 2), we

have d < g − 2g0. Hence, by the inequality of Castelnuovo-Severi, any gonality pencil g1
d

on C is of the form π∗g1
e for some g1

e on C0. Since e ≥ k − 1, we have d = 2k − 2. Since

k2 + 1 = d2

4 + d + 2, any gonality pencil on C has a lift, by [10, Theorem 1]. However,
since dim W 1

d (C) > 0 and any K3 surface has at most countably many elliptic pencils, this
is a contradiction. �
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Proposition 5.2 Let C0 be a smooth plane curve of degree k ≥ 3. Then there exists a double
covering C of genus g = k2 + 1 of C0 which has a K3 extension.

Proof Let D ⊂ P
2 be a smooth curve of degree six which intersects transversely with C0 at

distinct 6k points, and let π̃ : X −→ P
2 be a double covering branched along D. Moreover,

let C be the fiber product of ι : C0 ↪→ P
2 and π̃ . Then C is a double covering of C0 branched

at D ∩ C0. By the Hurwitz formula, the genus of C is k2 + 1. �

By Proposition 5.2, the maximum genus g of double coverings of smooth plane curves which

have K3 extensions is d2

4 +d +2, where d is the gonality of such a double covering which has

the maximum genus g. Conversely, any smooth curve C of genus g = d2

4 + d + 2 contained
in a K3 surface admitting a base point free pencil of degree d ≥ 4 which has no lift can be
characterized as follows.

Proposition 5.3 Let X be a K3 surface, and let C be a smooth curve of genus g on X. Assume
that there exists a base point free divisor Z of degree d ≥ 4 on C such that OC (Z) is a pencil

on C which has no lift, and g = d2

4 + d + 2. Then there exists a smooth genus 2 curve B on
X with C ∼ k B, where k is an integer with d = 2k − 2.

Proof Since ρ(g, 1, d) < 0, the LM bundle EC,Z on X associated with C and Z is not
simple. By Proposition 3.3, there exist line bundles M, N ∈ Pic(X) satisfying M2 ≥ N 2,
h0(M) ≥ 2, and h0(N ) ≥ 2, and a zero-dimensional subscheme W ⊂ X such that N is base
point free and EC,Z sits in the following exact sequence.

0 −→ M −→ EC,Z −→ N ⊗ JW −→ 0. (8)

Lemma 5.1 The line bundle N on X which appears in the exact sequence (8) satisfies N 2 > 0.

Proof Since h0(M∨) = 0, if we apply the functor ⊗M∨ to the exact sequence

0 −→ H0(OC (Z))∨ ⊗ OX −→ EC,Z −→ KC ⊗ OC (−Z) −→ 0,

we have h0(N ⊗ OC (−Z)) ≥ h0(EC,Z ⊗ M∨) > 0. Hence, C .N ≥ d = deg(Z).
By the computation of the Chern classes of EC,Z , we have OX (C) ∼= M ⊗ N and

M .N ≤ d . If N 2 = 0, then C .N ≤ d . Hence, we have N ⊗ OC ∼= OC (Z). This contradicts
the assumption of Proposition 5.3. �

Since M2 ≥ N 2, by Lemma 5.1, we have M2 > 0. By the Hodge index theorem, we have
M2N 2 ≤ d2. Since N 2 is even, we have 2 ≤ N 2 ≤ d .

Here, we set s = N 2 and f (s) = (s + d)2 − C2 s. Since the genus of C is d2

4 + d + 2,

we have C2 = d2

2 + 2d + 2. Hence, we obtain

f (s) = s2 − (
d2

2
+ 2)s + d2 = (s − 2)(s − d2

2
).

Since 2s ≤ 2d < d2, we have s < d2

2 , whereby f (s) ≤ 0 as s ≥ 2. Notably, the observation
that f (s) = 0 only if s = 2 also follows trivially from the factorization of f (s).

On the other hand, since, by theHodge index theorem,C2 s ≤ (N .C)2 ≤ (s+d)2, we have
f (s) ≥ 0. Hence, we obtain f (s) = 0 and s = 2. Since N is base point free, by the theorem
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of Bertini, the general member of |N | is a smooth genus 2 curve. Since g = d2

4 + d + 2, d
is even. Hence, there exists an integer k ≥ 3 such that d = 2k − 2. If we let B ∈ |N | be a
smooth genus 2 curve on X , then we have (C − k B)2 = 0. By the Riemann-Roch theorem,
we have h0(OX (C − k B)) > 0 or h0(OX (k B − C)) > 0. Since C .(C − k B) = 0, if the first
case occurs, then by the exact sequence

0 −→ OX (−k B) −→ OX (C − k B) −→ OC −→ 0,

we have h0(OX (C − k B)) = 1. Since B.(k B − C) = 0, if the latter case occurs, then by the
exact sequence

0 −→ OX ((k − 1)B − C) −→ OX (k B − C) −→ OB −→ 0,

we have h0(OX (k B − C)) = 1. By the above observation, we get C ∼ k B. �

Corollary 5.1 Let C be a double covering of a smooth plane curve C0 of degree k ≥ 3
branched at distinct 6k points on C0, and assume that C is contained in a K3 surface X.
Then there exists a smooth genus 2 curve B on X with C ∼ k B.

Proof The gonality of C is 2k − 2 and the genus of C is k2 + 1. By the same reason as in
the proof of Proposition 5.1, there exists a gonality pencil on C which has no lift. Hence, by
Proposition 5.3, the assertion holds. �

Proposition 5.4 Let C0 be a smooth plane curve of degree k ≥ 4, and let π : C −→ C0

be a double covering branched at distinct 6k points on C0 such that C is contained in a K3
surface X. If π is the morphism associated with a base point free net A of degree 2k on C,
then there exists a smooth genus 2 curve B on X such that OX (B) is a lift of A.

In Proposition 5.4, since the genus of B is two, h0(A) = h0(OX (B)). Hence, the consequence
means that if we set π̃ = 	|B| : X −→ P

2, then π̃ |C = π . From now on, let C and A be as
in Proposition 5.4.

Lemma 5.2 The Clifford dimension of C is one.

Proof Since k ≥ 4, the linear system |C | on X is not the Donagi–Morrison’s example (see
[2, Theorem A] or [7]). Assume that there exist a smooth curve D of genus≥ 2 and a smooth
rational curve 
 on X satisfying C ∼ 2D + 
 and D.
 = 1. Since C .
 = 0, we have
4D2 = (C − 
)2 = C2 − 2. By Corollary 5.1, there exists a smooth genus 2 curve B0 on X
with C ∼ k B0. Therefore, we have D2 = 1

2 (k
2−1). Since k ≥ 4, we have B2

0 = 2 < D2−1
and 0 < C .B0 − B2

0 = 2k − 2 < D2. Hence, by [7, Theorem 2], we obtain the consequence
of Lemma 5.2. �

Proof of Proposition 5.4 By Lemma 5.2, Cliff(A) = 2k −4 = gon(C)−2 = Cliff(C). Since
the genus of C is k2 + 1 and k ≥ 4, there exists a smooth genus 2 curve B ⊂ X such that
OX (B) is a lift of A, by Theorem 1.1 �
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