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Abstract
In this paper, when 1 < p < 2, we establish the C 1102‘ -regularity of weak solutions to the
degenerate subelliptic p-Laplacian equation

6
Ay pu(x) = XF(IVaulP 2 Xiu) =0

i=1

on SU(3) endowed with the horizontal vector fields X1, ..., Xg. The result can be extended
to a class of compact connected semi-simple Lie group.
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1 Introduction

In this research article, we consider the special unitary group of 3 x 3 complex matrices SU(3)
endowed with a horizontal vector field X1, X», ..., Xg; see Sect. 2 for more geometries and
properties of SU(3). Given a domain Q2 C SU(3), we consider the quasilinear subelliptic
equation

6
DX @i(Viu) =0 in Q. (1.1)

i=1
Here Vyyu = (X1u, Xou, ..., Xeu) is the horizontal gradient of a function u € cl(); X;“
is the formal adjoint of X;; the vector function a := (aj, az, ..., ap) € CZ(R®, R®) satisfies
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the following growth and ellipticity conditions:

6
0] i r=2
Bai®) s = 1o + 15D 0P, (12)
Q=1 98
O\ | 0a; (&)
ol < LG+ IED T, (1.3)
el RS
i,j=
la; (8)] < L5 + 1€ "7 Ig] (1.4)

forall &, n € RO where0 <8 < 1,1 < p <ooand 0 < Iy < L. Note that conditions (1.2)
and (1.3) are the same as conditions [5, (2.3) and (2.4)], but the condition (1.4) is stronger
than the condition [5, (2.5)]

@&l < LG+ 1P T (1.5)

p

We call a function u € W71{’, loc (§2) as a weak solution to (1.1) if

6
Z/ a; (Vi) Xipdx =0, Yo € CP(R). (1.6)
i=1v<

Here W;{’ploc (R2) is the first order p-th integrable horizontal local Sobolev space, namely, all
() with their distributional horizontal gradients Vyyu € LY (£2). Given

. P
functionsu € L loc

loc
the typical example a(§) = (§ + |€ IZ)pT_ZE , equation (1.1) becomes the non-degenerate
p-Laplacian equation

6
p=2
D OXi((8 4 IVHul®) ™ Xiu) =0 if 6 > 0, (1.7)
i=1
and the p-Laplacian equation

6
3 Xi (1Vaul?2Xiu) = 0 if 6 = 0. (1.8)

i=1

Particularly, we call weak solutions to (1.8) as p-harmonic functions in 2 C SU(3).

In the linear case p = 2, p-harmonic functions in SU(3) are harmonic functions and their
C°-regularity was established by Hormander [11]. In the quasilinear case p # 2, Domokos-
Manfredi [5] obtained the local boundedness of horizontal gradient Viu of p-harmonic
functions u in SU(3), that is, Vyu € LC]’SC (€2). Moreover, when 2 < p < oo, they obtain
the Holder regularity of Vyu, that is, Vyu € CY%(Q) for some « € (0, 1) independent of
u.But when 1 < p < 2, the Holder regularity of Vyu was unknown.

For the general quasi-linear equation (1.1) in SU(3), Domokos-Manfredi [5] also built up
analogue regularity. To be precise, if a satisfies conditions (1.2), (1.3) and (1.5) for some
1 < p < oo, weak solutions u are proved to satisfy Vyyu € LTS (2).If 2 < p < oo, they

further proved Vyu € C§ . (R2) for some a € (0,1). But when 1 < p < 2, the Holder
regularity of Vi u was also unavailable.

In this paper, we focus on the case 1 < p < 2. Moreover, instead of the condition (1.5)
assumed by [5] when 2 < p < oo, we work with the stronger condition (1.4). Indeed, if
a satisfies (1.2), (1.3) and (1.4) for some 1 < p < 2, we obtain an Holder regularity of

horizontal gredient of weak solutions u to (1.1). As a consequence, when 1 < p < 2, the
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horizontal gradient of p-harmonic functions in SU(3) has an Holder regularity. See Theorem
1.1 below for details. We always denote by B, (x) the Carnot—Carathéodory ball centered
at x € SU(3) with radius r with respect to the Carnot—Carathéodory distance dcc which
is defined in Sect.2. For convenience we write B, as B, (x) and denote by C(a,b,...) a
positive constant depending on parameters a, b, ... whose value may change line to line.

Theorem 1.1 Suppose that a € C2(R®, R%) satisfies the conditions (1.2), (1.3) and (1.4) for
some lg, L and such 1 < p <2,8 >0.Ifu € W#ﬁoc(ﬂ) is a weak solution to (1.1), then
Vnu € CF () for some a € (0, 1) depending on ly, L and such p, 8. Moreover, for all

B,, C Qandany 0 <r < ry, we have
f

o
’
max oscp Xju < C | —
1<i<6 ro

» »
(6 + |Vyul*)2dx | (1.9)
o
where 0 < a < 1 depends on p, ly and L, and the constant C > 0 depends on p, ly, L and
ro.

Consequently, when 1 < p < 2, the horizontal gradients of p-harmonic functions on
SU(3) have the Holder regularity and satisfy (1.9).

9 0

) Bx1 dxp
% 1), the C%1 and C1¥-regualrity of solutions to Eq. (1.1) under conditions (1.2), (1.3) and
(1.4) have been established by [8, 14, 21-23]. In the Heisenberg group H", the C%! and
C1%_regularity of solutions to Eq.(1.1) under conditions (1.2), (1.3) and (1.4) have been
established by [4, 7, 16-18, 20, 25].

We will prove Theorem 1.1 in Sect. 5 by borrowing some ideas from [18] to use De Giorgi’s
method in [3], and also adapting some apriori estimates in [5] under conditions (1.2), (1.3)
and (1.4). Indeed, given any weak solution u to (1.1), to get the Holder regularity for Vu,
the central is to show that V4, u belongs to De Giorgi’s class in SU(3), which will be recalled
in Sect. 3. To this end, we consider the double truncation of X;u, that is,

Recall that in the Euclidean space R" (corresponding to the vector field {

v = min(u(r)/8, max(u(r) /4 — Xpu, 0)),

where u(r) = maxj<k<g¢supp |X¢ul and I € {1,...,6}. It then suffices to buil up the
following crucial Caccioppoli inequality

1
/ P P2 vy Pdx < C(p, Lo, y) (B + 2)*u(r)* (1 + 72)

1y
x| B |71/ (/ nyﬁvyﬁdx) (1.10)

for all B > 0, where y > 1is a constant and n € C3°(B,) is a standard cut-off function in
B,. Indeed, if (1.10) holds true, following [18] line by line and using an interation argument
as in [9, Lemma 7.3], we are able to conclude (1.9) and hence Theorem 1.1 holds true. For
details see Sect. 5.

To prove (1.10), firstly, under the stronger condition (1.4), by choosing different test
functions, we are able to adapt or modify the arguments in [5] so to get several a priori
estimates as in Lemma 2.3, which are stronger than the corresponding estimates in [5]. See
Sect. 2 for details.

Next, from these apriori estimates in Lemma 2.3, in Sect.4 we deduce two auxiliary
Caccioppoli inequalities for Vi u and V7 u involving v as in Lemmas 4.5 and 4.6, whose
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proofs are postponed to Sect. 6. Since there is no nilpotent structure in SU(3), we have to
deal with all integrals involving [X;, X ;]u forall i, j € {L, ..., 8} according to Table 1 and
use a priori estimates in Lemma 2.3 to bound them.

Finally, we choose the function nﬂ+4vﬂ+3 to test (4.7) in Lemma 4.4 and obtain (4.14),
where 8 > 0. Then using conditions (1.2), (1.3), (1.4), a priori estimates in Lemma 2.3 and
Lemmas 4.5, 4.6, we conclude (1.10) in Lemma 4.1. The proof is postponed to Sect. 4.

To prove Lemma 4.5, first, we choose the function P 2B +21V0u )2 Xu to test (4.7) in
Lemma 4.4 and obtain (6.1), where 8 > O and [/ € {1, ..., 6}. Then using conditions (1.2),
(1.3), (1.4), we conclude (4.8) in Lemma 4.5. The proof is postponed to Sect. 6.

The proof of Lemma 4.6 is based on Lemma 4.5. To prove Lemma 4.6, first, we choose
the function n™B+2+4y 7B+ v, 4% X u to test (4.7) in Lemma 4.4 and obtain (6.6), where
B>0,7t e (1/2,1)and!/ € {7, 8}. Then using conditions (1.2), (1.3), (1.4), a priori estimates
in Lemmas 2.3 and 4.5, we conclude (4.12) in Lemma 4.6. The proof is postponed to Sect. 6.

2 Preliminaries

We identify the group SU(3) with the unitary group of 3 x 3 complex matrices
{g¢€eGLB,C):g-g"=1,detg =1}.
Its Lie algebra is given by
su@3) :={X e€gl3,0): X+ X*=0,trX =0}

with the inner product (X, Y) := —%tr(XY).
Noting that the two-dimensional maximal torus

a0 0
T := 0 f 0 ral,a,az3 € R,ay+ay+a3 =0y,
0 0 ¢

we choose its Lie algebra

ia; 0 0
T = 0 ian O rap,ax,az €eR,a+ar +a3 =0
0 0 ias

as the Cartan subalgebra.
Recalling the definition of su(3), we use a set of Gell Mann matrices G to form its orthonor-
mal basis, that is,

0 1 0 0 i O 0O 0 O
Xi=|-1 0 0}, Xo=1i 0 O}, X3=10 O 1],
0 0 O 0 0 O 0 -1 0
0 O 0 0 0 1 0 0 i
X4=10 0 —i]), Xs= 0O 0 0}, X¢=110 0 0],
0 —i O -1 0 0 i 0 0
i 0 0 -5 0 0
T1: 0 1 0 , Tz: 0 _ﬁ 0
0 0 0 2i
0 0 7
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Table 1 [X;, X;]in SU(3)

X1 X5 X3 X4 X5 Xe X7 X3

X1 0 —X7 X5 —Xe —X3 X4 4X, 22X,
X X7 0 X6 X5 —X4 —X3 —4Xq —2X4
X3 —X5 —Xe 0 —X3 X X> 2X4 4X4
Xy X6 —X5 Xg 0 X2 —X1 —2X3 —4X3
X5 X3 Xy —X1 —-X> 0 Xg — X7 2X¢g —2Xg
X6 —X4 X3 —-X2 X1 X7 —Xg 0 —2X5 2Xs5
X7 —4X, 4X —2X4 2X3 —2X¢ 2Xs 0 0

X3 —2X5 2X4 —4Xy 4X3 2X6 —2X5 0 0

Consider the following two vector fields:

=2i 0 O 0 0 0
X7 = —[Xl, Xz] = 0 2i 0 and Xg = —[Xg, X4] = 0 2 0
0 0 0 0 0 -=2i
Since 71 = %X7 and Th» = ﬁX7 — %Xs, we choose the vertical vector field V& =

{X7, X3} as an orthonormal basis of the Cartan subalgebra 7.
The following table is [5, Table 2.1], which gives all [X;, X ;] for any two vector fields
X, X; e{X,Xa,..., Xg}.
Table 1 shows that
8

[Xi, X;1=) C};X; foranyi,je({l,2,...,8) 2.1)
k=1
and that
6
[Xi, X;]= ZC{‘JX;( foranyi € {1,2,...,8}and any j € {7, 8}, 2.2)

k=1

where Cﬁ . € R are constants and are completely determined by Table 1. Note that the
orthonormal basis Viy = {X1, X2, ..., X¢} generates the horizontal subspace H in SU(3).
Since the matries G are left-invariant vector fields, the basis Vo is left-invariant. From
Table 1, at every point of SU(3) the basis Vyy satisfies the Hormander condition. From this,
the horizontal distribution of a sub-Riemannian manifold is generated by V.

In the following, we define the Carnot—Carathéodory distance dcc. An absolutely con-
tinuous function curve y : [0, T] — SU(3) is subunitary associated to Vy; if there are
measurable {o; € L>°[0, T]}1<i<e such that

6 6
Y =) ai®X;(y@®) and Y af(t) <1 forae.te[0,T].

i=1 i=1

According to [2], since V4 satisfies the Hormander condition, there exist curves y subunitary
associated to V; connecting any two given points x, y € SU(3). The Carnot—Carathéodory
distance dcc is then defined as
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62 C.Yu

dcc(x,y) = inf{T > 0 : there exists a subunitary curve y : [0, T']
— SU(3) connecting x and y}.

We denote by dx the bi-invariant Harr-measure, by | E| the Lebesgue measure of a measurable
set E C SU(3) and by fE fdx = |—1£:‘ f g fdx the average of an integrable function f over
set E£.

In the rest of this section, we recall some Caccioppoli inequalities established by Domokos-
Manfredi [5] and use similar methods to get stronger estimates; see [5, Theorem 2.1, Lemmas
3.1,3.2, 3.3 and 3.4, Remark 3.2 and Corollary 3.1].

Domokos-Manfredi [5] established the following uniform gradient estimate; see [5, The-
orem 2.1].

Proposition 2.1 [5, Theorem 2.1] Let 1 < p < ocoand 0 < § < 1. Assume that a €
CZ(R®, R®) satisfies the conditions (1.2), (1.3) and (1.4). Ifu € W;{’ﬁoc(Q) is a weak solution
to (1.1), then Viqu € LSS (). Moreover, for all ball B, C 2, we have

loc

1
sup |Vyu| < C(p,L,l0)< (5+|VHM|2)%dx)p
Br/2 B,

Combining Proposition 2.1 and [6, Theorem 1.1], we have the following corollary.

Corollary 2.2 Let1 < p <ooand$ > 0. Ifu € W.
u € C®(Q).

1OC(Q) is a weak solution to (1.1), then

The following lemma gives some Caccioppoli estimates which will be used to prove
Lemmas 4.5,4.6 and 4.1; see Sect. 2.1 for its proof. For simplicity, we write w = (8+|Vyu|?).

Note the fact that in all the integral terms in the following lemma, only w 2 includes 8. This
fact is necessary for us to establish the Caccioppoli inequality for v in Sect. 4; see Lemma 4.1.

Lemma2.3 Ler0 < 8 < 1. Assume that a € C2(R, R®) satisfies the conditions (1.2), (1.3)
and (1.4). If u € W;_[’ﬁoc(ﬂ) is a weak solution to (1.1), then for any n € C°(2) with
0 < n <1, the followings hold:

1) If B =0, then
-2 —2
/nzw%wfuﬁﬁwwfuﬁdx < c<p,L,zo>[ [V Pw'> [Vru P 2dx
Q Q

+c<p,L,zo><ﬂ+1)2/ 'S [Vyul? | VrulPP dx.
Q
2.3)

(i) If B = 0, then

n—2 -2
/ n*w ' |Vau|* |V VaguPdx < C(p, L, 1p)(B + 1)“/ w7 |Vagu|* |VruPdx
Q Q

)
+C(P,L,lo)(,3+1)2K,7/ L3 \Vagu P 2dx,

supp(n)
2.4
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(iii) If B = 1, then
/Q 0?20 "7 |V ulP |V Vygu P x
< C(p,L,lo)“(ﬂJr1)4’3||VHn||i‘Zcanw#|vHu|2ﬁ|vﬂvHu|2dx. 2.5)
(iv) If B = 1, then
/;ZUZWPTJ|VHM|2ﬁ|VHVHu|2dx
< C(p. L, lp)(B+ 1)12K,,/ wT | Vagu| 6+ 2dx. 2.6)
supp(n)

) If B =1, then

p—2
/ P20 5 (9 7P V3 Vagu P
Q
)
< C(p, L,lo,ﬁ)Kf“/ w' T | Vyu 2P 2dx. Q.7
supp(n)

vi) If B = 1, then

p—2
/ PP 1V u?P (Vi VruPdx
Q

-2
< C(p.L.lo. HKLT? f w'T Va2 dx (2.8)
supp(n)
Above
Ky =1+ IVinlie + V70l 120 (2.9)

2.1 Proof of Lemma 2.3

In this subsection, we prove Lemma 2.3. To this end, we consider the Riemannian approxi-
mation to (1.1) as in [5]. For any fixed constant ¢ € (0, 1), we write V* = (V§,, V7), where
V7€-£ = V3¢ and V5 = ¢V7. Consider a Riemannian approximation to (1.1), that is,

8
> XE@i (Vi) = 0in (2.10)
i=1
see [5, Section 3] for details. Let u, be a weak solution to (2.10) with conditions (1.2), (1.3)
and (1.4). By [5, Remark 3.1], we obtain that u, € C*°(2) when § > 0 and ¢ > 0.

We have the following series of a priori estimates for u., that is, Lemmas 2.4, 2.5, 2.6
and 2.7. They correspond to Lemmas 3.1, 3.2, 3.3 and 3.4 in [5], where they assume (1.2),
(1.3) and (1.5). Here we work with (1.2), (1.3) and the stronger one (1.4). For simplicity, we
write w, = (8 + |Veue|?).

Lemma24 Let0 <8 < L. Forany B > 0 and any n € C§°(2) with 0 < n < 1, we have
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-2 —2
/ nPwe T |[Vzue P |VeVruePdx < C(p, L, lo) / IVenlPwe 7 |Vzue | 2dx
Q Q

—2

+C(p, L, lo)(ﬂ+1)2/ Pwe T |Voue [ Vrue | ¥ dx.
Q
2.11)

. . . p=2 .
Lemma 2.4 is a stronger version of [5, Lemma 3.1], since w, 2 |V‘9u5|2 in the second
P

term in the right hand side of (2.11) is more accurate than w; in the second term in the right
hand side of [5, (3.3)]. To prove Lemma 2.4, we follows the proof of [5, Lemma 3.1] line by
line. The only difference is that we use the condition (1.4) instead of the condition (1.5) they
used in the proof of [5, Lemma 3.1]. Here we omit the details.

Lemma25 Let0 <8 < L. Forany B > 0 and any n € C§°(2) with 0 < n < 1, we have
2
/n2w8%|v€u8|2ﬂ|v€vgu8|2dx
Q
p=2
< CO L@+ 1* [ P 19 P9 P
Q

-2
+C(P,L,lo)(ﬂ+1)2/(n2+|V€ﬂ|2+ﬂ|VT?7|)wsL2 IVeu [P 2dx.  (2.12)
Q

Lemma 2.5 is similar to [5, Lemma 3.2]. The only difference between the two lemmas is

p=2 )2 ) )
that w, 2 + and wgd *in [5, (3.8)] are replaced by wng |Veuy|*# and wng |VEup|2B+2

separately. The proof of Lemma 2.5 follows the same line as that of [5, Lemma 3.2]. To prove
[5, Lemma 3.2], they used ¢ = 172wég Xfug to test [5, (3.10)]. Now, to prove Lemma 2.5, we
use ¢ = 2| Veu, |2ﬁXfu8 instead of ¢ = nzwafus as the new test function in [5, (3.10)]
in the proof of [5, Lemma 3.2]. Then we use the condition (1.4) whenever the condition (1.5)
is used in the rest of the proof of [5, Lemma 3.2]. Here we omit the details.

Lemma 2.6 follows from Lemma 2.4.

Lemma26 Let0 <8 < 1. Forany B > 1 and any n € C(C)’O(Q) with 0 < n <1, we have
-2
/ P 2w, T | Vrue P VE Ve Pdx
Q

=2 _
< C(p, L, 1o)(B+ D*IVEn|l / 1w, 7 [VEu | Vrue P2 VEVEu, | Pdx.
Q
(2.13)

Lemma 2.6 is stronger than [5, Lemma 3.3], since w, 7 [VEu, |2 in the right hand side of

(2.13) is more accurate than wgg in the right hand side of [5, (3.11)]. To prove Lemma 2.6,
we follows the proof of [5, Lemma 3.3] line by line. The only difference is that we use (2.11)
with n — n# +2 and the condition (1.4) to replace [5, (3.7)] and the condition (1.5) they used
in the proof of [5, Lemma 3.3] separately. Here we omit the details.

By Lemma 2.6, we obtain Lemma 2.7.

Lemma2.7 Let0 <6 < 1. Forany B > 1 andn € CSO(Q) with 0 < n <1, we have

-
/ 2P0, 5 (Ve B VE Ve, P
Q

—2
<C(p, L,lo>ﬂ(ﬂ+1)4ﬂ||V8n||i€c/ w2 |Vou PP IVEVEu Pdx.  (2.14)
Q

@ Springer



C1--reqularity for p-harmonic functions on SU(3) and... 65

-2
Lemma 2.7 is a stronger version of [5, Lemma 3.4], since wng Ve u£|2ﬂ in the right

hand side of (2.14) is more accurate than wng +h in the right hand side of [5, (3.13)]. To
prove Lemma 2.7, we follows the proof of [5, Lemma 3.4] line by line. The only difference is
that we use Lemma 2.6 and the condition (1.4) to replace [5, Lemma 3.3] and the condition
(1.5) they used in the proof of [5, Lemma 3.4] separately. Here we omit the details.

Lemma 2.3 follows from Lemmas 2.4, 2.5 and 2.7. Specifically, by Theorem 2.2, letting
& — Ointhe above estimates, we get some intrinsic Cacciopoli inequalities for weak solutions
u to (1.1) from Lemmas 2.4, 2.5 and 2.7, which are stronger than that in [5, Corollary 4.1];
see [5, Section 4] for more details.

Proof of Lemma 2.3 The estimates (2.3), (2.4) and (2.5) follow from Lemmas 2.4, 2.5 and 2.7
respectively in a direct way.
Next we prove (2.6). By Holder’s inequality, we have
COp L+ 1* [ P (VP V7uPds
Q

1

- BT
<C(p, L, o)(B+ 1)* (/ 772/3+2pr2 |V7u|2/3+2dx>
Q

B
p—2 B+1
(/ w’T|vHu|2ﬂ+2dx> . (2.15)
supp(n)

Noting that |Vrul? < 2|V Vyul?, we use (2.5) to bound the first term in the right hand
side of (2.15). Then by Young’s inequality, we have
—2
Cp LB+ )" [ 'S (VpuP (9 ruPds
Q

1
57
B+1

-2
+C(p. L, 1o)(B+ 1)12||V7m||2m/ w T |V P+ 2dx,
supp(n)

-2
/nzprIVHulzﬁIVHVHulzdx
Q

which, together with (2.4), yields (2.6).
Combining (2.5) and (2.6), we conclude (2.7).
Next we prove (2.8). By Holder’s inequality, we have

p=2
C(p,L,lo,ﬁ)/ P42 2 |V PIVrulPP dx
Q

B

- ol
< C(p. L.lg, B) ( / nzﬂ”w%wuﬂﬂ“dx) ( /
Q s

1
p=2 BFT
w 2 IVHu|25+2dx) .

(2.16)

upp(n)
By changing 1 to 72 in (2.3), we have
2t p2
/ 184w T |Vru|?P |V VrulPdx < C(p, L, 1o, B) / Va0 2w ™2 | Vru*PH2dx
Q Q

p—2
+C(p,L,lo,ﬂ>/ PP 2 (VP VP dx.
Q
(2.17)
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We combine (2.16) and (2.17). Then by Young’s inequality therein, we have
—2 -2
[ PR VTl < Cp. Lulo, K, [ 10" [9ru
Q Q

+C(p. L1, B) w"T [Vyu[2P*2dx.
supp(n)
(2.18)

Since |Vru|? < 2|V Vyqu|?, applying (2.7) to the first term in the right hand side of (2.18),
we conclude (2.8). ]

2.2 Sobolev inequalities

In this subsection, we recall local Sobolev inequalities and Poincaré inequalities on SU(3).
Denote by O = 10 the homogeneous dimension of SU(3). The following lemma follows
from [10, Theorem 11.20 and Corollary 9.8] and [1, Proposition 2.1].

Lemma2.8 Let1 < p| < Q. Forany ball B, C 2, we have

9-p| e

op1_ TPI; Pl
(fB |f|dex> < Clp)p (fB |va|P‘dx>

forany f € C3°(B)), and

2-p)

op1 (23] ﬁ
][ |f — fB, 1% "1dx =C(pp ][ |V fIP dx
B, B,

forany f € C®(B)), where fg, = JCB,, fdx.

3 De Giorgi’s class of functions

In this section, we recall De Giorgi’s class of functions defined in SU(3). Let 2 be a domain
in SU3).

Definition 3.1 Let B,, C 2 be a ball. We call a function u € W%Z(Bpo) N L (B,,) belongs
to DG (B,,) if there exists non-negative constants y and x such that for any balls By, B,
with the same center as By, and 0 < p’ < p < po, for any k € R, and for any ¢ > Q, the
inequality

14 —

/+ |Vauldx < m/ Ju— kPdx + x| AL |12 (3.1)
- A

k.p! P

holds true, where A,:r,p(u) ={xeB,: (ulx)— k)T = max(u(x) — k, 0) > 0}.

Remark 3.2 By replacing A,tp(u) with A,Zp(u) in (3.1), we define thatu € DG~ (B,,) ina
similar way, where A,zp(u) ={xeB,: (ux)—k)~ =min(ux) —k,0) < 0}.

Itis apparent thatu € DG~ (B,) if —u € DG (B,,). Denote DG (B,) = DG (B,,)N
DG~ (Bp,).
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The following lemma is almost the same as [25, Lemma 4.1]; see the “Appendix” for its
proof.

Lemma 3.3 For any b € (0, 1), there exists a constant 61 = 61(y, q, b) € (0, 1) such that
for any function u € DG (B,,) and for any constant k, the following holds:

If
H =supu(x) —k > xp'~2/4

By
forany q > Q, then
|47, | = 0118,
implies that

supu(x) <k+DbH.
By

The following lemma is almost the same as [25, Lemma 4.2]; see the “Appendix” for the
details of its proof.

Lemma 3.4 For any t € (0, 1], there exists a constant s = s(y, q, T, R) > 0 such that for
any function u € DG (B,) and for any k € R, the following holds:

If
|A];p/2| = 'L'pr/2|,
then
_9Q
sup u(x) < supu(x) —2SH + xp' ¢, (3.2)
By/a B,

where H = supp, u(x) — k.

Remark 3.5 Changing k to —k and u(x) to —u(x) in Lemma 3.4, for any function u €
DG~ (B)) the following holds:

|A1—:p/2| = 77|Bp/2|

implies that

0
inf u(x) > infu(x)+2H — xp' ¢,
Bpoya By

where H = —infpg, u(x) + k.
Applying Lemma 3.4 and Remark 3.5 with k = % <sup u(x) + lignf u(x)), we have the
Bp/4 p/4

following theorem. We omit its proof.

Theorem 3.6 For any function u € DG (B)), there exists so = so(y, q) > 0 such that

oscp, 4 u(x) < (1 —27%)oscp,u(x) + 2xp' =2/,
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4 Crucial Caccioppli inequality

In this section, we give the crucial Caccioppli inequality and its proof. Let 1 < p < oo and
u e W;{p (£2) be a weak solution to (1.1) with 0 < § < I. Fix aball B,, C 2. For any ball

,loc
B, with the same center as B, and 0 < r < r¢/16, we denote @ (r) = m}?xe oscp, Xxu and
I<k=<

v = min(u(r)/8, max(u(r) /4 — Xpu, 0)),

where 1(r) = maxj<k<¢ supp, |X¢uland ! € {1,...,6}. For any fixed / € {1,..., 6}, we
consider the set

E={xeQ:ulr)/8 < Xju< unr)/4}.
Note that forany i € {1,...,6,7, 8},
Xiv=—-X;Xju inE and X;v=0 inQ\E. 4.1)

We have the following lemma, which includes the crucial Caccioppli inequality for v. In this
paper, for convenience we write a; ;(§) = a‘;’—g) forany & € R and i, jel{l,2,...,6}.

Lemma 4.1 Let B, C 2 be a ball. Assume that the cut-off function n € Cgo(B,) satisfies
(4.10) and (4.11). Then for any y > 1 and any B > 0, we have

1
Lnﬁ+4vﬂ+2|vﬁv|2dx < C(p, L, 1o, v)(B+2)u(r)* (1 + 72>

1
1
«|B,|""% </ nyﬂvyﬂdx>y . 4.2)
B,

Remark 4.2 For any [ € {1, ..., 6}, we use the same method as that of Lemma 4.1 to get
(4.2) with

v/ = min(u(r)/8, max(u(r)/4 + Xu, 0)).
From Lemma 4.1 and Remark 4.2, we get the following lemma; see Sect. 6 for its proof.

Lemma4.3 For any ball B, C Q2 with the same center B and 0 < r < R, there is
0 =0(p, L, ly, R) > 0 such that the followings hold:

@ 1f
l{x € B, : Xiu < n(r)/4}| < 0|8, (4.3)
holds true for an index k € {1, ..., 6}, then
};?/fz Xpu > 3p(r)/16. 4.4
(i) If
l{x € By : Xgu > —pu(r)/4}] < 0| B, | 4.5)
holds true for an index k € {1, ..., 6}, then
sup Xpu < —3u(r)/16. (4.6)
Brp
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4.1 Proof of Lemma 4.1

Before proving Lemma 4.1, we need the following lemmas. See Sect. 6 for their proofs.

Lemma4.4 Foranyl € {1,...,6,7,8}, Xju is a weak solution to the equation

6 6
> Xilai j(Via) X jXpu) + Y Xilar j (V) [ X1, X jJu)
i,j=1 i,j=1
6

= > IXi, Xi1(@i (Vyu)) = 0. (4.7)

i=1

Lemma 4.5 Forany p > 0 and any non-negative n € C3°(2), we have

p—2
/nﬂ+2uﬂ+2(5+|vﬁu|2) T |Vul? |V Vigu|*dx
Q

=

§c<p,L,zo><ﬂ+2>2/ 0P + [Van|* + 0|V DoP (8 + [Vaul?) 7 |Vau|*dx

Q

p=2

+C(p,L,lo)(ﬂ+2)2/ nP 208 (8 + |Viul?) 2 |Viu|* | Vv dx

Q

—2
+C(p,L,lo)/ nﬁ+2uﬁ+2(5+|vHu|2)"T|vHu|2|vTu|2dx. (4.8)
Q

Before starting the following lemma, we note thatif § > Oand ¢ > Osuchthat p+¢g—2 >
0, the following holds:

p=2 -2
(5 +1V4ul?) = [Vaul? < C(p, @) + p()>)= u(r)? in By, (4.9)

where C(p, g) = 6+P=2/2 when p > 2 and C(p, q) = 69/> when 1 < p < 2. In the rest
of this section, for any fixed ball B, C Q we consider a cut-off function n € C§°(B,) such
that

0<n<1 inB, n=1 inBp (4.10)
and
|Vynl < C/r, |V Vynl < C/r*, |Vl <C/r* inB,. (4.11)

The following lemma gives a Caccioppoli inequality for Vru weighted with |Vyu|*
involving v; see Sect. 6 for its proof.

Lemma 4.6 Let B, C Q be a ball. Assume that the cut-off function n € Cy°(B,) satisfies
(4.10) and (4.11). Then for any T € (1/2, 1), any y € (1,2) and any B > 0, we have

)
/ T EDHA T (5 L1V, u2) T (Vg |V Vo Pdx
Q

1 . p=2
<C(p, Lo, t.y)(B+2) (1 + m) BT + (DT pr)®IT,

(4.12)
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where

1 1
J= | P2 vpPdx + (14 = ) u(n* 1B, 7
B, r2 B

1
v

nyﬁvyﬂdx)

r (4.13)

Now we use Lemmas 4.4, 4.5 and 4.6 to prove Lemma 4.1.

Proof of Lemma 4.1 We consider two cases: 1 < y < 3/2 and y > 3/2. In the case that
y > 3/2, we use Holder’s inequality for the integral in the right hand side of (4.2) when
(4.2) holds for some 1 < yy < 3/2. Below we assume 1 < y < 3/2. Recall that

v =min(u(r)/8, max(u(r)/4 — Xju, 0)),

where pu(r) = maxj<x<¢ supg, |[Xyuland! € {1,..., 6}. Let B, C 2 be aball. Consider the
cut-off function n € C§°(R2) with (4.10) and (4.11). Forany 8 > Oand any / € {1, ..., 6},
letting ¢ = nf+*vP*3 be a test function in (4.7), we have

6
— (ﬂ+3)f § nP P20, (V) X X uX;vdx
Q.7
i,j=l1

6
= (ﬂ+4)/ Y - PP (Vo) X XuXindx
Q.7
i,j=1

6
+(B+4) / D PP e (Vi X, X jluXindx
2 7=1

6
+(B+3) f Y PP ey (V)X X jluX vdx
Q.
i,j=1

6
+ / S X, Xl (Vpao)nP 0P+,
@it

which, together with X; X ju = X; X;u + [X;, X ]u, yields

6
L :=—(B+ 3)/ E n’s+4vﬁ+2a,~,j(VHu)XleuX,-vdx
Q.7
i,j=1

6
=(B+4 / > PP X (a; (Vagu)) Xindx
2o

6
+(B+3) / > PP e (V)X X jluXivdx
Q.
i,j=1

6
+/ > X Xilai (Vau)nP TP Pdx = 1 + I + I, (4.14)
2o

Recalling that
E={xeQ:ulr)/8 < Xu< unr)/4},

@ Springer



C1--reqularity for p-harmonic functions on SU(3) and... 71

and that
Xiv=—X;Xju inE and X;v=0 inQ\E,

by the condition (1.2), we have
-2
L > 1B +3)/ P26 + VD) T (Vv Pdx
Q

> Co(ps L. )(B +2)(6 + n (D) T / PP Voo P,

B,

Here the integration domain in the right hand side of the above inequality is the set E.
Next, we bound each item in the right hand of (4.14) in turn. By integration by parts, we
have

6
== +4) [ 3 a X e X,
Q
By the condition (1.4) and (4.9), we have
p=2
| < C(p, L, lo)(B + 2)2/ nPT20PT3 (8 + [V ?) 2 [Vagul(IVin * + 0l Vi Vagnldx
Q

p=2
+C(p,L,lo)<ﬁ+2>2/ nPT30PY2(8 + | Vaqul?) 7 [Vagu| | Vool Vagnlda
Q

C(p’riLlO)(ﬁJrZ)z(rSJru(r) )7 M(V)4/ nPvPdx

By

+ M(ﬂ +2)%6 + M(r)2)”%zu(r)2f3 P2 vy vldx. (4.15)

Applying Young’s inequality to the final item in the right hand side of (4.15), we have

) < L L) g oy 1 D / 0P P2 v Pdx
1000 B,
L,
+ Lp 0) B+ +ur)D'T ur)’ / vPdx.

For I, by (2.1) and the condition (1.3), we have
p+4, p+2 202
|| < C(p. L, 10)(B+2) | nPH*oPH2(8 + [Viul?) 7 |Vagul|Vagvldx
Q

-2
+C(p, L, 1p)(B+2) / PT84 [ Vagu|?) T [Vagol [Vruldx =: Iy + In.
Q

(4.16)
For 71, by (4.9) and Young’s inequality, we have
It < C(p. L.10)(B +2)(5 + 1) = u(r)? / 1P Vol dx
Br
Co(p, L,! p=2
< S0P L00) 4oy 4 D) / P2 Va0 dx
2000 ’

—2

+C(p. L) (B + 26 + (D) 2 () / nPoPdx. @.17)
B,
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For I», by Holder’s inequality with ¢ = , we have

2
|VHv|2dx>

pP—
2

In < C(p, L 1o, y)(B+2) (f PP (5 4 | Vagu?)
E

2

1
=2 2y p—=2
X (/ y(ﬁ+2)vy(ﬂ+2)(5+|vHu| ) 2 x) y</ nq(8+|VHu|2) 2 |V7—u|qu)q
E Q

(4.18)

Here the integration domains in (4.16) and (4.18) are essentially the set E. Applying (2.7)
with 8 = “5= in Lemma 2.3 to the final integral in the right hand side of (4.18), we have

r=2
fn"(S—I-IVHLd) 7|\ Vrulldx
Q

1 -2
<C(p, L., y) (1 + r—q)/ @ + V2 7 | Vagul9dx. (4.19)
Br

Combining (4.18) and (4.19), from (4.9), we have

1 1 p-
Iy < C(p, L, 1o, y)(B +2) (1 + ;) 1B, 175+ n(r)?) T u(r)?

1 1
2 2y
x </ nﬁ+4vﬂ+2|VHv|2dx) (/ nVﬂUVﬁdx> . (4.20)

Combining (4.16), (4.17) and (4.20), we have

C , L, 1 r=2
) = P (54064 w2 f P21V 0 dx
B,

+C(p, L, lp, y)(B+2)° <1+ >|Br| TG+ ) T )t

1
X (/ n}’ﬁv’/ﬂdx>y .

For I3, by integration by parts and (2.1), we have

6
- / Zai(VHM)[Xi»Xl](’?ﬂ+4vﬂ+3)dx
Q f

= —ZZC,,/ a; (V) X (P T40P3)dx.

i=1 k=1

Since
Xpv =X Xju=—X; Xru+ [ X7, XgJu in E

holds for any k € {7, 8}, by (2.2) and the condition (1.4), we have

L
1) EC(p,L,zo)<ﬁ+2>/ P30 (5 + [Vagul?) T |Vagul Vo lda
Q

=2
2

+C(p,L,lo)(ﬁ+2)f nP P (8 4+ | Vul?) T | Vaqu| | Vi Vruldx
E
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p=2
+C(p,L,lo>(ﬂ+2)/ nP P3P (8 + |Vaul?) T | Vagu| [V ldx
Q

p—2
+C(p, L, 10)(B + 2)f P TP2(5 + (Vo) T [Vagu| | Vaguldx
Q

+C(p, L, 1) (B +2)/Enﬁ+4vf’+2(a T 1V5u) T VagulPdx
=: I31 + I3 + I33 + I34 + I3s.
For 131, I33 and I35, by (4.9), we have
= CEEREED 6400 T ) [ ot
Iy < SR OEED +u<r)2)"7’2u<r>4f3 Wb,
Is < C(p, L 1o)(B + 26 + n()D)T n* | nPoPax.

By
For I34, by (4.9) and Young’s inequality, we have

C L1 p=2
o= LB g 40y 54 ) / PPV Pdx

)

+C(py Lo Io)(B +2)(6 + n(r)D) T u(r)* [ Pobdx,
By

For I3,, Holder’s inequality yields

1
-2 2
I < C(p, L, 1))(B+2) ( / p? BB D (5 1 V) 2 dx)
E

1

p=2 2
x (/ nENEFDTGCEED (5 4 |Vyu|?) T | Vagul |VHVTu|2dx>
E

Noting that the integration domains in the above inequality are the set E, we have
1

Iz < C(p, L, 1)) (B +2)3 + (D)% p(r)2r D=1y (/ nyﬂvyﬁ) BEE)
where
M = / @V B2+, Q=B+ (5 4 |VHM|2)¥ IVagu[* Vo Vru|2dx.
Q
We use Lemma 4.6 with t = 2 — y to estimate M. Thus

M < C(p, L. 1o, y)(B+2**7 (1 + ) 1B,Y 6 + w(r)?) T ()12,
4.22)
where J is as in (4.12). Combining (4.21) and (4.22), we have

3— 1 2
Iip < C(p, L, 1o, y)(B+2)7 (1 + r7> | B, | (3+M(r) ) M(V) ’/1 =

1
x </ nyﬂvyﬂ)z
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where J is as in (4.12). From this, by Young’s inequality again, we have

_ Colp. L.1o)
- 1000

4_ 1 _1 p=2
+C(p. Llo, y)(B+2)7 1<1+r—2 1B,V (64 nr)?)' T n(r?

1
« (/ nyﬁvyﬁdx)y ’
B,

where J is as in (4.12).
Combining all the above estimates together, we use Holder’s inequality to conclude (4.2).
]

P—
2

Iy B+2)6+urDH T

5 Proof of Theorem 1.1

In this section, we prove Theorem 1.1 by considering two cases: § > 0 and § = 0. First, we
prove Theorem 1.1 for the case § > 0.

The following lemma is similar to [5, Lemma 4.1]. It is a preparation for proving Theo-
rem 1.1. We omit its proof.

Lemma5.1 Let 1 < p <2 andu € C*(Q) be a solution to (1.1) with § > 0. Let B3> be
a ball in Q. Assume that for any ball B, with the same center as B3y 2 and 0 <r < r¢/2,
there is T > 0 such that

Vaul = Tu(r) in AL, (Xpu) (5.1

holds for an index1 € {1,2, ..., 6} and for a constant k € R. Then for any q > 4 and any
0 <" <r' <r, the following holds:

n 52 2
/ (8 + 1Vrul®) 2 |V (Xju — k)t [dx
B',//

_CW. L logq,t.10)
— (r/ _ r//)2

/ @ + Vaul) T | (X — k)t 2dx
B,

P _2
+C(p. L.lo.q. 7.10) 8 + (o)) ¥ 1AL (Xpu) '3 (52)

Here the range of p in Lemma 5.1is 1 < p < 2. When 1 < p < 2, we use the extra
assumption (5.1) to replace the condition 2 < p < oo in the proof of [5, Lemma 4.1]. Since
the assumption (5.1) implies that

p—=2

(5 +1Vrul’) T = COG+rmDT in Al (X,

we can prove Lemma 5.1 by following the proof of [5, Lemma 4.1] line by line. We omit the
details.

Remark 5.2 By changing (X;u —k)* to (X;u — k)~ and A,fr(Xlu) to A, (Xju), we get the
same conclusion as (5.2).

By an interation argument (see [9, Lemma 7.3]), Theorem 1.1 follows from the following
theorem. For simplicity we write @ (r) = 1m1§1X6 oscp, Xu; see Sect. 4 for details.
<k=<
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Theorem 5.3 Let 1 < p < 2 and By, be a ball in Q. There is s = s(p, L, lo, ro) > 1 such
that for any 0 < r < ro/16 the following holds:

1
@ (r/2) < (1 =275 (8r) +2°(5 + n(r)?)? (L> By (5.3)

ro
Proof Let By, be aball in Q. For any ball B, with the same center as By, and 0 < r < /16,
we may assume that

Ny :

@ (r/2) = (0 + pn(ro)")2 w) (54
otherwise, the inequality (5.3) holds true for s = 1. Below we assume that (5.4) holds true.
To prove Theorem 5.3, we consider the following two cases.

Case 1. There exists a constant & = 6(p, L, ly, ro) > 0 as in Corollary 4.3 such that
either

{x € Bar : Xju < ju(4r)/4}| < 6| By | (5.5)
or

{x € Bar : Xju > —pu(4r)/4}| < 6] By | (5.6)
holds true for at least one index [ € {1, ..., 6}. Below we assume that (5.5) holds true. We

use the same method to deal with the case (5.6). By (i) in Corollary 4.3, we have
| Xju| > 3u(4r)/16 in By,.

Thus
|Vyu| = 3u(2r)/16 in By,.

From this, Lemma 5.1 with ¢ = 2Q = 20 implies that

C(p,L,lp, 1)

+2
/1_:3,// IV (Xiu — k)" [7dx < ' _r//)z

|(Xiu — k)T *dx + C(p, L, lo, ro)
B,/

n 2— _1
X 6+ n(0)) 2+ u@r) T AL (X2

holds true forany 0 < r” < r’ < 2r,anyi € {1, ..., 6} and any constant k. Hence for each
ief{l,..., 6}, wehave X;u € DGt (B>,); see Definition 3.1 for details. On the other hand,
Remark 5.2 implies that X;u € DG~ (By,) holds true for each i € {1, ..., 6}. According to
Remark 3.2, foreachi € {1, ..., 6} we have X;u € DG(B3,). By Theorem 3.6, there exists
so = so(p, L, lo, ro) > 0 such that for each i € {1, ..., 6}, we have

osep, , Xiu < (1 —270)0sep,, Xiu + C(p. L, lo. 70) (8 + pu(r0)) 5 (6 + @) # s
(5.7)

Since 1 < p < 2, one has
2— 2—p
G+u2rH T <G +upt)?) 7,

which, together with (5.7), yields

1
2
oscp, , Xt < (1= 27)0se, Xiu + C(p, L, lo, 70)(8 + (o)) 2 (:—0> :
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Choosing so = so(p, L, lo, rp) > 1largeenoughsuchthat2* > C(p, L, ly, r9), we conclude
(5.3) in this case.
Case 2. If Case 1 does not happen, then

l{x € Bar : Xiju < u(4r)/4}| > 6| By | (5.8)
and

{x € Bar : Xju > —pu(4r)/4}| > 0|Ba;| (5.9
hold true for every i € {l,..., 6}, where the constant 6 = 6(p, L,ly,r9) > 0 is as in

Corollary 4.3. Consider the set {x € Bg, : X;ju > n(8r)/4}. Since
Vol = p(8r)/4 in Al g, (Xiu)

holds true for all k > . (8r)/4, by Lemma 5.1 withg = 2Q = 20, forany 0 < r” < r’ < 8r,
anyi € {1,...,6} and any k > kg = u(8r)/4, we have

C(p, L, ly, ro)
( /_ //)2

X (84 1)) E (6 + n8) 7 1A] L (X' 7D

/ Vae(Xiu — k) Pdx < G = K" P+ Lo
B.n

Since (5.8) implies that
[{x € B4y : Xju < u(8r)/4}| > 6|Bay|,
by Lemma 3.4, there exists a constant s; = s1(p, L, Iy, ro) > 0 such that
sup X;u < sup X;u — 27" (sup Xiu — u(8r)/4>
By, Bg, Bg,
+C(p, Lo, 70)(8 + p(r0)®) ¥ (8 + p(8r) SRNE (5.10)
On the other hand, by (5.9) and Remark 3.5, we have

iBrg Xiu > angf Xiu+27% (— inf X;u — M(Sr)/4)
— C(p. L. lo, 70)(8 + p(r0)>) ¥ (8 + u(8r) 5, (5.11)
Combining (5.10) and (5.11), we have
@(2r) < (1=2"Na 8r) + 27" u(®r)
+C(p, L. 1o, 1) (8 + 11(r0)>) T (8 + 12(8r) 5, (5.12)

Since 1 < p < 2, one has

2— 2—p
6 +p@rN) T < G+ ur)®) T .
Thus (5.12) becomes

2r) < (1= 27w 8r) + 27 u(@r) + C(p, L, lo, )8 + pn(r0)?) 2r0? (i) :
ro

(5.13)
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Note that the conditions (5.8) and (5.9) implies that
@ (8r) = n(8r) — u(4r)/4 > 3u(8r)/4,

which, together with (5.13), yields
1

@ (2r) < (1 — 272w 8r) + C(p, L, lo, 1) (8 + 11(r0)>)? (})
0

Choosing so = so(p, L, lo, r9) > 1large enoughsuchthat2* > C(p, L, Iy, r9), we conclude
(5.3) in this case.

Finally, we choose the constant s = max{1, so, s1 + 2, log, C(p, L, Iy, r9)} to complete
the proof of Theorem 5.3. O

In the rest of this section, we prove Theorem 1.1 for the case § = 0.
Proof of Theorem 1.1 for the case 6 = 0. When 1 < p < 2 and § = 0, the vector function
= (a1, a2, ...,a6) € C*(R® R®) satisfies conditions (1.2), (1.3) and (1.4) with § = 0,
that is,

6
da;
S 2 s g, (5.14)
ij=1 05
i 2660 _ g2 (5.15)
L 08T ’ '
la; (§)] < LIg|P™! (5.16)

forall&, n € RS, where 0 < lo < L.Forany § > Oandall ¢ € RO, we define the new vector

function a’® := (a2, a3, ..., al) € C*(R, RY) as

a’(§) == (1 + ms(ENac®) + ns ()6 + 1) T &.

Here by [15, P343], we choose 15 € Co’l([O, 00)) such that a® converges to a uniformly on
compact subsets of R® as § — 0 and satisfies the conditions:

6
0
3 a@)mm_~(5+lél) P

ij=1 98

6 ad
Z (“&’)|<L(a+|s|)

ad @) < Le+ 15T lg]

for all £, n € R®, where L= Z(p, L,lp) > 1. Let Q be a domain in SU(3). Given an any
domain Q" € Q and a weak solution u € W;f (£2) to (1.1) with the conditions (5.14), (5.15)

and (5.16), we let u® € WHP (£2)) be the unique weak solution to the following Dirichlet
problem

Z X;(al (V') = 0in €,

1
u' —u € Wyl
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By Theorem 1.1 for the case § € (0, 1], we get the uniform estimate (1.9) for Vru® (see[19,
Section 3.4]). Since the constant C in (1.9) is independent of §, letting § — 0, we conclude
(1.9) for the case 6 = 0. ]

6 Proofs of Lemmas 4.4, 4.5, 4.6 and 4.3

In this section, we prove Lemmas 4.4, 4.5, 4.6 and 4.3. Firstly, we prove Lemma 4.4.

Proof of Lemma 4.4 For any function ¢ € C;°(2) and any / € {1,...,6,7,8}, letting X;¢
be a test function in (1.1), we have

6 6
o—- D i Vo i = [ S awrnxxig.

i=1
Since X; X; = X; X; + [X;, X;], integration by parts implies that

6

6

0=/S;;ai(vHu)XlXi¢dX+/S;i21:ai(VHu)[X,',X1]¢dx
6 6

= —/ Z ai,j(VHu)XszuXi¢dX+/ Zai(VHu)[Xi,Xlwdx.

ij=1 i=1

Since X;X; = X; X; + [X;, X ] again, we have

6 6
0= —/ Y ai j (Vi) X XjuXipdx —/ > ai j (Vi) Xy, X jluXiddx
2 i=1 2 i=1

6
+ / S @ (Vranl X, Xilpdx.
=

By integration by parts again, we conclude (4.7). O
Secondly, we prove Lemma 4.5.

Proof of Lemma 4.5 Let n € C§°(2) be a non-negative cut-off function. For any 8 > 0 and

any [l € {1, ..., 6}, taking ¢ = nf+20P+2|V,u|> X u as a test function in (4.7), we have
6
L! ::/ D ai j (V) X Xqun 2 oP P2 X (Vg Xu)dox
Q.5
i,j=1

6
=—(8+2) / > ai (V) X Xpun M XimvP P2V Xjudx
Q.5
i,j=1

6
—(ﬁ+2)/ E ai,j(VHu)XjX[unﬂ"‘zvﬂ"'lXiU|VHu|2Xludx
Q.=
i,j=1
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6
—f E ai, j (V) [ X1, X jJuX; (P2 0P T2 V> Xju)d x
Q.7
i,j=1

6
+/ > X X1 (ai (Va2 oP 2 Vo P Xjudx =: 1) + 1+ I+ 1. (6.1)
2o

Noting that
Xi (\Vru)* Xgu) = [Vqul* X: Xou + X; (1Vul®) X u,

by the condition (1.2), we have

6

D ai (Ve X Xqu X (|Voul* X u)
i,j.l=1

p=2 ly p=2
> 1o(8 + [Vrul®) T |Vaqul |V Vgl 4 2 (8 + (Vi) 7 |V (|Vqul).
From this, summing L! with respect to [ from 1 to 6, we have

p—2
2

6

oLl > 10/ P P20P 2 (8 4 |Vaul?) 7 |V Vo VaguPdx.
Q

=1

Next, we estimate each item in the right hand side of (6.1) in turn. By the condition (1.3),
we have

p=2
14 sc<p,L,lo)(ﬂ+2)f9nﬁ“|vnn|vﬂ+2(8+|vHu|2) 7 |Vl | Vi Vaguldz,

p=2
14 sC(p,L,zo)(ﬁ+2>/ nP 2P (8 4+ [ Vul?) T | Vqul | Vi Vagu| | Vavldx.
Q

Since
X: P T2 0P T2 V) X u)

= (B + 20T X2\ Vau P Xpu + (B + 2)nP 0P T X 0| Vagu ) X u
6
+2) XpuX; XuXunP P2oP 2 4 P20 002X X,
k=1

one gets
1X; P P20 2 | Vgu | Xpu) |
< 3PPV 2V Vagu| + (B + 20 TP 2 Vau P V|
+ (B + 20" TP V|V, (6.2)
Note that (2.1) shows
[[X7, Xjlul < C(|\Vyu| + |V7ul), VI, j €{l,...,6}.

From this, then by (6.2) and the condition (1.3), we have
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p=2
151 < c<p,L,lo>f NP T2 + | Vagul?) T | Vaqu Vi Vg ||V uldx
Q
p=2

+C<p,L,lo)(ﬂ+2)f P VP2 (8 4 [ Vgul®) 2 | Vagul* | Vuldx

Q

p=2

O LB +2) [ 12 6+ 193?) T (9l Ora0l

Q

=2
+c<p,L,zo)/ 2082 (5 4 (Vau ) T Vagul} Vi Vaguldx
Q

p—2
2

+C<p,L,lo>(ﬂ+2>/ NP VP2 (8 + |Viul?) 7 | Viu|*dx
Q

=2
+c<p,L,zo>(ﬂ+2>/ P2 (5 4 (V5 ) T |Vl Vgl
Q

By (2.1) again, we have

6
1= / > 1Xi Xilai (V)P 0P Vo Xjudx = I + I,
Q-
i=1
where

6 6
Iy =) ) Cl / Xi (@i (V)P 0P 42| Vagu [ X pudx,

i=1 k=1 £
6 8

1, = ZZC;‘J/S;Xk(ai(VHu))nﬁ+2vﬁ+2|VHu|2X1udx.
i=1 k=7

By the condition (1.3) again, we have

p—=2
2

|1} < C(p, L, /nﬁ“vﬂ”(aﬂwuﬁ) |V} |V Vauldx.  (6.3)
Q

Now we estimate / 4{2' We only consider the case that k = 7 below. In the case that k = 8§,
we use the similar method. Since X7 = —[X1, X»], integration by parts yields

1= c, / X (@ (Vp))pdx = —C], / X1, Xa)(@i (Vyu))gdx
Q Q

=C/, / Xo(ai (Vnu) X19dx — C/ / X1 (a; (Viu)) Xo9dx. (6.4)
Q Q
Denote ¢ := 2| Vyu|? X u. Rewriting ¢ = v#2¢ in (6.4), we have
Xip =B+ oxiv+ P2 X0, i e{1,...,6),
which yields
1y =cl,B+2) / VB[ X0 (0 (V) X 10 — X1 (a; (Vi) Xov]dx
Q
+C/, / VP2 [X0(ai (Vi) X1¢ — X1 (ai (Vi) Xa¢ldx = J' + K.
Q

We estimate J! as below. By the condition (1.3) again, we have

p—=2
2

A C(p,L,lo)(ﬂ+2)/Qn’3+2vﬁ“(8+lku|2) |Vl | Vo Vagu| | Vavlda.
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We estimate K as below. By the integration by parts again, we have
K'=cl,B+2) /Q VP a4 (V) [X 10 X269~ X20 X $ldx—C] /Q VP20, (Vau) X7pd x
=: K{ + Ké
For K { the condition (1.4) yields
KL< COpLuda)(B+2) [ 020415 4+ 1Vul?) = 1Vl Vgl V0l
+C(p, L. 1p)(B +2)° /Q PS4 (V)T [Vagul* [Vl | Vagnldix.

For Ké, since

6
X7¢ = (B + D" | VaulP XpuXan + P Vo Xa Xpu + 3 20P 2 Xqu X juXq X ju,
j=1
X7Xj = X;X7+[X7. X1, j€{l,....6}

we have

K= —cl,8+2) f WP 20, (V) [V X X«
Q
-c, / (0742024 (V300) | Vg *] X; Xudx
Q

], f 020820, (V) |9y PLX 7 X ludx
Q
6
—ZCZZZ/ [nﬁ+2vﬁ+2ai(VHu)X1quu] XjX7udx
Q
j=1

6
—2CZ,Z/Qnﬁ”vﬂ”ai(vHu)X,uxju[X7,X,]udx. (6.5)
j=1

Next we use (2.2) and the condition (1.4) to bound the first, third and fifth terms in the right
hand side of (6.5), and use integration by parts and the condition (1.3) to bound the second
and fourth terms. Thus

pT—Z

|K§|sc<p,L,lo)(ﬁ+2>/ PP (8 4+ [ Vaqul?) 7 | Vaqul* | Vrnldx
Q

p=2
+C(p, L, lp) / nPP20PT2(S + (Vu?) T | Vagul? |V Vi | | V7 uldx
Q

"h
|

2
+c<p,L,lo><ﬂ+2>f nPT20PH(S + (Vo ?) 2 | VaguPP | Vo) [Vruldx
Q

p—2
2

+C(p,L,lo><ﬁ+2)/ nP P2 (8 + |V ?) 7 |V} Vol Vruldx
Q

p=2
+C(p,L,lo)/ nPT20PT2(8 + [Vaul?) 7 | Vaul*dx.
Q

Finally, combining all the above estimates together, then by Young’s inequality, we con-
clude (4.8). ]
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Thirdly, based on Lemma 4.5, we prove Lemma 4.6.

Proof of Lemma 4.6 For simplicity we write the left hand side of (4.12) as
-2
M= [ G 9Py Tyl 9 VruP s
Q

where T € (1/2,1). Let B, C € be a ball. Consider the cut-off function n € C§°(2) with
(4.10)and (4.11). Forany 8 > Oandany! € {7, 8}, letting ¢ = B+ +4y7B+D v, 4 * X u
be a test function in (4.7), we have

6
L :/ Z ntEEDTTE Ve (Vi) X X uX; Xjudx
Q.
i,j=1

6
=—((B+2)+ 4)/52 > T PR TEEY Wy Xpua; (Vi) X X juXindx
i,j=1

6
—7(B8 +4)/ Z nf(ﬁ+2)+4vf(ﬁ+4)_lIVHu|4X1ua,-,j(VHu)XjX1uX,~vdx
Q=1
6
—4/ Z nr(ﬁ+2)+4v’(ﬁ+4)|VHu|2XkuX1ua,-,j(VHu)XjX7uXiXkudx
;i k=1
6

—/ E a; j(Vyu)[ Xy, XjluX;pdx
Q.
i,j=1

6
- / Z[Xi, Xi1(a; (Viu))pdx =: K| + K5 + K} + K} + KL. (6.6)
i1

By the condition (1.2), we have
p—2
2

8

Y L= zO/ P PO TEID (5 1 1Vaul?) T | Vul* |V VrulPdx = oM.
Q

=17

Next we estimate each item in the right hand side of (6.6) in turn. For simplicity we write

p=2
K= / T DB, NI (5 4 1Vpul?) T [ Vpul! | VrulP Vi VruPdx.
Q

By the condition (1.3), then by Holder’s inequality, we have

IS}

p—

IK!| < C(p, L, 1o)(B+2) f T FTDHYTEED (5 4 | Vygul?)
Q

X |Vt |Vrul Vo Vrul||Vanldx

p=2
e

. 12
< C(p, L, Ip)(B+2)K'/? (/ nPP2uP (8 4+ | Vau|?) |vHu|4|an|2dx> ,
Q

6.7)
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p—2

|K5| < C(p, L, 1o)(B +2) / nt PFDTGTETDTN (5 4 | Vpu)?) 2
Q

X |Vl |V ul| Vo Vrul | Vagvldx

_ - 1/2
< C(p. L lp)(B+2)K'/? (f T (5 + |VHM|2)FT|VHM|4|VHv|2dX> :
Q
(6.8)
By the condition (1.3), Holder’s inequality and Lemma 4.5, we have
p=2

K4 < Cp. L. Io) / pFBEIHTE (5 49500 P)
Q

X |Vaqu|} | Vru| Ve V|| Ve Vagu|dx
B 12
- p=2
<C(p,L,IpK'? ( f nP TP (8 + | Vau|?) 2 |vHu|2|vHvHu|2dx)
Q
< C(p, L, lp)KV21'2, (6.9)

where [ is denoted as the right hand side of (4.8) in Lemma 4.5, that is,

p—2
2

1:=C(p,L,1o)(B+2)° / P P20 (541 Vaul®) 7 | Vagul* P +1Van|* + 0 Vrn)dx
Q

p=2
+C(p, L, 1p)(B+2)° / PP (S + |Vaul?) T |V} Vau]Pdx
Q

-2
+C(p,L,lo)/ PP (s 4 |vHu|2)"T|vHu|2|vTu|2dx. (6.10)
Q

Combining (6.7), (6.8) and (6.9), we have

3
> Ik < C(p. L. 1)K 21V, 6.11)

i=1

Now we bound K. By Holder’s inequality, we have
21

- p=2
K < </ pt PTDHTEED (5 4 | Vygul?) 2 IVHu|4|VHV7—u|2dx>
Q

1-t

T 2t—1 -t

T p—2 T
x (/ n5*r+4(8+|vHu|2>’T|vHu|4|v7u|ﬁ*r|vHv7u|2dx) = MG
Q
(6.12)

where
T —2 T
G :=/ NG+ Vsl T Vgl Vrul B Vi Vru P,
Q
Letg =2/(1 — 7). By (2.8) with 8 = (¢ — 2)/2 in Lemma 2.3 and (4.9), we have

G < C(p, L, lo)u(r)* / 725 + V) T [V ult 2 | Vy VruPdx
Q
1 4 =
<Cp, L) (14 —— ) u* [ (8 + Vrul?) 2 |Vyul?dx
rq‘FZ B,

< C(p, L,lp) (1 + i) 1B (6 + p(r)®) T ()T, (6.13)
rq+2
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Here we apply Lemma 2.3 to estimate the second inequality in (6.13), and apply (4.9) to
estimate the last inequality.

Next we bound 7 as in (6.10). Fix 1 < y < 2. For the second item of I, by Holder’s
inequality and (4.9), we have

/ B+2pB 44 (5 4 |Vyul?) T [Vagul* (% + Vanl® + n|Vrndax
Q

_2 V4%
<Cp.Llo.y) (”%) 6+ 1)) T u () B (f nVﬁvVﬂ) . (6.14)

B,

For the second item of I, by (4.9), we have
L
/Q PP (8 4 | Vaul?) 7 |Vl * Voo Pdx
-2
< C(p, L, 10)(5 + ()= pu(r)* / PP vy v 2dx. (6.15)
Br

For the finally item of 7, by Holder’s inequality, (2.7) with 8 = 1 in Lemma 2.3 and (4.9),
we have

L
/ PP (S 4+ | Vul?) T |Vl VrulPdx
Q
2y P2 2y 1-1/y
< (f 7T (5 4 [Vau2) T Vo 2IVrul 7 'dx)
Q
p=2 1y
y (/ n? BB (5 4 |Vau?) 2 |VHu|zdx>
Q

1/y
<Cp.L.lo.y) (1+ 1)(8+M(r)) ()| B, | <f nyﬂvyﬁ> . (6.16)
B,

Here we apply Holder’s inequality to estimate the first inequality in (6.16) and apply
Lemma 2.3 and (4.9) to estimate the finally inequality. Combining (6.14), (6.15) and (6.16),
we have

I<Cp. Lo y)(B +226 + 1) T 1n(r)*J, (6.17)

where J is as in (4.13). Combining (6.11), (6.12), (6.13) and (6.17), by Young’s inequality
therein, we have

oM
K/l < —=— 4+ C(p, L, Iy, G\ It < 2 4 C(p. L.y, 2)%"
D |_1000+ (p. L.1o,7,v) T000 T € Lolo. T ) (B +2)

1
(1+ e ,)>|B 1756+ (D) T ()"

Next, we bound K i. Noting that
= (T(B +2) + " P vy Xqu Xin
+ T(B 4 dnT P TEDTN w1 X u X v
+ 4T B+ TBED 7, 42 X u Xqu X X
+ nf(ﬂ+2)+4vf(ﬁ+4)|vHu|4Xi X7u,
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by (2.2) and the condition (1.3), we have
p=2
K| < C(p,L,lo><ﬁ+2>f T PTG T BT (5 1+ |Vyu|®) T |Vaul® | Vrul|Vagnldx
Q
L
+C(p. L. 1) (B+2) / pE R T B (511 u2) T (VP Vrul Vagoldx
Q

L
+C(p, L, lp) / T PTDHTEED (5 1 |Vaul?) T |Vgul* | Vrul| Vo Vaguldx
Q

L
+C(p, L, 1p) / T PTDHTED (5 4 |Vaqu|?) T | Vul® | Vo Vruldx
Q
= K41 + Kap + Ku43 + Kug. (6.18)

Before bounding each item in the right hand side of (6.18), we bound K5. By (2.2) and the
condition (1.3), we have

L
|Ks|<C(p, L, o) / T PTDHTEED (5 1 |\Vul?) T | Vaqul* [ Vrul Vo Vaguldx <K 3.
Q

From this, to bound K5, we only need to bound K43. Now we bound each item in the right
hand side of (6.18). By Holder’s inequality, we have

C(p,L,ly, t, 2 t
Ky < CP Lo T (B +2) (/ |VW|4,,5vﬂdx>
Q

r

243 4r = s-a o\
X [ T e (8 4 [Vagul D) 20 [Viu| T [Vru| T dx
Q

C(p,L,lp,7,y)(B+2) (p=20+v)
< . R R TG
1 r=2 -z
X (/ N (8 + |Vaul*) & |Vgu| ™= fdx) ) (6.19)
Q
Applying the fact IVrul? < 2|VyVnu|?, (2.7) with 8 = —— in Lemma 2.3 and (4.9) to

estimate the final item in the right hand side of (6.19), we have

1 2, P2 1
N (8 + |Vuul?) * |Vzu|T—=dx
Q

2 1/2
< |B,|2 </ N (54 [Vaul?) T |vTu|13*fdx>
Q

pP—
2

i 5 1/2
< C(p, L,lo, 0)|B, 'Ky (f (8 + 1Vul?) |VHu|1rdx)

Br
= 2, 22 =
=C(p, L, lo, DIB/ Ky " (8 + pu(r)”) & pu(r) . (6.20)
Combining (6.19) and (6.20), we have

C(p,L,I, 2
Ky < & ’r”(’” VK 1B TS 4 (D) T (ST

where K, is as in (2.9). Since € Cgo(Br) satisfies (4.10) and (4.11), one gets
C
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For K47, by Holder’s inequality, Young’s inequality and (4.9), we have

T
Ki < C(p. L. 1o, 7. y)(B+2) < / [Mu|2nﬁ/2vf‘/2][n<f‘+“>/2v‘ﬁ+2>/2|wv|]dx>
Q

4 3ed o S22 520 1 -t
X nl—fv = (8 + [Vul?) 2T [ Vgu| T | Vgu| 7 |V vldx

(p— 2)( +1)

<C(p, Ly, T, y)(B+2)(S + nr)?) ()T

1-7
x (f n%(5+|vHu|2)”Tz|vTu|ﬁ|vHv|dx> . 6.21)
Q

Applying Holder’s inequality, (2.7) with 8 = ﬁ in Lemma 2.3 and (4.9) to estimate the
final item in the right hand side of (6.21), we have

4 =2
fg (5 4 |Vagu) T |Vl 7 | Vagoldx
12 =& p2 2 2 \"?
< 1B, 0T (5 + Vo) T |Vrul [ VruPdx
Q

2214 p=2 (2 9 1/2
< C(p, L, 1o, 7)|B,|"?K,; " ([ (6 + IViul®) = |Vpu| 1= dx)

B,
i 2\ 22 2=z
<C(p,L, 1o, DB/ Ky 7 (8 +p(r)?) * pu(ryt=r. (6.22)
Combining (6.21) and (6.22), we have

2—t -2
K <C(p, L, LT, )(B+2DK, 2 1B 776 + )T wrnJT,

where K, is as in (2.9). For K43, Holder’s inequality yields

1

p=2
Ki3=<C(p. L.1o)1* < f nGrmDEDAOCENED (54 1Vpu|?) 7 | Vagul |V ul dx) ,
Q
(6.23)

where [ is as in (6.10). Applying Holder’s inequality to estimate the final item in the right
hand side of (6.23), we have

p=2
/n(Z‘E—1)(ﬁ+2)+6v(2‘r—1)(ﬂ+4)(8+|VHM|2) 7 |V'HM|6|V']’M|261’X
Q
1-t
(/ 771 S+ (Vo) T |VHM| |Vru|T-= rdx)

2t—1

x (/ B+ IR B (5 4 | Vagu D) |VHu|6dx> C (6.24)
Q

Applying Holder’s inequality, (2.7) with 8 = ==
first item in the right hand side of (6.24), we have

/n‘ F5 4 [VauP) E [Vagul® | Vrul 5 dx

1/2
p—2 4t pP—
< B2 + n(rH T u@r)® <fﬂnfr (8 + |Vyul?) T |\Vrul ,dx>

@ Springer



C1--reqularity for p-harmonic functions on SU(3) and... 87

= P2
< C(p, L, lo, DKy " B2 + n()») & n(r)®

2

. 12
2 5= 4t
X (/ ((S—I—IVHMI ) 2 |V7.{u|lfrdx>
B,

< C(p. Lo, DK B + (D) T () (6.25)

Applying (4.9) to estimate the final item in the right hand side of (6.24), we have

202r+1)
Q

B o ul®
|V u|dx

< G+ u(r)'T () / 7PV Pdx < BTG 4 n ()T ()07, (6.26)
Q
Combining (6.23), (6.24), (6.25) and (6.26), we have

_ p=2 _
Kaz < C(p, L, 1o, T, V) K| B, |77 (6 + ()= u(r)*g 71212,

where K, is as in (2.9). For K44, by Young’s inequality, Holder’s inequality and (4.9), we
have

loM p=2
Ka < 2 +C(p, L1y, 7, y) / "D TERD (5 4 | Vul?) T [ Vagu|®dx
1000 Q
T
+ C(p,L,lp,T,y) (/ |VHu|4n’3vﬁ>
Q
T T p=2 —4z 1=t
x (/ 0T 0T (8 4 |Vyqu ) 20 |vHu|%dx)
oM _ p=2
< =+ C(p, Lo, T, B TG + p()D) T u(r)®JT
1000
Finally, combining all the above estimates together, we conclude (4.12). ]
Finally, we use Lemma 4.1 and Remark 4.2 to prove Lemma 4.3.
Proof of Lemma 4.3 We consider two cases: (i) that (4.3) holds true foranindexk € {1, ..., 6}
and (ii) that (4.5) holds true for an index k € {1, ..., 6}. In the case (i), we use Lemma 4.1
with v to conclude (4.4). Similarly, in the case (ii), we use Remark 4.2 with v’ to conclude

(4.6). Below we assume that (4.3) holds true for an index k € {1, ..., 6}.
Let Bg be a ball in Q2. For any ball B, C Q2 with the same center Bg and 0 < r < R, we
consider the cut-off function n € C§°(B,) with (4.10) and (4.11). Recall that

v = min(u(r)/8, max(u(r)/4 — Xyu, 0)).
For any 8 > 0, we write ¥ = n#/>+t2y#/2+2 Note that
Xy = (B/2 4+ 2P/ PP 242X + (B2 + 2P lF TP X0,

For y > 1, by Holder’s inequality and Lemma 4.1, we have
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f Vaew2dx < C(p, L. lo, v)(B +2)2 U WP 20B Vo P
B,

B,

+ / nﬂ+4uﬂ+z|vHv|zdx]

1
< C(p, L, lo, (B +2)* (1 + r%) w18, </ nyﬂvyﬂdx) v
Br
(6.27)

Here we use Holder’s inequality and Lemma 4.1 to get the second inequality in (6.27). By
Lemma 2.8 with p; = 2, we have

W22 dx <Crf |Vuydx, (6.28)
B, B,

where O = 10 is the homogeneous dimension of SU(3). Here for any ball B, we use [24,
Theorem V.4.1 on P69] to control its volume, that is, C lrQ < |B/| < Cer. Combining
(6.27) and (6.28), we have

-2
( (nv)QWz‘”dx) <C(p,L,lo,y)(ﬁ+2>4(1+r2>u<r>4( (nv)yﬂdx)y
B,
(6.29)

Now we choose y = % % suchthat 1 <y <

i+1
(%) —1>,l=0,1,2,

Since yBis1 = 525 (Bi +4), by (6.29) with B = ;, we have

% = %. For simplicity we write

Bi =40

P

0-2
( (nv)Vﬁf+'dx> C < LB+ A+ D
By

1
x ( (nv)yﬁ"dx>y i=0,1,2,.... (6.30)
B,
Denote
’ vBi %51'
M; = ][ — M) ax| Li=o0.1.2....
B \ (1 +r?)3pu(r)
Thus (6.30) becomes
0B;
My < CiM; @i | =0,1,2,..., (6.31)
where

__ o __40
Ci = C(p. L,1o) VT (B +2) @Vt
For any natural number N > 1, we iterate (6.31) with respect to i from O to N — 1. Thus

(L)Nm
My < C(p, L,lo)Mp\9~"/ v,
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Letting N — o0, one gets

0-2

0-1 % 407
sup (—"” )sC(p,L,lo>(1+r2)W ][ ( iAd ) dx) .
B, \M(r) B \u(r)

Recall that the cut-off function € C§°(B,) satisfies (4.10) and (4.11). Then the assumption
(4.3) implies that

(\

0-
supv < C(p, L,lp)(1 +r )T Q u(r). (6.32)
B2

We choose 6 = 0(p, L, ly, R) > 0 small enough such that

o—

ot C(p. L.1o)'(1 + R?) %0 /16,

Then (6.32) becomes
supv < u(r)/16,
B2
which yields that X;u > 3u(r)/16 in B, . We conclude (4.4). ]

7 A class of compact connected semi-simple Lie group

In this section, we consider a class of compact connected semi-simple Lie group LG, which
was first proposed by Domokos-Manfredi [5]. The semi-simple Lie group LG is connected
and compact. We notate £G as its Lie algebra. The inner product on £G satisfies properties

(gXg ', g¥e ) = (X,Y), VgelG, and X, Y € LG,
and
([X,Y],Z)=—(Y,[X,Z]), VX,Y,ZeLG.

Let LS be the maximal torus of LG. We notate £S as its Lie algebra. Owing to that £S is
a maximal commutative subalgebra of £G, we call it as the Cartan subalgebra. Denote by
R the set of all roots, where we say that R € LS is a root if R # 0 with the root space
LGr # {0). Here LGr = {Z € LGc : [S, Z] =i(R, S)Z, VS e LS}.

According to [5, Section 5], we can define the orthogonal complement of £S denoted
by H, and we can choose its orthonormal basis satisfying Property 7.1. We notate By =
{X1, Xo, ..., X2,} as the orthonormal basis of H.

Proposition 7.1 (i) V1 <k <n, 3R, € R s.t. span{Xok_1, X2k} = Hr,-

(i) [Xok—1, X2kl = =Rk, [Xok, Rl = — | Re | Xok—1, [Ris Xok—11 = | Rell* Xox.
(i) [X7, Xm] € H when (I, m) # 2k — 1, 2k).

(v) {[X2k—1, SI, [Xok, S} C Hg, when S € LS.

Based on properties of B3, a basis of LS can be selected, that is, {R;, R>, ..., Ry}. For
any function v, we denote by

Vyv = (Xv, Xov, ..., X2,), Vgv=(Riv, Rov,..., Ryv)
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the horizontal and vertical gradients. Moreover, from Property 7.1, we draw the conclusion

2n
[Xi, X;]= ZA“‘)X + Zeﬁ’}R,, [Xi, Rj1=>" 0 Xs. (7.1)
k=1
Here A(k) 0(1) and 19(k) are constants.
leen a domam Q C LG, we consider the equation
2n
> X (@i (Viu) =0 in Q. (7.2)
i=1
Here Viyu = (Xqu, ..., Xp,u) is the horizontal gradient of u, and the vector function
a = (ay, ..., ay,) satisfies the conditions:
da; (&)
Z L iy = 1o + 1€ T 1P, (7.3)
i,j=1 08
j=
d -2
08 < L +1eP"T, (7.4)
0
i,j=1
lai (&) < LG + €117 IEI (7.5)

forall &, n € R where0 <8 < 1,1 < p <ooand0 < [p < L. Based on the conclusion
(7.1) and above conditions, our method can be expended to the semi-simple Lie group LG.
We list our main results for LG and omit the proof.

Theorem 7.2 Suppose that the conditions (7.3), (7.4) and (7.5) hold for some ly, L and such
1< p<286=>01Ifuce W#’l}m(Q) is a weak solution to (7.2), then Vyu € Cy;.(R2)
for some a € (0, 1) depending on ly, L and such p, 8. Moreover, for all B,, C 2 and any
0 <r <ryg we have

1
o p
max oscp, Xju < C ( 4 ) ( 6+ |vHu|2)5dx> , (1.6)
1=1<2n ro By,

where 0 < a < 1 depends on p, ly and L, and the constant C > O depends on p, ly, L and
ro.

Consequently, when 1 < p < 2, the horizontal gradients of p-harmonic functions on LG
have the Holder regularity and satisfy (7.6).

Acknowledgements The author would like to express his gratitude to Yuan Zhou and Fa Peng for their fruitful

discussions. This work is supported by the National Natural Science Foundation of China (No. 12025102,
No. 11871088).

Appendix

The following lemma is [13, Lemma 4.7], which will be used to prove Lemma 3.3.

Lemma 8.3 For a non-negative sequence {y;};=0,1,2,..., Yi+1 < cobéyll"'s implies that

Loy -1 Ute)l=1_ 1
- c( +e{) b o s (1+£)[
Vi =€ 0 Yo

)
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where co > 0, 8>0andbo>1

L _1
Moreover, if yo < 6 = ¢, ”bo o , then y; < 6b, *. Consequently, y — 0 as | — oo.

Proof of Lemma 3.3 For any b € (0, 1), letting p, = § + 2h+1, o = pn, P = ppy1 and
kn =k +bH — b" H in (3.1), we have

4 2 1-2/
|Vaqu)?dx < 72/ u—kPPdx + x*1AL 172
A (Pn = Pn+1) At
22h+4 ) s
< Z LA L IH 4 PIAf 1 (8.7)

where h =0,1,2,... andg > Q = 10.

The following inequality comes from [12, Lemma 2.3]

Cp|B,|'~/2
1B\ AL,

A

_L
(1 —hlAf,I7e <

/ |Vruldx. (8.8)
AV

Letting | = k41, k = kj, and p = pj41 in (8.8), we have

1 Cppg1|Byy, |12
it = k)AL, |70 = — 2 R |Vaguldx.
| Ph+1 \ kh,ph+1| A/‘h~/’h+l\A/‘h+lvPh+l
(8.9)
The condition that |Ak+ p| < 01|B,| shows that
+
lag . | S TAL 1= C29011By,, .
From this, we choose #; small enough such that C 296, < 1/2. Then (8.9) becomes
1-L Cpon+1
G = HIAT "o < |Vuldx. (8.10)
Kh+1,Ph+1 | Ph+1|l/Q Al:rh

Ph+1

Applying Hoélder’s inequality to (8.10), then combining (8.7), from the assumption that
H =supu(x) —k > xpl_Q/q, we have

Bﬂ
h+1 h4252 172 -3 . + 2
b —b")H |Akh+1 Ph+1| - C|Akhaﬂh+l| IVaul“dx
kpspp+1
2h 2
2-2 (27y .2 X 2
<C A g | ——1A e+ Z— | H
| kn, ﬂhl ( pz | kh,/)hl H2
-2

<P+ H AL

Here for any ball B, we use [24, Theorem V.4.1 on P69] to control its volume, that is,
Ci1p2 <|B,| < C2p2. Thus

I 1
Af o AF =7
| kh+lu0h+l| < C2h(l _ b)—lb—h—l(l + )/)% I khaPh' ' 8.11)

Denote
|AE |AF |
jh = —P and g = —L- < C6;.
Y 00
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From (8.11), by Lemma 8.3 with y; = uy, there exists 01 = 01(y, ¢, b) € (0, 1) such that
lim w;, =0, that is, |Ak+pr/2|_0 O

h—o0

Proof of Lemma 3.4 The following inequality comes from [12, Lemma 2.3]

_1  Cp|B,|'"Ve
(I —Kk)A] |1 < %/ |Vyuldx. (8.12)
|Bp \ Ay, AT
Denote
— - — + =
n1 = s;lfu(x) >k, wi=pu; —kand D; = A p/2\AM1—2}’+‘1 p/z’t 1,2,....

Letting ] = puy — 2’,‘%1, k= — 5+ and p — p/2in (8.12), we have

1-1/0 1-1/0
w Cp|B
2t+‘1 T < _Crl ”j' \Vouldx, 1 =1,2, ...
2T | B2\ Aulf%ﬁﬂl
(8.13)
The assumption that |A,; o /2| > t|B)2| implies that
+ + + + _
’Au e el T ’A*‘zwg,p/z = ’A’w’ﬂ‘ = (= DIBop2l,
which, together with Holder’s inequality to (8.13), yields
2-2/0Q
wyp 2|, o C 2
A w < —|D \% . .14
<2r+1) =3 p/2 =2 "/Dt| nul“dx .14)
Letting k = 1 — 2,,,0 — p/2and p — p in (3.1), we have
4y wi |2 5| 4 1-2/q
|VHu|2dx < —/ ‘u — (Ml — —)‘ dx +x“|AT
/A* "y (p)? ", 21 =5t
H1= o p/2 H1= 51 P
2/q ) 1-2/q
A i (i = )07 |4
< —|A » — - — A w
=¢ [pz O R R B T
2 1-2/q
< 2Q/q—2(ﬂ> 204t 1
=C [Vp ) T A, (8.15)
Below we may assume that
o' < wi /2 = (- 0)/2', (8.16)

otherwise we have
z—toul _ ) < )(pl_Q/q,

that is,

0<2 (k - supu(x)) + xp' =94,
B,
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Thus (3.2) holds. Combining (8.16), (8.15) and (8.14), we have

2-2/0 ‘ N

e _cdty)
=5 .0/2 2

|D|p?@/172. (8.17)

AN e
W= 5=3-P/

Summing (8.17) with respect to ¢ from 1 to s — 3, we have

2-2/0
_ C(l+y)

= T|Bp/2|2_2/g-

_ +
(s=2) ‘Am—szQ /2

Here for any ball B, we use [24, Theorem V.4.1 on P69] to control its volume, that is,
Ci1p? < |B,| < C2p?. Thus

+

‘ M_st%rp/z |Bp/2|-

- (C(1+y))Q/(2Q2)
“\r2(s —2)

Denote

<C(1 + y)>Q/(2Q—2)
6 = .

2(s = 2)

By (8.16) and Lemma 3.3 with b = 1/2 and k = pt1 — 3¢5, there exists s = 5(y, ¢, 7) > 0
such that

s+1 —s+1

supu(x) < pup —27°"wy =supu(x) —2 supu(x) —k
Bpj4 By By
Thus (3.2) holds true. O
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