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Abstract
In this paper, we consider biconservative and biharmonic isometric immersions into the
4-dimensional Lorentzian space form L

4(δ) with constant sectional curvature δ. We obtain
some local classifications of biconservative CMC surfaces inL4(δ). Further, we get complete
classification of biharmonic CMC surfaces in the de Sitter 4-space. We also proved that there
is no biharmonic CMC surface in the anti-de Sitter 4-space. Further, we get the classification
of biconservative, quasi-minimal surfaces in Minkowski-4 space.

Keywords Biconservative surfaces · Constant mean curvature · Lorentzian space forms ·
Quasi-minimal surfaces · de Sitter space

Mathematics Subject Classification 53C42 (Primary); 53B25

1 Introduction

After Eells and Lemaire defined k-harmonic maps between Riemannian manifolds for k =
2, 3, . . . as a natural extension of harmonic maps in [6], the particular case of k = 2 has taken
the attention of many geometers in the last three decades, [2, 3, 9, 11, 16]. Namely, a map
ψ : (�, g) → (N , g̃) between two semi-Riemannian manifolds is said to be biharmonic if
it is a critical point of the bi-energy functional defined by
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E2(ψ) = 1

2

∫
�

|τ(ψ)|2vg,
where vg is the volume element of g and τ(ψ) = −tr∇dψ is the tension field of ψ .

In [12, 13] Jiang obtained the first and second variational formulas of E2 and concluded
that ψ is biharmonic if and only if the corresponding Euler–Lagrange equation

τ2(ψ) := �τ(ψ) − tr R̃(dψ, τ(ψ))dψ = 0 (1.1)

is satisfied, where τ2 is called the bitension field. We want to note that a harmonic map
is trivially biharmonic because it is well-known that a map φ is harmonic if and only if
τ(φ) = 0, [7]. So, it is natural and interesting to investigate non-harmonic biharmonic maps,
which are called proper biharmonic maps, [16].

On the other hand, a map ψ : (�, g) → (N , g̃) satisfying the condition

〈τ2(ψ), dψ〉 = 0, (1.2)

that is weaker than (1.1), is said to be biconservative. Note that an isometric immersionψ = x
is biconservative if and only if the tangential part of τ2(x) vanishes identically, that is

(τ2(x))
T = 0. (1.3)

In the last decade, some authors have obtained results on biconservative submanifold
to understand geometrical properties of biharmonic maps, [1, 8, 9, 11, 15, 17, 18]. For
example, a classification of quasi-minimal biconservative surfaces in 4-dimesional semi-
Riemannian space forms of index 2 was obtained in [18]. Further, in [15], Montaldo et. al.
studied biconservative isometric immersions into 4-dimensional Riemannian space-forms
where they considered constant mean curvature (CMC) surfaces. They proved the non-
existence of proper biconservative CMC surfaces when the space form is not flat before
they show that a biconservative CMC surface in the Euclidean 4-space must necessarily be a
right cylinderwith appropriately chosen base curve.Wewould like to notice that throughthout
this paperwe use the notion of ‘proper’ biconservative submanifolds for submanifoldswhich
has no open part with parallel mean curvature vector.

In this paper, we prove some theorems which shows that the situation is very different
when the space form is assumed to be Lorentzian. In Sect. 3, we obtain complete classification
of biconservative CMC surfaces in the Minkowski 4-space. In Sect. 4, we consider such
surfaces in non-flat Lorentzian space forms. We also obtain a class of biharmonic surfaces
in 4-dimensional de-Sitter space.

2 Preliminaries

Let En
s denote the semi-Euclidean n-space with index s whose metric tensor is given by

g̃ = 〈·, ·〉 = −
s∑

i=1

dxi ⊗ dxi +
n∑

j=s+1

dx j ⊗ dx j ,

where (x1, x2, . . . , xn) is a Cartesian coordinate system in Rn . We denote the n-dimensional
Lorentzian space form with constant sectional curvature δ ∈ {−1, 0, 1} by Ln(δ). In fact, we
have

L
n(δ) =

⎧⎨
⎩

S
n
1 if δ = 1,

E
n
1 if δ = 0,

H
n
1 if δ = −1,
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Biconservative surfaces inL4(δ) 21

where Sn1 andH
n
1 stand for the n-dimensional de Sitter and anti-de Sitter spaces, respectively.

2.1 Submanifolds of Lorentzian space forms

Let M be anm-dimensional semi-Riemannian submanifold ofLn(δ). We put∇ and ∇̃ for the
Levi-Civita connection of M and Ln(δ), respectively. Then, Gauss and Weingarten formulas
are given by

∇̃XY = ∇XY + h(X , Y ) (2.1)

and

∇̃X ξ = −Aξ (X) + ∇⊥
X ξ, (2.2)

respectively, for any vector fields X , Y tangent to M and ξ normal to M , where h is the
second fundamental form, A is the shape operator and ∇⊥ is the normal connection. Denote
the curvature tensor of M and L

n(δ) with R and R̃, respectively, and let R⊥ stand for the
normal curvature tensor of M (in L

n(δ)). Then, the integrability conditions, called Gauss,
Ricci and Codazzi equations,

R(X , Y )Z = δ(〈Y , Z〉X − 〈X , Z〉Y ) + Ah(Y ,Z)X − Ah(X ,Z)Y , (2.3)

R⊥(X , Y )ξ = h(X , AξY ) − h(Aξ X , Y ), (2.4)

(∇̄Y h)(X , Z) = (∇̄Xh)(Y , Z) (2.5)

are satisfied, where the covariant derivative ∇̄h of h is defined by

(∇̄Xh)(Y , Z , η) = ∇⊥
X h(Y , Z) − h(∇XY , Z) − h(Y ,∇X Z).

Moreover, the second fundamental form and the shape operators are related by

〈h(X , Y ), ξ 〉 = 〈Aξ X , Y 〉. (2.6)

On the other hand, the mean curvature vector H of M is defined by

H = 1

m
trh

and its norm ‖H‖ = |〈H , H〉|1/2 is called the mean curvature of M . Note that if ‖H‖ = 0
and H 
= 0, then M is said to be quasi-minimal.

In the remaining part of this subsection, we consider the case m = 2 and n = 4. In this
case, ifM has index 1, then there exists a semi-geodesic local coordinate system as following:

Proposition 2.1 ([5]) Let M be a Lorentzian surface with the metric tensor g. Then, there
exists a local coordinate system (s, t) such that

g = −(dt ⊗ ds + ds ⊗ dt) + 2 f ds ⊗ ds. (2.7)

Furthermore, the Levi-Civita connection of M satisfies

∇∂t ∂t = 0,

∇∂t ∂s = ∇∂s ∂t = − ft∂t ,

∇∂s ∂s = ft∂s + (2 f ft − fs)∂t (2.8)

We also want to state the following well-known lemma (See, for example, [14]):
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Lemma 2.2 Let M be a Lorentzian surface, p ∈ M and A be a symmetric endomorphism of
TpM. Then, by choosing an appropriated base for TpM, A can put into one of the following
three canonical forms:

Case (i). A =
[
a1 0
0 a2

]
with respect to {v1, v2},

Case (ii). A =
[
a1 1
0 a1

]
with respect to {u1, u2},

Case (iii). A =
[
a1 b
−b a1

]
with respect to {v1, v2}

Note that b 
= 0 and {v1, v2} is an orthonormal base while {u1, u2} stands for a pseudo-
orthonormal base, that is,

〈u1, u2〉 = −1, 〈u1, u1〉 = 〈u2, u2〉 = 0.

On the other hand, if M is a surface in L4(δ), δ = ±1, we are going to put ∇̂ for the Levi-
Civita connection of E5

β , where β = 3−δ
2 . Consider an isometric immersion x : (�, g) ↪→

L
4(δ) with x(�) ⊂ M . Let i : L4(δ) ⊂ R

5 be the inclusion and put x̂ = i ◦ x . Then, we have
ĥ(X , Y ) = i∗(h(X , Y )) − δg(X , Y )x̂, (2.9)

where ĥ denotes the second fundamental form of M in E
5
β .

2.2 Biconservative submanifolds

In this subsection, we give a summary of well-know facts about biconservative submanifolds
in semi-Riemannian space-forms.

Let x : (�, g) → (N , g̃) be an isometric immersion between semi-Riemannian mani-
folds and put M = x(�). By splitting τ2(x) into its tangential and normal components and
considering (1.1), one can obtain the following proposition, (See, for example, [15]).

Proposition 2.3 [15] x is biharmonic if and only if the equations

mgrad ‖H‖2 + 4trA∇⊥· H (·) + 4tr(R̃(·, H)·)T = 0 (2.10)

and
− �⊥H + trh(AH (·), ·) + tr(R̃(·, H)·)⊥ = 0 (2.11)

are satisfied, where m is the dimension of M and �⊥ is the Laplacian associated with ∇⊥.
Note that (1.3) implies

Proposition 2.4 [15] x is biconservative if and only if the equation (2.10) is satisfied.

Now, we consider the case (N , g̃) = L
n(δ) and assume that M is a CMC surface. In this

case, we have ‖H‖ = const. and

R̃(X , H)Y = −δ〈X , Y 〉H
whenever X , Y are tangent to M . Therefore, one can conclude that M is biconservative if
and only if

trA∇⊥· H (·) = 0. (2.12)

Moreover, the equation (2.11) turns into

− �⊥H + trh(AH (·), ·) − δmH = 0 (2.13)
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Biconservative surfaces inL4(δ) 23

Remark 2.5 If M is a submanifold of Ln(δ) with parallel mean curvature vector, then the
equation (2.10) is trivially satisfied.We would like to note that surfaces inLn(δ)with parallel
mean curvature vector are classified in [10] (See also [4]).

Before we present ourmain results in the next sections, wewould like to give the following
characterization of biconservative surfaces with non-zero CMC.

Lemma 2.6 Let M be a proper biconservative surface in L
4(δ) with non-zero CMC and

consider the orthonormal frame field {v3, v4} of its normal bundle such that H = cv3. Then,
we have two cases:

Case 1: The shape operator Av4 has the matrix representation[
0 1
0 0

]
(2.14)

with respect to an appropriately chosen pseudo-orthonormal frame field {u1, u2} of
the tangent bundle of M.

Case 2: Av4 satisfies Av4X = 0 whenever X is tangent to M.

Proof Let M be a proper biconservative surface with CMC. Define the 1-form ω34 by

ω34(X) = 〈∇̃Xe3, e4〉 (2.15)

Then, (2.12) takes the form
tr(〈∇⊥· v3, v4〉Av4(·)) = 0 (2.16)

Since Av4 is symmetric, it can be put into one of three forms given in case (i), (ii) and (iii) of
Lemma 2.2. We are going to consider these cases separately. Note that in each of these cases
we have

trAv4 = 0

because H = cv3.
Case (i). In this case, there is an orthonormal frame field {v1, v2} such that

Av4 =
[
k1 0
0 −k1

]

for a smooth function k1. Thus, (2.16) turns into

εω34(v1)k1v1 − ω34(v2)k1v2 = 0,

where we put ε = 〈v1, v1〉 = ±1. Therefore, since M is proper biconservative, the open
subset O = {p ∈ M |k1(p) 
= 0} must be empty. Consequently, we have Case 2 of the
Lemma.
Case (ii). In this case, there is a pseudo-orthonormal frame field such that

Av4 =
[
k1 1
0 k1

]

for a smooth function k1. By considering trA4 = 0, we obtain Case 1 of the lemma.
Case (iii). There is an orthonormal frame field {v1, v2} so that

Av4 =
[
0 −γ

γ 0

]
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24 A. Kayhan, N. C. Turgay

for a smooth non-vanishing function γ because tr A4 = 0. In this case, (2.16) becomes

εω34(v1)γ v1 + ω34(v2)γ v2 = 0

which gives ω34(v1) = ω34(v2) = 0 because γ 
= 0. However, this is not possible unless H
is parallel. ��

3 CMC surfaces in E
4
1

In this section, we obtain the complete local classification of biconservative CMC surfaces
in the Minkowski 4-space E4

1.

3.1 Examples of biconservative surfaces

First, we obtain the following family of biconservative surfaces in E
4
1 which has no counter

part in the Euclidean 4-space.

Proposition 3.1 The ruled surface

x(s, t) = α(s) + tβ(s) (3.1)

has constant curvature c and it is proper biconservative if α, β satisfy

〈β, β〉 = 0, 〈β ′, β ′〉 = c2, 〈α′, β〉 = −1, (3.2)

where α is a curve and β is a vector valued function.

Proof Let M be a surface given by (3.1) and α, β satisfy (3.2). We define functions
a1, a2, a3, a4 by

a1 = 〈α′, α′〉, a2 = 〈α′, β ′〉, a3 = 〈α′, β ′′〉, a4 = 〈β ′′, β ′′〉.
Then, because of (3.2), u1 = ∂t and u2 = ∂s + f ∂t form a pseudo orthonormal frame field
for the tangent bundle of M , where f is the smooth function given by

f (s, t) = 1

2

(
c2t2 + 2ta2(s) + a1(s)

)
. (3.3)

Also, we consider the orthonormal frame field {v3, v4} of the normal bundle of M , where

v3 = −1

c
(β ′ + ftβ).

By a direct computation we get

∇̃u1v3 = c∂t , (3.4)

h(u1, u1) = 0, H = −h(u1, u2) = cv3, (3.5)

A4(u1) = 0, (3.6)

where (3.6) is obtained by combining (3.5) with (2.6). Note that the second equation in (3.5)
yields that M has CMC. On the other hand, (3.4) and (3.6) implies

trA∇⊥· H (·) = −A∇⊥
u1

H (u2) − A∇⊥
u2

H (u1) = 0
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Biconservative surfaces inL4(δ) 25

which yields that M is also biconservative because (2.12) is satisfied. By a further computa-
tion, we get

∇̃∂s H =
(
2a22 − a1 + 2a3 − 2a′

2

2
+ a2

(
2c2 − 1

)
t − 1

2
c2

(
1 − 2c2

)
t2

)
u1 − u2

+
√
a22

(
c2 − 2

) + a1 − 2a3 + a4 + 2a2
(
c2 − 1

)2
t + (

c3 − c
)2

t2 v4

which yields that H is not parallel. ��
Before we continue, we want to present an explicit example.

Example 3.2 The vector valued functions

β(s) = 1√
2
(cosh(bs), sinh(bs), cos(as), sin(as))

α(s) = 1√
2

(
1

b
sinh(bs),

1

b
cosh(bs),−1

a
sin(as),

1

a
cos(as)

)

satisfies the conditions given in (3.2) for c = √
(a2 + b2)/2. Therefore, the CMC surface

given by

x(s, t) = 1√
2

(
t cosh(bs) + 1

b
sinh(bs), t sinh(bs) + 1

b
cosh(bs),

t cos(as) − 1

a
sin(as), t sin(as) + 1

a
cos(as)

)

is biconservative because of Proposition 3.1.

In the next two propositions, we obtain two families of biconservative cylinders in E
4
1.

Note that there exists a similar biconservative surface family in the Euclidean 4-space (See
[15, Proposition 5.2]).

Proposition 3.3 Let M be the cylinder in E4
1 given by

x(s, t) = (α1(s), α2(s), α3(s), t)

for an arc-length parametrized curve α = (α1, α2, α3) in E3
1 with the non-null normal vector

field. Then M is proper biconservative and CMC if its curvature is constant and torsion is
non-vanishing.

Proof By the hypothesis, the vector fields v3 = (n1(s), n2(s), n3(s), 0) and v4 =
(b1(s), b2(s), b3(s), 0) form a local orthonormal frame field for the normal bundle of M ,
where n = (n1, n2, n3) and b = (b1, b2, b3) denote unit normal and binormal vector fields
of α, respectively. By a direct computation, we obtain

H = ε1
κ

2
v3, A4 = 0, ∇⊥

∂s
v3 = ε2τv4

for some ε1, ε2 ∈ {−1, 1} depending on the causality of n and b, respectively, where κ and
τ are the curvature and torsion of α, respectively. Now, if κ is constant then M is CMC. In
this case, A4 = 0 implies (2.12). ��

By a similar way, we have
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26 A. Kayhan, N. C. Turgay

Proposition 3.4 Let M be the cylinder in E4
1 given by

x(s, t) = (t, α1(s), α2(s), α3(s))

for anarc-length parametrized curveα = (α1, α2, α3) inE3. Then M is proper biconservative
and CMC if its curvature is constant and torsion is non-vanishing.

We also want to give the following example of quasi-minimal biconservative surface in
E
4
1.

Example 3.5 [2] Consider the surface in E
4
1 given by

(u, v) = (ψ(u, v), u, v, ψ(u, v)) (3.7)

for a smooth function ψ . A direct computation yields that its mean curvature vector is

H = ψuu + ψvv

2
(1, 0, 0, 1)

and it satisfies AH = 0. A further computation shows that (2.12) is satisfied and H is not
parallel if ψuu + ψvv is not a constant.

3.2 Local classification theorem

In this subsection, first we consider two cases given in Lemma 2.6 separately in order to
obtain the complete classification biconservative CMC surfaces in the Minkowski 4-space.

Proposition 3.6 Let M be a proper biconservative surface in E
4
1 satisfying the Case 1 of

Lemma 2.6. Then, it is locally congruent to the surface described in Proposition 3.1.

Proof Assume that M satisfy the condition given in the Case 1 of Lemma 2.6 for the frame
field {u1, u2, v3, v4} and let ω34 be defined as (2.15). We consider a local coordinate system
(s, t) defined on the open setO ⊂ M satisfying the conditions given in Proposition 2.1 such
that u1 is proportional to ∂t . Let x(s, t) be a local parametrization ofO ⊂ M . Then, we have

Av4(ũ1) = 0 and Av4(ũ2) = γ ũ1

for a non-vanishing smooth function γ , where we define ũ1, ũ2 by

ũ1 = ∂t , ũ2 = ∂s + f ∂t . (3.8)

Note that (2.12) implies
ω34(u1) = 0. (3.9a)

and (2.6) gives

h(ũ1, ũ1) = h311v3, (3.9b)

h(ũ1, ũ2) = cv3, (3.9c)

h(ũ2, ũ2) = h322v3 − γ v4 (3.9d)

for some functions h311 and h322. We combine (3.9) with the Codazzi equation (2.5) for
X = u2, Y = Z = u1 to get

u2(h
3
11) = −2〈∇u2u1, u2〉h311, (3.10)

h311ω34(u2) = 0. (3.11)
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Biconservative surfaces inL4(δ) 27

Since H is not parallel, (3.9a) and (3.11) imply h311 = 0. Consequently, (3.9b) and (2.8) give

∇̃∂t ∂t = 0

which yields xtt = 0. Therefore, we have (3.1) for some α, β. By considering (2.7), we get
the first and the third equations in (3.2). On the other hand, by a direct computation, we
obtain

H = −(β ′ + ftβ)

which yields the second equation of (3.2). Hence, O is congruent to the ruled surface given
in Proposition 3.1. ��
Proposition 3.7 Let M be a proper biconservative surface in E

4
1 satisfying the Case 2 of

Lemma 2.6. Then, it is locally congruent to one of two cylinders described in Propositions 3.3
and 3.4.

Proof Assume that M satisfy the condition given in the Case 2 of Lemma 2.6 for the frame
field {v3, v4} of the normal bundle of M , p ∈ M and let ω34 be the 1-form defined as (2.15).
Since M is proper biconservative, we have ω34 
= 0 outside of a subset of M with empty
interior. Note that H = 2cv3 implies trAv3 = 2c. We are going to consider three canonical
forms of Av3 given in Lemma 2.2 separately.
Case (i). There is an orthonormal frame field {v1, v2} such that

Av3 =
[
k1 0
0 2c − k1

]

for a smooth function k1. We assume 〈v2, v2〉 = 1 and put ε = 〈v1, v1〉 ∈ {−1, 1}. In this
case, by a direct computation using the Codazzi equation (2.5) for X = v1, Y = Z = v2 and
X = v2, Y = Z = v1, we obtain

(2c − k1)ω34(v1) = 0, (3.12a)

εk1ω34(v2) = 0, (3.12b)

v1(k1) = 2cφ2, (3.12c)

v2(k1) = −2cφ1, (3.12d)

where we define φi by ∇vi v1 = φiv2.
First assume ω34(v1) = 0 on M . Then, ω34(v2) 
= 0 and (3.12b) implies k1 = 0. On the

other hand, if ω34(v1) 
= 0 on an open subsetO of M , then (3.12a) and (3.12b) imply k1 = c
and ω34(v2) = 0, separately. In both cases, (3.12c) and (3.12d) yields that φ1 = φ2 = 0
on M . Therefore, we have ∇vi v j = 0, i, j = 1, 2 which implies the existence of a local
coordinate system (s1, s2) such that v1 = ∂s1 , v2 = ∂s2 defined in a neighborhood Np of
p. Let x = x(s, t) be a local parametrization of Np . We put s1 = s, s2 = t if ψ2 = 0 and
s1 = t, s2 = s if ψ1 = 0. In both cases, the Gauss formula turns into

∇̃∂t ∂t = 0, ∇̃∂t ∂s = 0

which gives xtt = xts = 0. Therefore, we have

x(s, t) = α(s) + tβ0 (3.13)

for a R
4-valued function α and constant vector β0 ∈ E

4
1. By considering that {∂s, ∂t } an

orthonormal frame field, we obtain that Np is congruent to one of two cylinders given in
Propositions 3.3 and 3.4.
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Case (ii). Assume that there is a pseudo-orthonormal frame field {u1, u2} such that

Av3 =
[
c 1
0 c

]
. (3.14)

In this case, by combining Av4 = 0 and (3.14) with (2.6), we get

h(u1, u1) = 0, h(u1, u2) = −cv3, h(u2, u2) = −v3.

By considering the Codazzi equation (2.5) for we obtain ω34 = 0 which is not possible.
Case (iii). Assume that there is an orthonormal frame field {v1, v2} such that

Av3 =
[

c γ

−γ c

]

and 〈v1, v1〉 = −1, where γ is a smooth non-vanishing function. Note that we have

h(v1, v1) = −cv3, h(v1, v2) = −γ v4, h(v2, v2) = cv3.

In this case, we use the Codazzi equation (2.5) to get

cω34(v1) + γω34(v2) = γω34(v1) − cω34(v2) = 0

However, since γ is non-vanishing, these equations give ω34 = 0 which yields a contradic-
tion. ��

By combining Propositions 3.6 and 3.7, we obtain the following classification theorem.

Theorem 3.8 A surface M in E
4
1 has non-zero CMC and it is biconservative if and only if it

is locally congruent to one of the following four types of surfaces.

(i) A surface with parallel mean curvature vector,
(ii) A ruled surface described in Proposition 3.1,
(iii) A cylinder described in Proposition 3.3,
(iv) A cylinder described in Proposition 3.4.

Remark 3.9 The surfaces given in the case (ii) and case (iv) of Theorem 3.8 is not proper
biharmonic. On the other hand, if M is a cylinder given in the case (iii) of Theorem 3.8, then
it is biharmonic if and only if its profile curve is appropriately chosen (See [2, Theorem 5.1]
and [3, Theorem 5.1]).

Now, let M be a quasi-minimal surface in E4
1 and consider the pseudo-orthonormal frame

field {u3, u4} of its normal bundle such that

H = u3.

Note that this equation implies trAu3 = 0 because of (2.12). Therefore, since M is Rieman-
nian, we can choose orthonormal tangent vector fields v1, v2 so that

Au3 =
[
k1 0
0 −k1

]
.

for some smooth functions k1. Consequently, the biconservativity equation (2.12) implies

0 = trA∇⊥· H (·) = ψ1k1v1 − ψ2k2v2

where we define ψ1, ψ2 by

∇⊥
vi
u3 = ψi u3.
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Therefore, if M is proper biconservative and quasi-minimal if and only if

AH = 0.

By using the exactly same method in [2, Sect. 6], we observe that M is locally congruent
to the surface given in Example 3.5. Therefore, we have

Proposition 3.10 A quasi-minimal surface M inE4
1 is CMC and proper biconservative if and

only if it is locally congruent to the surface given in Example 3.5 for a smooth function ψ

such that ψuu + ψvv is not a constant.

4 CMC surfaces in S
4
1 andH

4
1

In this section, we consider CMC surfaces in non-flat Lorentzian space forms. First, we obtain
the following classification theorem.

Theorem 4.1 Let M be a surface in L
4(δ), δ = ±1. Then, M has non-zero CMC and it is

proper biconservative if and only if it is locally congruent to the ruled surface parametrized
by (3.1) for some α, β satisfying

〈α, α〉 = δ, 〈α, β〉 = 0, 〈β, β〉 = 0, (4.1a)

〈β, β〉 = 0, 〈β ′, β ′〉 = 1 + c2, 〈α′, β〉 = −1, (4.1b)

where c is the mean curvature of M.

Proof In order to prove the necessary condition, we assume that M is a proper biconservative
CMC surface. First, we consider the subset

F = {p ∈ M |Av4(X) = 0 whenever X ∈ TpM}
of M and assume that its interior Õ is not empty. In this case, similar to the proof of Propo-
sition 3.7, we obtain that Av3 has the matrix representation

Av3 =
[
2c 0
0 0

]
,

with respect to an orthonormal frame field {v1, v2} on Õ, where c is the mean curvature of
M . By using the Codazzi equation, we obtain ∇vi v j = 0, i, j = 1, 2 which yields that Õ is
flat, i.e., R = 0. Then, we consider the Gauss equation (2.3) for X = Z = v1, Y = v2 to
get v2 = 0 onO which is not possible. Therefore, the interior of F is empty and Lemma 2.6
implies that Av4 has the matrix representation given in (2.14) with respect to an appropriately
chosen pseudo-orthonormal frame field {u1, u2} of the tangent bundle of M .

We consider a local coordinate system (s, t) defined on the open set O ⊂ M satisfying
the conditions given in Proposition 2.1 and define ũ1, ũ2 as given in (3.8). Consequently, by
using the Codazzi equation, we get

h(ũ1, ũ1) = 0.

By using this equation, (2.8) and (2.9) we obtain

∇̂∂t ∂t = 0

which give xtt = 0, where x = x(s, t) is the local parametrization of O. Therefore, O is
congruent to a ruled surface (3.1) for some α, β. Note that 〈x, x〉 = δ, implies (4.1a) and
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(2.7) gives the first and the third equations in (4.1b). By considering (2.9), (3.1) and (3.8) we
obtain

−H + δx = ∇̂ũ1 ũ2 = β ′ + ftβ

from which we get the second equation in (4.1b). Hence,O is congruent to the ruled surface
given in the theorem.

The proof of the sufficient condition follows from a direct computation similar to the proof
of Proposition 3.1. ��
Remark 4.2 In [15, Theorem 5.1], it is proved that there exists no CMC proper biconservative
surface in the non-flat Riemannian space forms S4 and H4.

Next, we consider (2.13) for the surface given in Theorem 4.1 to obtain the classification
of biharmonic CMC surfaces.

Let M be the proper biconservative CMC surface inL4(δ), δ = ±1 parametrized by (3.1)
for some vector valued functions α, β satisfying (4.1). We define ũ1, ũ2 as given in (3.8) to
get (3.4), (3.5) and

H = δα + (δt − f )β − β ′ (4.2)

By combining (3.4) and (3.5) with the Ricci equation (2.4), we obtain

− �⊥H = 0. (4.3)

By using (2.6) and (4.2), we get

trh(AH (·), ·) = 2c2H . (4.4)

By considering (4.3) and (4.4), we conclude that (2.13) is equivalent to

2(c2 − δ)H = 0.

Hence, we have the following results.

Theorem 4.3 Let M be a proper biconservative surface in the de Sitter space S
4
1 with the

constant mean curvature c 
= 0. Then, M is biharmonic if and only if c = 1.

Theorem 4.4 There exists no proper biharmonic surface in the anti-de Sitter space H4
1 with

non-zero constant mean curvature.

Next, we want to present an explicit example:

Example 4.5 The vector valued functions

β(s) = 1√
2
(cosh(bs), sinh(bs), cos(as), sin(as), 0)

α(s) = 1√
2

(
1

b
sinh(bs),

1

b
cosh(bs),−1

a
sin(as),

1

a
cos(as), 2 − 1

a2
− 1

b2

)

satisfies the conditions given in (4.1) for δ = 1 and c satisfying a2 + b2 = 2(1 + c2).
Therefore, the ruled surface

x(s, t) = 1√
2

(
1

b
sinh(bs) + t cosh(bs),

1

b
cosh(bs) + sinh(bs),

−1

a
sin(as) + cos(as),

1

a
cos(as) + sin(as), 2 − 1

a2
− 1

b2

)

is a proper biconservative surface in S
4
1 with the constant curvature c because of Proposi-

tion 3.1. Furthermore, this surface is biharmonic in S41 if a
2 + b2 = 4.
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