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Abstract
In his 2008 thesis [16] , Tateno claimed a counterexample to the Bonato–Tardif conjec-
ture regarding the number of equimorphy classes of trees. In this paper we revisit Tateno’s
unpublished ideas to provide a rigorous exposition, constructing locally finite trees having an
arbitrary finite number of equimorphy classes; an adaptation provides partial orders with a
similar conclusion. At the same time these examples also disprove conjectures by Thomassé
and Tyomkyn.
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1 Introduction

Two structures R and S are equimorphic, denoted by R ≈ S, when each embeds in the other;
we may also say that one is a sibling of the other. If R is finite, there is just one sibling (up
to isomorphy). The famous Cantor–Bernstein–Schroeder Theorem states that this is also the
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case for structures in a language with pure equality: if there is an injection from one set to
another and vice-versa, then there is a bijection between these two sets. The same situation
occurs in other structures such as vectors spaces, where embeddings are linear injective
maps. But generally one cannot expect equimorphic structures to be necessarily isomorphic:
the rational numbers, considered as a linear order, has up to isomorphism continuum many
siblings. It is thus a natural problem to understand the siblings of a given structure, and as a
first approach to count those siblings (up to isomorphy).

Thus, let sib(R) be the number of siblings of R, these siblings being counted up to
isomorphism. Thomassé conjectured that sib(R) = 1, ℵ0 or 2ℵ0 for countable relational
structures made of at most countably many relations (Conjecture 2 in [17]). There is a
special case of interest, namely whether sib(R) = 1 or infinite for a relational structure of
any cardinality. This was unsettled even in the case of locally finite trees, and is connected
to the Bonato–Tardif conjecture which asserts that either all trees equimorphic to a given
arbitrary tree T are isomorphic, or else there are infinitely many pairwise non-isomoprohic
trees equimorphic to T , also called the Tree Alternative Conjecture (see [2, 3, 19]). Note
that, as a binary relational structure, a ray has infinitely many siblings (add an arbitrary finite
disconnected path), but a ray has no non-isomorphic sibling in the category of trees. The
subtle connection between these conjectures is through the following observation by Hahn
et al. [6]: every sibling of a tree T (as a binary relational structure, or graph) is a tree if and
only if T ⊕ 1 (the graph obtained by adding an isolated vertex to T ) is not a sibling of T
(more generally, note that every sibling of a connected graph is connected, just in case G ⊕1
is not a sibling). Hence, for a tree T not equimorphic to T ⊕ 1, the Bonato–Tardif conjecture
(in the category of trees) and the special case of Thomassé’s conjecture (in the category of
relational structures) are equivalent.

Bonato and Tardif [2] proved their conjecture for rayless trees, and this was extended to
rayless graphs by Bonato, Bruhn, Diestel and Sprüssel [3]. It was also verified for the case of
rooted trees by Tyomkyn [19], and in addition made some progress towards the conjecture
for locally finite trees. Tyomkyn made a first conjecture that if there exists a non-surjective
embedding of a locally finite tree T , then sib(T ) is infinite unless T is a ray, a conjecturewhich
immediately implies the Bonato–Tardif conjecture for locally finite trees. Tyomkyn further
conjectured an apparently weaker version that if there exists a non-surjective embedding
of a locally finite tree T , then T has at least one non-isomorphic sibling unless T is a ray.
Laflamme et al. [13] later proved the Bonato–Tardif conjecture for scattered trees, that is
those trees not containing a subdivision of the binary tree. In fact they proved the result under
the slightly more general notion of a stable tree. This is based on extensions of results of
Polat and Sabidussi [15], Halin [7–9], and Tits [18] on automorphisms of trees. Moreover
they proved Tyomkyn’s first conjecture holds for locally finite scattered trees. Hamann [10],
making use of themonoid of embeddings, deduced the Bonato–Tardif conjecture for trees not
satisfying two specific structural properties of that monoid. More recently, Abdi [1] showed
that a tree satisfying that first property is stable, and therefore the Bonato–Tardif conjecture
also holds in that case.

In a parallel direction, Thomassé’s conjecture has been fully verified for countable chains,
and its special case also verified for all chains by Laflamme et al. [12], paving the way toward
partial orders. A first step was made for direct sums of chains by Abdi [1], and after Hahn
et al. [6] proved the special case of the conjecture in the special case of cographs, Abdi [1]
extended this result to closely related NE-free posets. Another supporting indication came
with the special case of the conjecture for a countable ℵ0-categorical relational structure,
proved by Laflamme et al. [14], and extended by Braunfeld et al [4].
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Fig. 1 In the category of connected graphs with loops, the above structure has exactly 2 siblings

Fig. 2 Similarly in the category of connected posets, the one way infinite fence has exactly two siblings

In this paper we revisit Tateno’s unpublished ideas [16] to provide a rigorous exposition,
constructing locally finite trees having an arbitrary finite number of equimorphy classes. At
the same time these examples disprove the above conjectures of Thomassé and Tyomkyn.

Theorem 1 For each non-zero s ∈ N, there is a locally finite tree T = Ts with exactly s

siblings (up to isomorphy), considered either as relational structures or trees. Moreover, for
s = 1, the tree is not a ray yet has a non-surjective embedding.
Thus the conjectures of Bonato–Tardif, Thomassé, and Tyomkyn regarding the sibling number
of trees and relational structures are all false.

This result has been a long time coming. Counterexamples had already been produced by
Pouzet (see [6, 12]) in the categories of directed graphs and simple graphs with loops (see
Figs. 1 and 2), each structure having exactly two siblings. But they are not counterexamples
when viewed as binary relations as they now each have infinitely many siblings in that
category.

Further, the above trees can be adapted to also provide partial orders with an arbitrary
finite number of siblings.

Theorem 2 For each non-zero s ∈ N, there is a partial order P with exactly s siblings (up
to isomorphy).

The necessary backgroundmaterial can be found in [5].Wewarmly thankMaurice Pouzet
for bringing these problems to our attention, and for his generosity sharing his insight and
expertise over the years on the subject. We also thank Mykhaylo Tyomkyn for making us
aware of the claimed counterexample, and Atsuhi Tateno for making his manuscript available
to us and agreeing to have us rewrite the ideas. Finally, we further thank the very generous
referee for correcting various errors and valuable suggestions greatly improving the presen-
tation.

2 Construction of the locally finite trees

The strategy is to build locally finite trees as a finite set of pairwise non-isomorphic siblings
〈Ts : s < s〉 for any fixed non-zero s ∈ N, such that any sibling of T = T0 (as a binary
relational structure) is isomorphic to some Ts . This yields a locally finite tree T such that
sib(T ) = s. The case s = 2 will already disprove the conjectures of Bonato–Tardif (and
hence Tyomkyn’s first conjecture) and of Thomassé since we will show that T ⊕ 1 does not
embed in T . The special case s = 1 will disprove Tyomkyn’s second conjecture. The case
s > 2 is only for additional information, showing that any finite number can be the sibling
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Fig. 3 Rooted Tree R = (R, r) and the vertex labelling

number of some locally finite tree. These trees will later be adapted to provide similar results
for partial orders.

The construction of each Ts will be done in a similar manner as a countable union of
trees, coding the countably many potential siblings within the trees along the way. Moreover
Ts\φ(Ts)will be finite for every embeddingφ, and hence all such differences will be captured
after a finite stage of the construction, allowing to eventually show that all siblings have been
accounted for. To facilitate the exposition, the construction will initially make use of several
non graph properties (labels, type assignments, sign and spin functions), but all will be
eventually replaced by genuine graph properties. Thus embeddings will first be assumed
to preserve the non graph properties, and it will eventually be shown that these non graph
properties are actually preserved by graph embeddings alone with the most delicate case
being through the Main Lemma 2.26.

2.1 Rooted treeR = (R, r)

We begin by constructing a rooted tree R = (R, r) that will be used repeatedly throughout
the construction. We will first develop local properties of that tree, and then later extend them
to each Ts .

The treeR is built using a labelling on the vertices lab : R → N to guide the construction
(see Fig. 3. We first declare lab(r) = 0, and then we construct the tree inductively under the
following rules:

• If lab(v) = 0, then v has exactly two neighbours of label 1.
• If lab(v) 	= 0, then v has exactly three neighbours labelled lab(v)−1, lab(v), lab(v)+1.

We denote by R0 the 0-labelled vertices of R = (R, r) and often call them tree vertices.
Note that these are exactly the vertices of degree 2 inR.Now that the tree has been constructed,
one notices that the labelling of a vertex can be recovered from the tree itself as the (graph)
distance to the nearest tree vertex (vertex of degree 2).

Observation 2.1 For any vertex v ∈ R, lab(v) is the distance to the nearest vertex of degree
2.

Proof Tree vertices are exactly those of degree 2, all other vertices of label � > 0 have degree
3. Now any vertex of label � has a path of length � with decreasing labels to a tree vertex,
hence its distance to the nearest tree vertex is at most �. On the other hand labels decrease
by at most 1, therefore no tree vertex can be any closer. 
�

Thus the labels are a graph property and any (graph) embedding ofR preserves labels. Yet,
we will be joining several copies of R and adding vertices to the tree, so we want to ensure
that these labels can be recovered from the eventual graph structure. We do so by encoding

123



An example of Tateno disproving conjectures of Bonato–Tardif... 103

Fig. 4 The gadget
PK (2� + 6, 2): finite rooted tree
used to encode label �

these labelled vertices using finite trees (gadgets) rooted at those vertices as follows. First
consider the bipartite graph K1,m = (u, V ) and call PK (n,m) the finite tree rooted at the
initial vertex of a path of length n and with its end vertex identified with the vertex u. Then
identify any vertex v with lab(v) = � with the root of a copy of PK (2� + 6, 2) (see Fig. 4).

It is interesting that the counterexample must have leaves as was shown byAbdi [1], hence
the gadgets must be finite. What is also important here is that these gadgets are pairwise non-
embeddable as rooted trees (mapping roots to roots) for different values of �, and thus play the
graph theoretic role of the labels. From this point we want to make the label a graph property
by attaching these finite gadgets to vertices. Technically, this results in a tree extension
(Ra, r). Note that any graph embedding φ of the resulting tree must take vertices in R to
vertices in R and it must map the label gadget attached at a vertex v of R to the gadget at
φ(v). Since distinct gadgets do not embed in each other they must be the same. So in fact
φ must map Ra onto itself, mapping the label gadgets to label gadgets. Having noted this
important property we abuse the notation using (R, r) for (Ra, r).

We will henceforth for notational simplicity continue to use the labels lab(v) themselves,
with the understanding that the labels are a graph property and preserved by embeddings.

In anticipation of the construction of T (and each Ts), we note that we will eventually
associate a double ray to each tree vertex in a copy of (R, r), and amalgamate the ray and
the copy by identifying a single vertex of the ray and the tree vertex. The reason for 2� + 6
above is simply that we will later use a small versions to code type assignments on those ray
vertices.

Another important observation is that for any tree vertex v there is a (label preserving)
embedding φ : R = (R, r) → (R, v) sending r to v; moreover this is an automorphism
since all embeddings of R are easily seen to be surjective. This remains true even when we
make the labels explicitly a graph property by adding the finite tree labels.

Observation 2.2 All embeddings of R are surjective, and (R, r) is isomorphic to (R, v) (as
rooted trees) for any tree vertex v.

In fact (R, r) is so symmetric that one main point of the construction of T is to insert
obstructions to control its (graph) embeddings and as a result the number of siblings.

The following notions of colour and height for tree vertices will be used to facilitate the
inductive construction of each Ts . We call a pair of adjacent vertices inR consecutive if they
have the same label. Note that if a tree vertex v ∈ R0 is different from r , then the path Pr ,v
from r to v must contain at least one such consecutive pair.

Definition 2.3 For any tree vertex v ∈ R0, define colv : R0 → N, the colour with respect to
v, by

colv(u) = lab(w)

where w is a vertex from the last consecutive pair in Pv,u .
For convenience let colv(v) = 0.
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Fig. 5 Lemma 2.4:
colu(w) = colv(w) for all but
finitely many w ∈ R0

Thus, since labels are preserved by graph embeddings, we have that colv(u) =
colφ(v)(φ(u)) for any graph embedding φ : R → R and tree vertices v, u. However more is
true, and this kind of argument will play a central role throughout.

Lemma 2.4 For any tree vertices u, v ∈ R0, colu(w) = colv(w) for all but finitely many
w ∈ R0.
The only possible exceptions are tree vertices on paths starting from a vertex in Pu,v and
with strictly decreasing labels.

Proof We may assume that w /∈ Pu,v since those are part of the exceptional vertices.
Since R is a tree, Pu,w ∩ Pv,w = Pw′,w for some unique w′ ∈ Pu,v (see Fig. 5). Now

if Pw′,w contains a consecutive pair, then colu(w) = colv(w) as desired. Otherwise Pw′,w
must be a path with strictly decreasing labels starting with lab(w′). But then there is only
one such possible tree vertex w for each (not necessarily tree) vertex w′ in the finite path
Pu,v . 
�
Corollary 2.5 Let φ be an embedding of (R, r) and v ∈ R0. Then colv(w) = colφ(v)(w) =
colφ(v)(φ(w)) for all but finitely many w ∈ R0.
The only possible exceptions are vertices originating from a path starting from Pv,φ(v) with
strictly decreasing labels.

Proof By Lemma 2.4, colv(w) = colφ(v)(w), with only possible exceptions being tree ver-
tices originating from a path starting from Pv,φ(v) with strictly decreasing labels. In addition,
as remarked above, colv(w) = colφ(v)(φ(w)) for any embedding φ. 
�

The height of any (not necessarily tree) vertex w with respect to another arbitrary vertex
v is the maximum label encountered in the path from v to w. Again the construction will be
done in stages determined by such maximum height.

Definition 2.6 For v ∈ R, define htv : R → N, the height with respect to v, by

htv(w) = max{lab(w′) : w′ ∈ Pv,w}.
Note that colv(w) ≤ htv(w) for any tree vertices v and w. Moreover colv(w) = htv(w)

means that the label of the last consecutive pair in Pv,w is the maximum label appearing
among all vertices of Pv,w; this is actually the situation that will be used in the inductive
construction, and for a given fixed vertex v such a vertex w will be called a target vertex
(with respect to v).

It may also be worth noting that the corresponding Lemma 2.4 is clearly not true for
the height value, meaning that there can be infinitely many (even tree) vertices w such that
htv(w) 	= htu(w). However the difficulty is simply due to labels on Pu,v and the following
observation will be useful.
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Fig. 6 Definitions 2.3, 2.6 and 2.8: Label, colour, height, sign and spin example

Observation 2.7 For any vertices u, v ∈ R, htu(w) = htv(w) for all w ∈ R such that
min{htu(w), htv(w)} ≥ htu(v).

Proof Under the given hypothesis we have

htu(w) ≤ max{htv(w), htu(v)} ≤ htv(w).

By symmetry we have htv(w) ≤ htu(w) as well. 
�
Now for any tree vertex v, there is also an automorphism of R = (R, v) fixing v and

interchanging its two neighbourhoods. In order to keep the number of siblings under control,
we will want to prevent not only such automorphisms, but also embeddings mapping one
neighbourhood into the other. For this we will define a sign function (with respect to v) signv

which takes values +1 on one neighbourhood of v, and −1 on the other neighbourhood,
and eventually code these values as graph properties so they are preserved by embeddings.
Moreover, within a neighbourhood, we will similarly want to control the various tree vertices
and we will define a spin function (with respect to v) for that purpose.

The following will define these functions simultaneously, first by defining signr , spinr ,
then signv and finally spinv for all other tree vertices v (see Fig. 6 for an example).

Definition 2.8 We write Rv
0 = R0 \ {v} and Rv = R \ {v}.

Now arbitrarily assign signr (u) = +1 to every vertex u in one neighbourhood of r , and
signr (u) = −1 to every vertex u in the other neighbourhood of r .

• Let v ∈ R0 and signv a sign function which assigns values ±1 to each neighbourhood
of v.
Then define spinv : Rv

0 → ±1, the spin with respect to v, by:

spinv(u) = signv(u)(−1)cp+tv

where

∗ cp = Pcp
v,u is the number of consecutive pairs in Pv,u

∗ tv = Ptv
v,u is the number of tree vertices in Pv,u .

• Let v 	= r be a tree vertex, then define signv : Rv → ±1 by:

∗ signv(u) = spinr (v) if u and r belong to the same neighbourhood of v, and
∗ signv(u) = −spinr (v) otherwise.

Note that indeed signv assigns the value +1 on one of its neighbourhood and −1 on the
other. Moreover, the spin of r with respect to a tree vertex v can be recovered from the sign
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of v with respect to the root r , and hence also the spin at any other tree vertex with respect
to v as follows.

Lemma 2.9 Let v ∈ Rr
0. Then:

1. spinv(r) = signr (v).
2. spinv(w) = spinr (w) for all w ∈ R0\Pr ,v , and
3. spinv(w) = −spinr (w) for all w ∈ (R0 ∩ Pr ,v)\{r , v}.

Proof By Definition 2.8, signv(r) = spinr (v) since r and r trivially belong to the same
neighbourhood of v. Thus, writing cp = Pcp

v,r = Pcp
r ,v and tv = Ptv

v,r = Ptv
r ,v , we have

spinv(r) = signv(r)(−1)cp+tv = spinr (v)(−1)cp+tv = [
signr (v)(−1)cp+tv

]
(−1)cp+tv =

signr (v)(−1)2cp+2tv = signr (v).
For (2), consider w ∈ (Rr

0 ∩ Rv
0 ) \ Pr ,v . Then Pr ,w ∩ Pv,w = Pw′,w for some w′ ∈ Pr ,v .

Assume first that w′ = v, which means that v is on the path from r to w (see Fig. 7).
Hence Pcp

r ,w = Pcp
r ,v + Pcp

v,w , and Ptv
r ,w = Ptv

r ,v + Ptv
v,w − 1 because v is counted twice as a tree

vertex. Moreover signr (w) = signr (v) because w and v are in the same neighbourhood of
r , and on the other hand signv(w) = −spinr (v) by Definition 2.8 because w and r are in
opposite neighbourhoods of v. Thus we get:

spinr (w) = signr (w)(−1)P
cp
r,w+Ptv

r,w

= signr (w)(−1)P
cp
r,v+Pcp

v,w+Ptv
r,v+Ptv

v,w−1

= −
[
signr (v)(−1)P

cp
r,v+Ptv

r,v

]
(−1)P

cp
v,w+Ptv

v,w

= −spinr (v)(−1)P
cp
v,w+Ptv

v,w

= signv(w)(−1)P
cp
v,w+Ptv

v,w = spinv(w).

Similarly, w′ = r means that r is on the path from v to w. Hence Pcp
v,w = Pcp

v,r + Pcp
r ,w,

and Ptv
v,w = Ptv

v,r + Ptv
r ,w − 1 because here r is counted twice as a tree vertex. Moreover

signv(w) = spinr (v) because w and r are in the same neighbourhood of v, and on the other
hand signr (w) = −signr (v) because v and w are in opposite neighbourhoods of r . Thus,
also observing that Pcp

r ,v = Pcp
v,r and Ptv

r ,v = Ptv
v,r , we get:

spinv(w) = signv(w)(−1)P
cp
v,w+Ptv

v,w

= signv(w)(−1)P
cp
v,r+Pcp

r,w+Ptv
v,r+Ptv

r,w−1

= spinr (v)(−1)P
cp
v,r+Pcp

r,w+Ptv
v,r+Ptv

r,w−1

=
[
signr (v)(−1)P

cp
r,v+Ptv

r,v

]
(−1)P

cp
v,r+Pcp

r,w+Ptv
v,r+Ptv

r,w−1

= signr (v)(−1)2P
cp
r,v+2Ptv

r,v+Pcp
r,w+Ptv

r,w−1

= −signr (v)(−1)P
cp
r,w+Ptv

r,w

= signr (w)(−1)P
cp
r,w+Ptv

r,w = spinr (w).

Finally assume that w′ ∈ Pr ,v \ {r , v}. Note that in this case w′ /∈ R0 since tree vertices
have degree 2; this yields Pcp

r ,w = Pcp
r ,w′ + Pcp

w′,w and Ptv
r ,w = Ptv

r ,w′ + Ptv
w′,w, and similarly

Pcp
v,w = Pcp

v,w′ + Pcp
w′,w and Ptv

v,w = Ptv
v,w′ + Ptv

w′,w. Moreover signv(w) = spinr (v) since w
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Fig. 7 Lemma 2.9: the three cases: w′ = v, w′ = r , and w′ ∈ Pr ,v \ {r , v}

and r belong to the same neighbourhood of v. So we get:

spinv(w) = signv(w)(−1)P
cp
v,w+Ptv

v,w

= spinr (v)(−1)P
cp
v,w+Ptv

v,w

=
[
signr (v)(−1)P

cp
r,v+Ptv

r,v

]
(−1)P

cp
v,w+Ptv

v,w

= signr (v)(−1)P
cp
r,v+Pcp

v,w+Ptv
r,v+Ptv

v,w

= signr (v)(−1)P
cp
r,w′+Pcp

w′,v+Pcp
v,w′+Pcp

w′,w+Ptv
r,w′+Ptv

w′,v+Ptv
v,w′+Ptv

w′,w

= signr (w)(−1)P
cp
r,w+Ptv

r,w = spinr (w).

The proof of (3) follows a similar analysis. Note here that w ∈ R0\{r , v}, and since w

and r are in the same neighbourhood of v, we have:

spinv(w) = signv(w)(−1)P
cp
v,w+Ptv

v,w

= spinr (v)(−1)P
cp
v,w+Ptv

v,w

=
[
signr (v)(−1)P

cp
r,v+Ptv

r,v

]
(−1)P

cp
v,w+Ptv

v,w

=
[
signr (v)(−1)P

cp
r,w+Pcp

w,v+Ptv
r,w+Ptv

w,v−1
]
(−1)P

cp
v,w+Ptv

v,w

= −signr (v)(−1)2P
cp
v,w+2Ptv

v,w+Pcp
r,w+Ptv

r,w

= −signr (w)(−1)P
cp
r,w+Ptv

r,w

= −spinr (w)

This completes the proof of the lemma. 
�
We can further correlate the spin between any two vertices.

Corollary 2.10 Let u, v ∈ R0. Then

1. spinu(w) = spinv(w) for all w ∈ (Ru
0 ∩ Rv

0 )\Pu,v , and
2. spinu(w) = −spinv(w) for all w ∈ (Ru

0 ∩ Rv
0 )∩ Pu,v , with the only exception of w 	= r

and Pr ,u ∩ Pr ,v = Pr ,w, in which case spinu(w) = spinv(w).

Proof The proof follows by carefully using Lemma 2.9. Consider w ∈ (Ru
0 ∩ Rv

0 ).
If for a first case w /∈ Pu,r ∪ Pv,r (and hence w /∈ Pu,v), then spinu(w) = spinr (w) =

spinv(w) by Lemma 2.9 (2).
Next assume that w ∈ Pu,r ∩ Pv,r . If w 	= r , then w ∈ Pr ,u\{r , u} and w ∈ Pr ,v\{r , v},

hence spinu(w) = −spinr (w) = spinv(w) by Lemma 2.9 (3). Note that this includes the
case that Pr ,u ∩ Pr ,v = Pr ,w with w ∈ Pu,v . Now if w = r , then either w /∈ Pu,v and
thus u and v are in the same neighbourhood of w = r , so by Lemma 2.9 (1), spinu(w) =

123



108 D. A. Kalow et al.

spinu(r) = signr (u) = signr (v) = spinv(r) = spinv(w); or else w = r ∈ Pu,v , then u
and v are in opposite neighbourhood of w = r , so again by Lemma 2.9 (1), spinu(w) =
spinu(r) = signr (u) = −signr (v) = −spinv(r) = −spinv(w).

So finally assume without loss of generality that w ∈ Pu,r\Pv,r , and hence w ∈ Pu,v .
Then spinu(w) = −spinr (w) by Lemma 2.9 (3) since w ∈ Pr ,u\{r , u}. Also spinv(w) =
spinr (w) by Lemma 2.9 (2) since w ∈ (Rr

0 ∩ Rv
0 )\Pr ,v . Thus spinu(w) = −spinv(w). 
�

Recall that labels have been encoded by graph properties (with the gadgets), and thus are
preserved by any (rooted tree) embedding φ : (R, r) → (R, v). Hence the height and colour
functions are also preserved. If we further ask to preserve the spin (and hence sign) function,
then such an embedding is unique (except for possibly interchanging the leaves of gadgets,
which is immaterial for our purpose); we will see later how the construction will yield a tree
actually preserving the spin through graph properties.

2.2 Ray vertices

The second type of structures that will be used in the construction are double rays (two-way
infinite rays) with two kinds of vertex types. Eventually, each tree vertex in all copies of the
graph R will be amalgamated with a vertex on a double ray.

Let D be a double ray, which we will normally identify as D = {vi : i ∈ Z} with edges
(vi , vi+1) for i ∈ Z. We will equip D with type assignments of the form tp : V (D) → {0, 1},
and we write Dtp = (D, tp) for the resulting structure. Here an embedding φ : Dtp → Dtp′
is a graph embedding of D such that tp(vi ) ≤ tp′(φ(vi )) for each i ∈ Z. What will be
important is that an embedding of Dtp can send type 0 vertices into type 1 vertices, but not
the other way around. Again we encode these structures as graph properties so that these
embeddings become real graph embeddings. We do so by identifying every vertex v ∈ D
with the root of a copy of PK (2, 2) if tp(v) = 0, and with the root of PK (2, 3) if tp(v) = 1.
Since PK (2, 2) embeds in PK (2, 3) but not vice versa, this yields exactly what is needed.

We remark that eventually every tree vertex v will be identified with a vertex in a double
ray equipped with a type assignment, and so will have two finite gadgets attached to it: one
that encodes its zero label as a tree vertex, that is a copy of PK (2 ∗ 0 + 6, 2), and the
other identified with the root of a copy of either PK (2, 2) or PK (2, 3) matching its type
assignment as a ray vertex. Graph embeddings will necessarily send label attachments and
type attachments to attachments of the same kind.

We will loosely callDtp a double ray even though it comes equipped with vertices of type
0 or 1, and we will continue to use the symbol D to denote a regular double ray (without any
type assignment). Now consider the special type assignment tp0 such that:

tp0(vi ) =
{
0 for i ≤ 0
1 for i > 0.

and let D0 = Dtp0 be the resulting double ray. Note that v0 is the first (only in this case)
vertex of type 0 followed by a type 1 vertex, and we call it the centre z = z0 of D0. Observe
that all siblings of D0 are of the form Dtp for some type assignment tp consisting of a finite
modification of the above type tp0. Hence there are exactly countablymany (up to isomorphy)
pairwise non-isomorphic siblings of D0 not isomorphic to D0, and all will have a vertex of
type 1 followed by a type 0 vertex. We select 〈Ds : 0 < s < s〉with pairwise non-isomorphic
type assignments 〈tps : 0 < s < s〉. To be specific we select tps as follows:

tps(v j ) =
{
0 for j < 0 or 1 ≤ j ≤ s
1 for j = 0 or j > s.
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Fig. 8 Double rays Dtps : s < s with their (graph version) gadget 0–1 type assignments

Fig. 9 Double rays Ds : s < s for Posets with gadget 0–1 type assignments on even index vertices

We again let zs = v0 be the centre of Ds (see Fig. 8).
These choices are designed so no embedding from Ds to Ds′ can send zs to zs′ for any

s 	= s′. These will also form the centres of the resulting trees Ts and will be used to ensure
embeddings preserve the sign and spin functions as promised earlier.

We will call ray vertices those vertices vi ’s on the double rays. Because ray vertices of
type 1 cannot embed in ray vertices of type 0, then these double rays are equipped with a
natural direction dictated by embeddings, reflecting the positive direction of the indexing
along Z.

Finally if D is a double ray in a tree T and v ∈ D, we define for later convenience T D
v the

connected component of T containing v without its two neighbours on the double ray D.
Before we move on to other required properties of these trees, we note that the case

of partial orders will require that the double ray type assignments above be done on even
indexed vertices only, and that the odd indexed vertices all be equipped with a gadget that
does not embed in any of the type assignments gadgets, and vice-versa: using PK (4, 2) on
odd indexed vertices for example will do (which is why we left that gadget available), see
Fig. 9.
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We urge the reader to take note that the construction below can be done using either kind
of type assignments on the double rays with similar results; this will be used for the case of
partial orders.

2.3 Global colouring, spin and height

Each of the trees 〈Ts : s < s〉 will be built in a similar manner, and we will do so by first
constructing a common “spine” S p . This will be done by first assembling disjoint copies
of (R, r) along a (plain) double ray D, identifying each ray vertex of D with the root of a
disjoint copy of (R, r). Then each new tree vertex will be identified with a vertex of a disjoint
copy of a double ray, and again each new ray vertex will be identified with the root of a
disjoint copy of (R, r), etc. The only thing missing on the spine S p to obtain each tree Ts for
s < s are judiciously chosen type assignments on each of those double rays so to control all
embeddings.

Every copy (R′, r ′) of (R, r) inherits its own local labelling, colour, height, sign and
spin functions, which will be denoted by labR

′
, ht R

′
, col R

′
, signR′

, and spinR′
respectively,

although we may omit the superscript R′ if the context is clear. We wish to extend these
notions globally to S p (and eventually each Ts) so they apply across copies of (R, r), and
we will introduce a centre vertex of S p when the need arises.

We will proceed to build S p in stages S p(k) which will later be reflected in the construc-
tions of each Ts . First we define a global height ĥt in such trees formed by assembling disjoint
copies of (R, r). Recall that each such copy comes equipped with its corresponding label
function, and the global height is simply the maximum label encountered in a path. This will
be used in particular to determine the stages of the construction.

Definition 2.11 Let S be a tree formed by assembling disjoint copies of (R, r) along double
rays. Then for v,w ∈ S, define

ĥtv(w) = max{labR′
(w′) : w′ ∈ Pv,w, and

w′ is in a copy (R′, r ′) of (R, r)}.

Note that ĥtv(w) = ht R
′

v (w) in case v and w belong to the same copy (R′, r ′) of (R, r).
We are now ready to define the spine S p .

Definition 2.12 • We activate a ray vertex by identifying that vertex with the root r ′ of a
disjoint copy (R′, r ′) of (R, r).

• We amalgamate a tree vertex by identifying that vertex with one of the vertices of a
disjoint copy of a double ray.

• Define S p(0) by activating every ray vertex of a double ray, and declare c = v0 the center
of the spine.
Given S p(k − 1), let S p

0 (k) = S p(k − 1), and S p
�+1(k) be obtained from S p

� (k) by
amalgamating every non-amalgamated tree vertex of global height at most k with respect
to c, followed by activating every new ray vertex.
Define S p(k) = ⋃

� S
p
� (k).

Finally let S p = ⋃
k S p(k).

Observe that every ray vertex of S p is activated (with the root of a disjoint copy of (R, r)),
thus we can think of every vertex of S p as being in a copy of (R, r). Moreover every tree
vertex is amalgamated with a vertex of a double ray, and this is through those double rays
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Fig. 10 Definition 2.14: The
global colour function:

ĉolv(w) = col R
′

v′ (w)

that one navigates from one copy of (R, r) to another. Also observe that S p is a locally finite
tree.

Nowas before an embeddingφ ofS p must preserve labels, that is labR
′
(v) = labR

′′
(φ(v))

where v belongs to a copy (R′, r ′) and φ(v) to a copy (R′′, r ′′); this is simply because the
finite gadgets attached to vertices in copies of (R, r) do not embed into each other for
different labels. But this means that φ actually preserves copies since moving from one copy
to another requires a path through at least two consecutive ray vertices, which are activated
to tree vertices of label 0. We take note of this in the following important observation.

Observation 2.13 Any embedding of S p(k) or S p is surjective, preserves labels, ray and tree
vertices, and copies of (R, r).

We next extend the colour function globally to S p , and this is a bit more delicate. First
note that new copies of (R, r) are created by identifying a ray vertex with the root r ′ of a
disjoint copy (R′, r ′) of (R, r). But once that copy is created, a path originating from outside
it could enter that copy through a different tree vertex v′ 	= r ′ that was later activated.

Definition 2.14 1. Let R̂0 = {v ∈ S p : v belongs to a copy (R′, r ′) of (R, r) and labR
′
(v) =

0}.
2. For v ∈ R̂0, define ĉolv : R̂0 → N by ĉolv(w) = col R

′
v′ (w) where w belongs to a copy

(R′, r ′) of (R, r) and v′ is the first vertex of Pv,w ∩ R′.

We continue to call tree vertices those in R̂0.
Thus v′ = v and ĉolv(w) = col R

′
v (w) in case v and w belong to the same copy (R′, r ′)

of (R, r), see Fig. 10. Also ĉolv(w) = 0 if v′ = w since in this case col R
′

w (w) = 0. We now
show that Lemma 2.4 generalizes globally as follows.

Lemma 2.15 For any two tree vertices u, v ∈ R̂0, ĉolu(w) = ĉolv(w) for all but finitely
many w ∈ R̂0.
The only possible exceptions are vertices originating from a path starting from Pu,v with
strictly decreasing labels.

Proof Let u, v, w ∈ R̂0, w belonging to a copy (R′, r ′) of (R, r), u′ the first vertex of
Pu,w ∩ R′, and v′ the first vertex of Pv,w ∩ R′.

Then by definition ĉolu(w) = col R
′

u′ (w) and ĉolv(w) = col R
′

v′ (w). Now by Lemma 2.4,

col R
′

u′ (w) = col R
′

v′ (w)with possible exceptions being vertices originating from a path starting
from Pu′,v′ with strictly decreasing labels. The result follows. 
�

It will later be useful to understand the global colouring through embeddings, we do so
in two parts (Fig. 11).

Corollary 2.16 Let v ∈ R̂0 be a tree vertex, and φ an embedding of S p. Then ĉolv(w) =
ĉolφ(v)(w) = ĉolφ(v)(φ(w)) for all but finitely many w ∈ R̂0.
The only possible exceptions are vertices originating from a path starting from Pv,φ(v) with
strictly decreasing labels.
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Fig. 11 Corollaries 2.16
and 2.17: ĉolv(w), ĉolφ(v)(w),
ĉolφ(v)(φ(w)), and ĉolv(φ(w))

Fig. 12 Definition 2.18: The
global sign and spin functions:

ŝignv(w) = signR
′

v′ (w) and

ŝpinv(w) = spinR
′

v′ (w)

Proof ĉolv(w) = ĉolφ(v)(φ(w)) since φ preserves labels, and ĉolv(w) = ĉolφ(v)(w) by
Lemma 2.15 assuming that w does not originate from a path starting from Pv,φ(v) with
strictly decreasing labels. 
�
Corollary 2.17 Let v ∈ R̂0 be a tree vertex, and φ an embedding of S p. Then ĉolv(w) =
ĉolv(φ(w)) for all but finitely many w ∈ R̂0.
The only possible exceptions are vertices originating from a path starting from Pφ−1(v),v with
strictly decreasing labels.

Proof Let v ∈ R̂0 be a tree vertex, φ an embedding of S p , and w not originating from a path
starting from Pφ−1(v),v with strictly decreasing labels. Recall by Observation 2.13 that φ is
surjective. Hence, by Corollary 2.16, ĉolφ−1(v)(w) = ĉolφ◦φ−1(v)(w) = ĉolφ◦φ−1(v)(φ(w)).
Thus we conclude that ĉolv(w) = ĉolv(φ(w)). 
�

Similarly we define a global sign and spin functions. First recall that the signv and spinv

functions are undefined at the vertex v itself and we also want to avoid defining their global
versions on ray vertices other than the center.

Definition 2.18 (a) Let v ∈ R̂0, and first define:

1. R̂v = {w ∈ S p : w belongs to a copy (R′, r ′) of (R, r) and w is not the first vertex
of Pv,w ∩ R′}.

2. R̂v
0 = R̂v ∩ R̂0.

(b) 1. Define ŝignv : R̂v → ±1 by ŝignv(w) = signR′
v′ (w) where w belongs to a copy

(R′, r ′) of (R, r) and v′(	= w) is the first vertex of Pv,w ∩ R′.
2. Similarly define ŝpinv : R̂v

0 → ±1 by ŝpinv(w) = spinR′
v′ (w) where w belongs to

a copy (R′, r ′) of (R, r) and v′(	= w) is the first vertex of Pv,w ∩ R′.

Thus in the case that v and w belong to the same copy of (R, r), then v′ = v 	= w,
ŝignv(w) = signv(w) and ŝpinv(w) = spinv(w) (Fig. 12).

Lemma 2.19 For any tree vertices u, v ∈ R̂0, ŝpinu(w) = ŝpinv(w) for all but finitely many
w ∈ R̂u

0 ∩ R̂v
0 , in fact for all w /∈ Pu,v .

Proof Suppose w /∈ Pu,v , (R′, r ′) a copy of (R, r) containing w, u′ is the first vertex of
Pu,w ∩ R′ and similarly v′ is the first vertex of Pv,w ∩ R′ (Fig. fig:GlobalspinPreserving0).
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Fig. 13 Lemma 2.19:

ŝpinu(w) = spinR
′

u′ (w) =
spinR

′
v′ (w) = ŝpinv(w)

But now w /∈ Pu′,v′ and so w 	= u′, v′. Hence ŝpinu(w) = spinR′
u′ (w) = spinR′

v′ (w) =
ŝpinv(w) by Corollary 2.10 and Definition 2.18. 
�
Observation 2.20 Letφ be an embedding ofS p, then ĥtv(u) = ĥtφ(v)(φ(u)) for all u, v ∈ D.

As observed before, any graph embedding of S p is surjective and hence an automorphism,
and thus sib(S p) = 1. The trees Ts will be obtained from S p by judiciously setting type
assignments to ray vertices of S p , and as a result embeddings of Ts will preserve the global
sign and global spin functions. This will be the main tool in showing that sib(T ) = s. We
are now ready to undertake the construction of the trees Ts .

2.4 The trees 〈Ts(k) : s < s〉

For a non-zero s ∈ N, the final trees 〈Ts : s < s〉we are seeking to producewill be constructed
in similar manners to S p , as a countable union of trees Ts(k) for k ∈ N. The trees Ts(k) will
consist of the spine S p(k) together with type assignments to double rays amalgamated to
tree vertices of global height at most k; interestingly, the only difference among the various
Ts(k)’s is the original type assignment to the first double ray Ds . We will often simply write
T for T0 and similarly T (k) for T0(k).

Recall that every vertex of S p belongs to a copy (R′, r ′) of (R, r), each inheriting its
own corresponding collection of labels, colours, height, sign and spin functions fromR. The
notions of colours and height are graph properties, and we have seen in Sect. 2.1 howwe have
encoded the labels as graph properties (through connecting a vertex of label �with the root of
a gadget being a path of length 2�+ 6 whose end point is identified with u ∈ K1,2 = (u, V );
these finite graphs do not embed into each other as rooted trees unless they are equal). We
have also seen in Sect. 2.2 how we encode the type assignments as graph properties (through
identifying a ray vertex of type 0 with the root of the gadget PK (2, 2), and a ray vertex of
type 1 with the root of PK (2, 3); the type 0 gadgets embed into type 1 gadgets as a rooted
tree, but not the other way around). It will be important later to note that a type 0 gadget
embedding in a type 1 results in one vertex being omitted from the image of the embedding. It
will remain to show how the sign and spin functions can be encoded through graph properties
so that they are preserved by embeddings. But first we will build the trees and show how to
handle their siblings.

We define Ts(0) by activating every ray vertex of Ds , and we further define the vertex
zs ∈ Ds as the centre of the tree Ts(0), (see Fig. 14). These will remain the centres of all
trees 〈Ts(k) : s < s〉 which we are about to define. Observe that the spine of Ts(0), that
is the tree obtained from Ts(0) by deleting the type assignments on ray vertices (on Ds), is
S p(0) as previously defined. Moreover, the spine of any sibling of Ts(0) is the same S p(0)
(up to isomorphy), and this is because any self-embeddings of Ts(0) will map S p(0) onto
itself. Observe further that 〈Ts(0) : s < s〉 are pairwise non-isomorphic siblings, and have
(up to isomorphism) countably many siblings, each one represented by a type assignment
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Fig. 14 Ts (0)

Fig. 15 B is an amalgamation of
(A0, a0) and (A1, a1) over (A, a)

(consisting of only finitely many modifications of tp0) on D0, the ray vertices of the spine
T0(0).

The inductive construction will use a more delicate operation to freely amalgamate two
trees over a common subtree. This situation generally occurs for example when two math-
ematical objects of similar types share a common substructure and the remaining structure
does not interfere with each other, hence one may want to combine them together. We define
here the specific case we will need (see Fig. 15).

Definition 2.21 Let a0 be a vertex of a tree A0 and a1 a vertex of a tree A1. Assume further
that a is a vertex of a tree A and we have rooted tree embeddings φi : (A, a) → (Ai , ai ).

Then we say that a tree B is a (free) amalgamation of (A0, a0) and (A1, a1) over (A, a), or
(A0, a0) and (A1, a1) (freely) amalgamate (over (A, a)), if there are embeddings φ′

i : Ai →
B such that:

1. B = φ′
0(A0) ∪ φ′

1(A1),
2. φ′

0 ◦ φ0 = φ′
1 ◦ φ1, and

3. φ′
0(A0) ∩ φ′

1(A1) = φ′
0 ◦ φ0(A) = φ′

1 ◦ φ1(A).

Note that since B is a tree and A is non-empty, then no edges are added toφ′
0(A0)∪φ′

1(A1);
the two pieces are simply joined together identifying their common copy of A. A simple
example is to observe that identifying a ray vertex v from a double ray D with the root of a
copy of (R, r) as we have done can be expressed as amalgamating a double rayD containing
v and (R, r) over v (mapping v to r ). But we will more generally amalgamate larger trees in
the construction, hence the need for the more general concept above.

The construction will ensure that the Ts(k) are non-isomophic siblings, and that
sib(T (k)) = ℵ0 for all k ∈ N (and hence sib(Ts(k)) = ℵ0 for all s < s). Once T (k)
has been constructed, we list (representatives of) the pairwise non-isomorphic siblings of
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T (k) not isomorphic to any Ts(k)) as {Sk,� : � ∈ N}. These are of course graph siblings, and
by considering those siblings as substructures of T (k), they come equipped with labels and
type assignments from T (k) no matter the embedding. This is also the case with the sign and
spin functions inherited from T (k), but those values do depend on the embedding and we
will be careful when handling those.We will also select in Sk,� a double ray non-isomorpic to
D0, and fix the centre ck,� of Sk,� as the first vertex on that double ray having type 1 followed
by a vertex of type 0 (as is the case for each zs for s > 0). This is again for the same reason
as before to ensure that no embedding of this double ray into D0 can send centres to centres,
and vice versa; this is what will be used to show that the spin is eventually preserved by
embeddings. We will later justify the existence of such a double ray in all non-isomorphic
siblings of T (k).

As mentioned, all siblings of the (eventual) tree T = T0 will be isomorphic to some Ts ,
and to do so we will amalgamate approximations of those siblings within each Ts(k) along
the way. It turns out that this will suffice because siblings will differ from T by only finitely
many type assignments and hence will be captured at some stage.

2.4.1 Inductive construction

The following notions will help better describe the construction.

Definition 2.22 • A tree vertex v ∈ Ts(k) is called a target vertex (of global height �) if
ĥt zs (v) = ĉolzs (v) = � for some � ≥ 0.

• A crater (or �-crater) centered at a target vertex v of global height �, written C(v), consists
of all vertices of global height less than � fromv. That isC(v) = {u ∈ Ts(k) : ĥtv(u) < �}.

• We say that a tree vertex v ∈ Ts(k) has been amalgamated if it was part of an amalga-
mation.

Thus a target vertex v of global height � is the end vertex in a copy of (R, r) of a path
Pzs ,v originating at the centre zs having its last consecutive pair of highest labels � among
the path labels and with decreasing labels from that consecutive pair to v. Then all vertices
in its crater C(v) have global height � with respect to zs .

When a tree vertex is amalgamated, it will be identified with a ray vertex from a double
ray and provided with a type assignment. The terminology to amalgamate a tree vertex is
thus consistent with that of Definition 2.12.

We identify each center zs with the root r ′ of a copy of (R, r) and as such it is a target
vertex of (global height 0). For each s < s it has been amalgamated to the centre of the
double ray Ds , with each other ray vertex activated and thus amalgamated to the root of a
copy of (R, r), producing Ts(0). There are no other target vertices of global height 0 in Ts(0)
and thus we can state that all target vertices of Ts(0) have been amalgamated up to global
height 0 with respect to their centres zs .

We now define how to extend each tree Ts(k−1) from stage k−1 to Ts(k) at the next level
k; this is done the same way for all s < s and as a result all trees rooted at ray vertices on
all Ds will be identical. Assume that the trees 〈Ts(k − 1) : s < s〉 have been constructed for
some k ≥ 1, that all tree vertices are amalgamated up to global height k − 1 with respect to
their centres zs , and that the spine of any sibling of Ts(k−1) is (up to isomorphy) S p(k−1).

Nowfix s < s and consider a target vertex v ∈ Ts(k−1) such that ĥt zs (v) = ĉolzs (v) = k,
and belonging to a copy (R′, r ′) of (R, r). Thus v is not yet amalgamated. Moreover, since
ĉolzs (v) = k > 0, the last consecutive pair on Pzs ,v has labels k and therefore all tree vertices
having global height less than k with respect to v, namely all the tree vertices in its crater
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Fig. 16 Ts,v(k − 1): amalgamate
(Ts (k − 1), v) with (S, c) over
(R′, r ′)

C(v) in Ts(k − 1), are of global height equal to k with respect to zs , and are thus also not yet
amalgamated. Write k = 2i (2 j + 1), and consider S = Si, j , a sibling of T (i), with centre
c = ci, j lying on a double ray D (so that no embedding into D0 can send c to z = z0 and
vice versa). Moreover, since S can be viewed as a substructure of T (k − 1), all vertices in S
having global height larger than or equal to k with respect to c are also not yet amalgamated.
Thus either S or Ts(k − 1) can be amalgamated over (R′, r ′) by identifying v and c (see
Fig. 16). This allows to proceed as follows, and either amalgamate:

• (Ts(k − 1), v) with (S, c) over (R′, r ′), if ŝpinzs (v) = +1.

• (Ts(k − 1), v) with (T (k − 1), z0) over (R′, r ′), if ŝpinzs (v) = −1.

If one considers the existing copy (R′, r ′) from Ts(k − 1) as being rooted at v for a moment,
it becomes amalgamated with the copy of (R, r) from (S, c) (or (T (k − 1), z0)) rooted at
c (or z0 respectively), in particular identifying v with c, and v becomes amalgamated. Now
that (S, c) is embedded in T (k − 1) rooted at c = v, it inherits the sign and spin functions
from T (k − 1) and we can extend S within T (k − 1) following the inductive construction,
and assume that all tree vertices in S are amalgamated up to global height k − 1 with respect
to its centre c = v.

The result of the amalgamation will be that all ray vertices in the crater C(v) will receive
a type assignment from S. This creates what we call Ts,v(k − 1) (see Fig. 16).

Note to be clear that we indeed amalgamate (T (k − 1), z0) with (Ts(k − 1), v) for any
s < s, thus the process is the same no matter which s!

Now we repeat the same construction for all target vertices of Ts(k − 1) of global height
k with respect to zs . Observe that any two such distinct target vertices are separated by a
consecutive pair of labels k, and therefore the corresponding craters do not intersect and their
amalgamations as described above do not interfere with each other. If v and v′ are two such
target vertices, then Ts,v(k−1)∩Ts,v′(k−1) = Ts(k−1). But these amalgamations introduce
new target vertices of global height k with respect to zs in the resulting amalgamated trees, so
we repeat until all such vertices have been amalgamated. First define T 0

s (k−1) = Ts(k−1),
and:

T �+1
s (k − 1) = ⋃{T �

s,v(k − 1) : v ∈ T �
s (k − 1) is not yet amalgamated and

ĥt zs (v) = ĉolzs (v) = k}.
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Finally define

Ts(k) =
⋃

�∈N
T �
s (k − 1).

This completes the inductive construction.
Obverse that the construction ensures that the spine of Ts(k) is S p(k). At stage k the trees

Ts(k) contain the following types of vertices:

1. Ray vertices of type assignment 0 or 1, and all ray vertices have global height at most k
with respect to zs ;
All ray vertices are amalgamated (activated) with the root of a copy of (R, r);

2. Target tree vertices amalgamated to centres of extended trees of the form S = Si, j where
2i (2 j + 1) = � ≤ k, or of the form T (� − 1) for some � ≤ k; these are tree vertices v

such that ĥt zs (v) = ĉolzs (v) = �.
3. Amalgamated tree vertices occurringwithin copies of trees of the same form S orT (�−1),

and themselves amalgamated to a target vertex at its centre; these are tree vertices v such
that ĉolzs (v) < ĥt zs (v) = � ≤ k.

4. Not yet amalgamated target vertices, these are tree vertices v such that ĥt zs (v) =
ĉolzs (v) > k.

5. Not yet amalgamated tree vertices, these are tree vertices v such that ĥt zs (v) > k.
6. Other vertices of positive labels in copies of (R, r).

Thus Ts(k) consists of its spine S p(k) together with type assignments on its ray vertices.
These type assignments can be viewed as a disjoint union grouped according to the craters
centered at amalgamated target vertices from all the previous constructions, and this will
be useful in discussing and creating embeddings. In the next section we will justify the
construction, in particular showing that the number of siblings of each Ts(k) is countable.

2.4.2 Justification of the inductive construction

At this point the trees Ts(k) are equipped with (finite trees coding) labels on all vertices in
copies of (R, r), (finite trees coding) type assignments on ray vertices, and sign and spin
functions used for the inductive construction. Due to the finite trees we have seen that the
first two notions are graph properties and are thus preserved by (graph) embeddings. We now
show that (graph) embeddings also preserve amalgamated and non-amalgamated vertices,
and it will remain to show that the (global) sign and spin functions can also be recovered
from the graph structure.

Lemma 2.23 Let φ be a (graph) self-embedding of T (k) (with centre z = z0).

1. Then φ preserves amalgamated tree vertices; that is maps amalgamated tree ver-
tices to amalgamated tree vertices, and similarly un-amalgamated tree vertices to
un-amalgamated tree vertices.

2. If ĥt z(φ(z)) ≤ � ≤ k, then φ�T (�) is a self-embedding of T (�).

Proof Due to the gadgets encoding the labels, tree vertices are sent to tree vertices. Moreover,
an amalgamated tree vertex has been identified with a ray vertex and hence has degree
6 (two neighbours as a tree vertex in a copy of (R, r), one neighbour on the finite path
corresponding to the gadget encoding label 0, two neighbours as a ray vertex, and one more
on the gadget corresponding to its type). Thus it cannot be sent to an un-amalgamated tree
vertex which has only degree 3. Now the centre z is itself amalgamated, thus so is φ(z), and
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hence ĥt z(φ(z)) ≤ k. Thus if v ∈ T (k) is an un-amalgamated tree vertex, then ĥt z(v) > k,
and hence ĥtφ(z)(φ(v)) > k implying that ĥt z(φ(v)) > k and henceφ(v) is un-amalgamated.

For (2), assume that ĥt z(φ(z)) ≤ � ≤ k. Then ĥt z(v) ≤ � implies that ĥtφ(z)(φ(v)) ≤ �,
and hence ĥt z(φ(v)) ≤ �. Thus if v ∈ T (�), then by construction v is in a copy (R′, r ′)
of (R, r) such that Pz,v ∩ R′ = Pr ′,v and ĥt z(r ′) ≤ �. So ĥt z(φ(r ′)) ≤ � and hence
φ(v) ∈ (φ(R′), φ(r ′)) ⊆ T (�). That is φ(T (�)) ⊆ T (�). 
�

To further justify the construction, we also need to show that the number of (graph) siblings
of T (k) (and hence of each Ts(k)) is at most countable, and thus we seek to understand
embeddings of T (k). Recall that the spine of T (k) is S p(k), and a graph embedding of T (k)
induces a surjective embedding of S p(k), and as noted in Observation 2.13 preserves ray
and tree vertices as well as copies of (R, r). Further equipped with sign and spin functions,
we now describe the exact nature of self-embeddings of S p(k), called similarities. As such,
embeddings of T (k) induce a unique similarity on S p(k); we will then show this implies that
the sign and spin functions are indeed embedded as graph properties, and this will also allow
to control the number of (graph) siblings.

We first introduce the fingerprint of a path, which is a code for how the path navigates
along rays and copies of (R, r), and definite similarities as thosemaps preserving fingerprints
at amalgamated vertices.

Definition 2.24 1. The fingerprint of a path Pu,v = 〈u = u0, u1, . . . , un = v〉 for u, v ∈
S p(k) is the sequence of symbols 〈 f0, f1, . . . , fn〉 such that for each i ≤ n:

• fi = ‘signR′
ui (ui+1)’ if i < n, both ui and ui+1 are in a copy (R′, r ′) of (R, r) and

ui is the first element of R′ ∩ Pu,v;
• fi = ‘labR

′
(ui )’ if ui is in a copy (R′, r ′) of (R, r), and either i = n or ui is not the

first element of R′ ∩ Pu,v;
• fi = ‘ < ’ (resp. ‘ > ’) if i < n, both ui and ui+1 are ray vertices and ui < ui+1

(resp ui > ui+1) (considered as elements of the double ray Z.

2. Amap�(= �u = �u,�(u)) of S p(k) (resp. S p) is called a similarity at the amalgamated
vertex u ∈ R̂0 if the fingerprints of Pu,v and P�(u),�(v) are equal for all amalgamated
v ∈ S p(k) (resp. S p).

Lemma 2.25 Let u, v ∈ R̂0 be amalgamated vertices of T (k). Then there is a unique similar-
itymap� = �u,v ofS p(k) such that�(u) = v, and such a similaritymap is a self-embedding
of S p(k).
Moreover:

1. ŝpinu(w) = ŝpinv(w) = ŝpinv(�(w)) for all w ∈ R̂u
0 ∩ R̂v

0 except possibly for w ∈
Pu,v , and further equals ŝpinu(�(w)) except possibly for w ∈ P�−1(u),u.

2. ĉolu(w) = ĉolv(w) = ĉolv(�(w)) for allw ∈ R̂u
0 ∩ R̂v

0 except possibly those originating
from a path starting from Pu,v with strictly decreasing labels.

Proof Let u, v ∈ R̂0 be amalgamated vertices and set �(u) = v. Thus ĥt z(u) ≤ k and
ĥt z(v) ≤ k, and therefore all tree vertices are amalgamated to global height at most k with
respect to either z, u, or v. Hence for any vertex w, there exists a unique way to define
its image �(w) so that Pu,w and P�(u)=v,�(w) have the same fingerprints; this defines the
unique similarity �u,v . Note that by definition�u,v preserves the sign function and all graph
properties.

Now for w ∈ R̂u
0 , ŝpinu(w) = ŝpinv(�(w)) simply due to the paths having the same

fingerprints. Further, ŝpinu(w) = ŝpinv(w) for allw /∈ Pu,v by Lemma 2.19 and by the same
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Fig. 17 Lemma 2.26: spin preserving

lemma ŝpinu(�(w)) = ŝpinv(�(w)) for all �(w) /∈ Pu,v , that is w /∈ P�−1(u),�−1(v) =
P�−1(u),u .

Similarly, by Corollary 2.16, ĉolu(w) = ĉolv(w) = ĉolv(�(w)) except possibly those
originating from a path starting from Pu,v with strictly decreasing labels. 
�

We now come to the main lemma, showing that the sign function is preserved on amalga-
mated vertices by graph embeddings of T (k).

Lemma 2.26 (MAIN lemma) If φ : T (k) → T (k) is a (graph) embedding, then φ�S p(k) is
a similarity.
In particular (graph) embeddings of T (k) preserve the sign function on amalgamated ver-
tices, that is ŝignw(w′) = ŝign�(w)(�(w′)) for all amalgamated vertices w and all vertices
w′ ∈ R̂w .

Proof We have already observed that (graph) embeddings do preserve labels and the natural
direction on double rays. Thus it remains to prove that a graph embedding of T (k) preserves
the sign function on amalgamated vertices.

Let φ be a graph embedding of T (k). We must show, without loss of generality, that if
w is the first element in a copy (R′, r ′) of (R, r) on Pu,v for some amalgamated vertices u,
then sign is preserved at w. Such a w is an amalgamated tree vertex (even if w = u), and
this implies ĥt z(w) ≤ k and thus ĥtu(w) ≤ k. Hence φ(w) is the first element in a copy
(R′′, r ′′) of (R, r) on Pφ(u),φ(v), φ(w) is an amalgamated tree vertex (even if w = u), and
thus ĥt z(φ(w)) ≤ k as well as ĥtφ(u)(φ(w)) ≤ k. Both w and φ(w) have two neighbours in
R′ and R′′ respectively. Consider target vertices w0, w1 ∈ R′ such that (see Fig. 17):

1. w0 and w1 are in different neighbourhoods of w;
2. Pw,w0 and Pw,w1 have the same label sequence;
3. If ŵ0 and ŵ1 are the vertices in R′′ having the same label sequences as w0 and w1 from

φ(w), then w0, w1, ŵ0 and ŵ1 are not on paths of decreasing labels from Pu,z , Pu,φ(u),
or Pz,φ(u);

4. ĥtu(wi ) = ĉolu(wi ) = ĥt z(wi ) = ĉolz(wi ) = k for each i .

This can be accomplished by choosing wi along paths formed by � concatenated paths of
unimodal labels 〈012 · · · (k − 1)kk(k − 1) · · · 10〉 starting at w in different neighbourhoods
of w for some � large enough to satisfy item 2.4.2.
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Wlog spinw(w0) = −1 and hence spinw(w1) = +1. But ŝpinz(w0) = ŝpinu(w0) =
spinw(w0) = −1 by Lemma 2.19 sincew0 /∈ Pu,z , and similarly ŝpinz(w1) = ŝpinu(w1) =
spinw(w1) = +1. This meansw0 is amalgamated to the centre of a copy of the double rayD0

(from T (k−1)), andw1 to the centre of a double ray (from some S = Si, j ) that cannot embed
into D0 preserving their centres, and vice-versa. The corresponding vertices ŵ0, ŵ1 ∈ R′′
are those starting at φ(w) with the same label sequence. But ŝpinz(ŵi ) = ŝpinφ(u)(ŵi ) =
spinφ(w)(ŵi ) since ŵi /∈ Pz,φ(u). Thus wlog ŝpinz(ŵ0) = −1 and hence ŵ0 is amalgamated
to the centre of a copy of the double ray D0, and ŵ1 to the centre of a double ray that cannot
embed into D0 preserving their centres, and vice-versa. Hence there is no alternative but φ

sending w0 to ŵ0 and similarly w1 to ŵ1. But this means that sign is preserved at w as
desired. 
�

We have already observed that any sibling of T (k) contains (a copy of) S p(k), and hence
the above result immediately carries to siblings of T (k).

Corollary 2.27 If S and S ′ are siblings of T (k), then any embedding φ : S → S ′ induces a
similarity on S p(k).

Proof Let S and S ′ be siblings of T (k), and φ : S → S ′ an embedding. Now since S is a
sibling, let ψ : T (k) → S be an embedding, and we may consider S ′ as a substructure of
T (k). Hence φ◦ψ : T (k) → T (k) is an embedding whose restriction to S p(k) is a similarity
by Lemma 2.26. But ψ �S p(k) is itself a (surjective) similarity, and hence so is ψ−1. Thus
φ�S p(k) = φ ◦ ψ ◦ ψ−1�S p(k) is a similarity. 
�

Thus any graph embedding of T (k) (or of any sibling) is a similarity on S p(k), and
conversely we will see later how to use particular similarities of S p(k) to create embeddings
of T (k), meaning how to correctly match the type assignments of ray vertices. As a corollary
to Lemma 2.26wewill need the corresponding property for all siblings of T (k).We first show
that the type assignments on double rays can only disagree with the image of an embedding
of T (k) for finitely many ray vertices. That is, only finitely many ray vertices of type 0 are
mapped to type 1 ray vertices, or if we recall that type assignments are implemented though
finite trees attached to those ray vertices, we show that T (k) \ φ(T (k)) is finite for any
embedding φ of T (k).

There are obvious proper self-embeddings of T (k) (and each Ts(k)), namely any transla-
tion along the double rayD0, so that all type 1 ray vertices aremapped into type 1 ray vertices.
Indeed by construction, all trees attached to ray vertices on D0 are identical, and thus can be
mapped (isomorphically) to the corresponding tree by translation, and hence T (k)\φ(T (k))
is finite for such embeddings due to finitely many type 0 ray vertices mapped to type 1 ray
vertices. Thus T (k) is almost equal to its image by a translation embedding. We show that
this situation occurs for all embeddings, that is T (k)\φ(T (k)) is finite for all embeddings.
It is worth observing that this property propagates to all siblings.

Lemma 2.28 Ts(k)\φ(Ts(k)) is finite for any self-embedding φ and s < s. The only possible
difference is in a finite number of ray vertices of different type assignments.

Proof First observe that in general if T is a tree and T \φ(T ) is finite for any self-embedding
φ of T , then S\ψ(S′) is finite for any siblings S and S′ of T and embedding ψ : S′ → S. In
particular since each Ts(k) is a sibling of T (k), it suffices to prove the lemma for the latter,
and the proof will consist of an analysis of the effect of an embedding on T (k).
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Fig. 18 Lemma 2.28: the first
case

Fig. 19 Lemma 2.28: the second
case

We proceed by induction on k. It is easily verified for k = 0 since a proper embedding φ

of T (0) consists of a (proper) translation of D0 (in its natural direction). Copies of (R, r , )
are moved onto copies of (R, r) and hence T (0)\φ(T (0)) consists of finitely many gad-
get vertices from finitely many ray vertices of type 0 assignment being mapped to type 1
assignments.

We now assume the statement is true for all � < k, and we consider a self-embedding φ

of T (k). By Lemma 2.26, φ induces a surjective similarity on S p(k), and hence preserves
labels, copies of (R, r), amalgamated vertices, ray vertices, the natural direction of double
rays, and the sign function on amalgamated vertices. Thus any vertex in T (k)\φ(T (k))must
come from ray vertices of type 0 assignment being mapped to type 1 assignments. Recall
that these type assignments are set by the amalgamations during the construction, and can be
viewed as a disjoint union grouped according to the craters centered at amalgamated target
vertices. It thus suffices to show that only finitely many such craters may differ from their
image, and that the difference is finite in all those cases where they differ.

We consider two special cases based on m = ĥt z(φ(z)), where z = z0 is the center of
T (k), followed by the general case. Note that m ≤ k since φ(z) is amalgamated.

For the first case, φ(z) is part of a tree T (a copy of T (m −1) or some extended S = Si, j )
that was amalgamated with its centre to a target vertex v during the construction of T (m)

(see Fig. 18). Thus ĥtv(φ(z)) < m and ĥt z(v) = ĉolz(v) = m. Hence ĥtφ(z)(v) < m, and
the preimage satisfies ĥt z(φ−1(v)) < m. But this means that φ induces an embedding of
T (m − 1) into T , and the induction hypothesis ensures that T \ φ(T (m − 1)) is finite.

For the second and similar case, φ−1(z) is part of a tree T (a copy of T (m − 1) or some
extended S = Si, j ) that was amalgamated with its centre to a target vertex v during the
construction of T (m) (see Fig. 19). Thus ĥt z(v) = ĉolz(v) = m, and ĥtv(φ−1(z)) < m.
Hence ĥtφ−1(z)(v) < m, and the image satisfies ĥt z(φ(v)) < m. But thismeans thatφ induces
an embedding of T into T (m−1), and the induction hypothesis ensures that T (m−1)\φ(T )

is finite.
For the remaininggeneral case, consider an amalgamated target vertexu such that ĥt z(u) =

ĉolz(u) = � ≥ m as well as ĥtφ−1(z)(u) ≥ m (see Fig. 20). Being amalgamated, wemust also
have � ≤ k. Then u was activated during the construction of T (�), and was amalgamated with
the centre of a tree T (a copy of T (� − 1) or some extended S = Si, j ). Note that as a result
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Fig. 20 Lemma 2.28: the general
case

all type assignments in the �-crater C(u) are exactly those resulting from this amalgamation
of T .

Now φ(u) is amalgamated and we claim that it is in fact a target vertex such that
ĥt z(φ(u)) = ĉolz(φ(u)) = �, this can be shown as follows. Let w be such that
Pz,u ∩ Pφ−1(z),u = Pw,u . If the last consecutive pair on Pz,u (of label �) is on Pw,u , then it is
also on Pφ(w),φ(u) and we are done. Otherwise, the last consecutive pair must be on Pz,w and
Pw,u consists of decreasing labels strictly less than �. Thus � = m since m = ĥt z(φ−1(z)).
But now Pφ−1(z),w must contain a consecutive pair of labels � = m since ĥtφ−1(z)(u) ≥ m,
and this shows that ĥt z(φ(u)) = ĉolz(φ(u)) = � = m in this case as well.

This means that φ(u) was also activated during the construction of T (�), and was amal-
gamated with the centre of a tree T ′ (a copy of T (� − 1) or some extended S = Si, j ). Now,

if ŝpinz(u) = ŝpinz(φ(u)), then the same tree T = T ′ is amalgamated to u and φ(u) at its
centre, and φ induces an embedding of that tree, sending the �-crater at u to the �-crater at
φ(u); by uniqueness of the similarity (by Lemma 2.25), φ induces an isomorphism of T to
T = T ′ (essentially the identity) and T ′\φ(T ) = ∅. If instead ŝpinz(u) 	= ŝpinz(φ(u)), then
the tree T ′ amalgamated at φ(u) is different than T , but T ′ \ φ(T ) is finite by the induction
hypothesis. Note that this latter case can occur only finitely many times by Lemma 2.25.

This completes the proof. 
�
We can now verify two requirements of the construction. First we show that each non-

isomorphic sibling of each T (k) contains a double ray non-isomorpic to D0, that is having a
type 1 ray vertex followed by a vertex of type 0.

Corollary 2.29 Every non-isomorphic sibling of each T (k) contains a double ray non-
isomorpic to D0, that is having a type 1 ray vertex followed by a vertex of type 0.

Proof This is certainly true for T (0) and the tree T (1) already contains infinitely many such
double rays (from embeddings of S0,0). Finally, by Lemma 2.28, any sibling of T (k) contains
all but finitely many of those rays. 
�

We can also show that each Ts(k) has countably many siblings.

Corollary 2.30 sib(Ts(k)) = ℵ0 for all k.

Proof By construction each Ts(k) is countable (this also follows from simply being locally
finite trees). Now, by Lemmas 2.25 and 2.26, for any amalgamated vertex v, all self-
embedding φ such that φ(z) = v agree on all vertices on its spine S p(k) of global height at
most k. NowbyLemma2.28,T (k)\φ(T (k)) is finite. So there are only countablymany amal-
gamated vertices, and for each there can be only finitelymany siblings φ(T (k)) ⊆ S ⊆ T (k).
Hence sib(T (k)) = sib(Ts(k)) ≤ ℵ0 for all k.

We already noticed that each T (k) has infinitely many siblings due to translations along
Ds , hence sib(Ts(k)) = ℵ0 exactly. 
�
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Fig. 21 Lemma 2.31: the case
that φ : Ts′ (k) → Ts (k) is an
isomorphism

Fig. 22 Lemma 2.31: the case
that φ : Ts (k) → Sk+1 is an
isomorphism

We show that all Ts(k) are pairwise non-isomorphic siblings at every stage, and in fact
we prove a bit more so to support the induction argument.

Lemma 2.31 For each s 	= s′ < s and k ∈ N, Ts(k) � Ts′(k).
Moreover, if k+1 = 2i (2 j+1), and Si, j as a substructure of Ts(i) and Ts(k)was extended to
Sk+1 following the inductive construction so that all tree vertices in Sk+1 are amalgamated
up to global height k with respect to its centre c, then Sk+1 � Ts(k).

Proof Weprove both statements simultaneously by induction on k.We have already observed
that the trees Ts(0) are pairwise non-isomorphic (since the rays Ds are not isomorphic).
Moreover since 1 = 20(2 · 0 + 1), S1 = S0,0 and as a substructure of Ts(0) has all its tree
vertices already amalgamated up to global height 0 with respect to its center. By definition
S0,0 is not isomorphic to Ts(0) so the base case follows.

Now let k > 0 be the smallest counterexample, and suppose first that φ : Ts′(k) → Ts(k)
is an isomorphism with s′ 	= s (see Fig. 21). Let v = φ(zs′), then v must be amalgamated
(since zs′ is). Let � = ĥt zs (v) ≤ k. If � = 0, then this means that φ(zs′) ∈ Ds , but this is
impossible by construction since the double raysDs′ andDs are not isomorphic. Thus � > 0
and write � = 2i (2 j + 1). According to the construction, v is either contained in a copy of
T (� − 1) (= T0(� − 1) no matter s by construction), or of an extended sibling S� of Si, j that
was inserted in the tree by amalgamation identifying its centre to a target vertex. But then
either φ � Ts′(� − 1) : Ts′(� − 1) → T (� − 1) or φ � Ts′(� − 1) : Ts′(� − 1) → S� is an
isomorphism, a contradiction in either case to the induction hypothesis.

Otherwise assume that φ : Ts(k) → Sk+1 is an isomorphism, where k + 1 = 2i (2 j + 1),
and Sk+1 was extended from Si, j so that all tree vertices in Sk+1 are amalgamated up to global
height k with respect to its centre c (see Fig. 22). Let v = φ(zs), and � = ĥtc(v). If � ≤ i ,
then v was already amalgamated in Si, j and φ �Ts(i) : Ts(i) → Si, j is an isomorphism by
Lemma 2.23, a contradiction as Si, j was specifically chosen non-isomorphic to Ts(i) (for any
s). If � > i , then v was amalgamated following the inductive construction by assumption, and
hence is part of an amalgamation of some T (m) (= T0(m)) or a Sm+1 for some i ≤ m < �.
But then either φ�Ts(m) : Ts(m) → T (m) or φ�Ts(m) : Ts(m) → Sm+1 is an isomorphism
by Lemma 2.23, again a contradiction in either case.


�
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2.5 The trees 〈Ts : s < s〉

We are now ready to define 〈Ts : s < s〉.
Definition 2.32 Define Ts = ⋃

k Ts(k) for each s < s.

Recall the spine S p defined in Definition 2.12. Since S p(k) is the spine of each Ts(k),
then clearly S p (up to isomorphism) is the spine of each Ts . Moreover we have the following
result arising from known properties of T (k).

Lemma 2.33 Let φ be a self-embedding of T into T (with centre z = z0), then:

1. φ induces a similarity on S p.
2. If ĥt z(φ(z)) ≤ k, φ�T (k) is a self-embedding of T (k).
3. T \ φ(T ) is finite. The only possible difference is in a finite number of ray vertices of

different type assignments.

Proof Items 1 and 2 follow as in Lemma 2.23 and Corollary 2.27.
To prove item 3, let k = ĥt z(φ(z)), and thus φ � T (k) is a self-embedding of T (k) by

part 2 and Ts(k) \ φ(Ts(k)) is finite by Lemma 2.28. Now for a target vertex v ∈ T \T (k),
ŝpinz(v) = ŝpinz(φ(v)) by Lemma 2.25, and thus the same trees are amalgamated at v and
φ(v) in the construction, and φ restricted to that tree must be an isomorphism by uniqueness
again by Lemma 2.25. Hence φ is an isomorphism on T \T (k). The result follows. 
�

Note that in the last case a type 0 ray vertex being mapped to a type 1 means that a single
leaf is not in the image, this will be useful later.

We first confirm that we have at least s siblings.

Proposition 2.34 Ts � Ts′ for any s 	= s′ < s.

Proof Suppose that φ : Ts′ → Ts is an isomorphism, and let k = ĥt zs (φ(zs′)). Then
φ � Ts′(k) : Ts′(k) → Ts(k) is an isomoprhism by Lemma 2.33(2), contradicting Lemma
2.31. 
�

And finally we are ready to conclude that T has exactly s siblings.

Proposition 2.35 If S ≈ T , then S ∼= Ts for some s < s.

Proof Let S be a sibling of T . Being all siblings, we may assume that T = T0 ⊇ Ts ⊇ S ⊇
θ(T ) for all s < s and some self-embedding θ : T → T . By Lemma 2.33, we can find n
such that:

1. zs ∈ T (n) for each s < s,
2. θ(z0) ∈ T (n),
3. T \ θ(T ) ⊆ T (n).

Define S(n) = S ∩ T (n). So θ(T (n)) ⊆ S(n) ⊆ T (n), and hence S(n) is a sibling of
T (n). Thus by construction either S(n) ∼= Ts(n) for some s < s, or else S(n) ∼= S := Sn, j

for some j .
First assume the latter, and we shall show that S ∼= T . We do so by extending an isomor-

phism from S to S(n) mapping craters to craters attached to target vertices of the same spin,
and hence have the same type assignments on all ray vertices of those craters, producing the
required isomorphism from T to S (see Fig. 23). Let c be the centre of S and k = 2n(2 j +1).
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Now call u the tree vertex of T (k) at the end of the path Pz,u starting at z = z0 with unimodal
labels 〈01 · · · kk · · · 10〉 increasing to k and back to 0, and such that signz(u) = −1 and thus
spinz(u) = +1. Note that u and z are in the same copy (R′, r ′) of (R, r), and u is a target
vertex of (global) height k (with respect to z). Thus at stage k of the construction of T (k),
S was extended (following the inductive construction) to S′ so that all tree vertices in S′ are
amalgamated up to global height k − 1 (with respect to c) before (S′, c) was amalgamated
with (T (k − 1), u) over (R′, r ′). In particular we consider S′ (and S) as a substructure of
T (k) with c identified with u.

Fix an isomorphism φ : S → S(n), and let φ(u) = v ∈ S(n). By Corollary 2.27, φ

induces a similarity map �̂ = φ � Ŝ p(n) on a copy Ŝ p(n) of S p(n) as a substructure of
S ⊆ T , and by Lemma 2.25 it is the unique such similarity sending u to v. Now from the
global point of view of T , there is also a similarity map � = �u,v on S p (as a substructure
of T ), and it turns out that �̂ and � agree on Ŝ p(n). The reason is that, by definition, both
maps preserve the fingerprint of a path Pu,u′ for u′ ∈ S. Those fingerprints may be different
from the point of view of S and T : of course the labelling and ray orderings agree, but the
sign values are computed on one hand from the point of view of S (and its centre before being
embedded into T ), and on the other hand from the point of view of T and its centre z. Yet
the fact that �̂ and � preserve the corresponding fingerprints implies that both will agree on
their image of u′. Hence we must find the required embedding from T to S by extending �̂

to � and from there to the type assignments at all ray vertices outside S: we will show that
� preserves the spin at target vertices outside S, and hence the same trees are amalgamated
in the craters of target vertices v and �(v) allowing to extend the embedding outside S as
desired. To do so, we will go through z by considering �u,v = �z,v ◦ �u,z .

First consider �u,z , and let w be a target vertex of global height � > n with respect
to u. Since �u,z preserves labels, its image is also a target vertex of global height � > n

with respect to z. Now by Lemma 2.25, ŝpinu(w) = ŝpinz(w) = ŝpinz(�u,z(w)) except
possibly for w ∈ Pu,z . This means that for all target vertices w of global height � > n with
respect to u and not on Pu,z ,�u,z(w) is also a target vertex with respect to z of the same spin,
and thus the same tree is amalgamated at w and �u,z(w). Hence �u,z can be extended to an
isomorphism φw

u,z (matching the type assignments at ray vertices) on the �-crater centered at
w to the �-crater centred at�u,z(w). Note this includes all target vertices in S′ \ S which were
amalgamated before S′ was itself amalgamated to T (k). Now forw = z, which will come up
when � = k, it is the only remaining target tree vertex on Pu,z to handle since �(u) = v has
already been taken care of by φ. By Definition 2.8, signu(z) = spinz(u) = +1 implying
through similarity that signz(�u,z(z)) = +1, and thus ŝpinz(�u,z(z)) = −1. Hence a
copy of T (k − 1) is amalgamated at z and �u,z(z), and �u,z can again be extended to an
isomorphism φz

u,z on the k-crater centered at w = z (contained in (T (k − 1), z)) to the
k-crater centered at �u,z(w) (contained in a copy of (T (k − 1), z). Note this is a crucial part
to ensure that S ∼= T = T0, and not any other Ts .

Next consider the similarity map �z,v on S p , and letw′ be a target vertex of global height
� > n with respect to z. Then, by similarity, its image is also a target vertex of global height
� > n with respect to v, and and since ĥt z(v) ≤ n also with respect to z. Again, by Lemma
2.25, ŝpinz(w

′) = ŝpinz(�z,v(w
′)) except possibly for w′ ∈ Pz,v , which in this case cannot

happen since ĥt z(v) ≤ n. This means that for all target vertices w′ of global height � > n
with respect to z, then �z,v(w

′) is again a target vertex of the same spin with respect to z,
and thus the same tree is amalgamated at w′ and �z,v(w

′). Hence �z,v can be extended to
an isomorphism φw′

z,v (matching the type assignments at ray vertices) on the �-crater centered
at w′ to the �-crater centered at �z,v(w

′).
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Fig. 23 Proposition 2.35: the case S(n) ∼= T = Sn, j

Combining the maps, the required isomorphism φ̂ : T → S can be summarized as
follows. For ŵ ∈ T :

φ̂(ŵ) = φ(ŵ) if ĥtu(ŵ) ≤ n,
= φw′

z,v ◦ φw
u,z(ŵ) if � = ĥtu(ŵ) > n,

ŵ belongs to the �-crater of the target vertex w,
and w′ = �u,z(w).

Note that there are vertices in the spine of S of height larger than n, and by uniqueness
of the similarities their image could have been defined using either case; for simplicity these
are now handled in the second case.

The case that S(n) ∼= Ts(n) for some s < s is similar but relatively simpler; here we
show that Ts ∼= S (see Fig. 24). Fix an isomorphism φ : Ts(n) → S(n), and let v = φ(zs) ∈
S(n) ⊆ T (n). By Corollary 2.27, φ induces a similarity map �̂ = φ�S p(n). By Lemma 2.25,
it is the unique similarity from S p(n) sending zs to v, and must therefore readily agree with
the similarity � = �zs ,v on S p . We will show that � preserves the spin at target vertices of
all craters outside Ts(n). Note here that the spin in Ts is determined by its centre zs , and the
spin in S ⊆ T is determined by the centre z0.

Thus let w ∈ Ts be a target vertex of global height � > n with respect to zs . Since �zs ,v

preserves labels, its image is also a target vertex of global height � > n with respect to v, and
hence a target vertex of global height � > n with respect to z0 since ĥt z0(v) ≤ n. Again from

� being a similarity, ŝpinzs (w) = ŝpinv(�(w)) for allw ∈ R̂zs
0 ∩ R̂v

0 . Moreover, by Lemma

2.19, ŝpinz0(�(w)) = ŝpinv(�(w)) as long as �(w) /∈ Pz0,v , which in this case cannot
happen since ĥtv(�(w)) = � > n. This means that the same tree is amalgamated at w and
�(w) and hence � can be extended to an isomorphism φw (matching the type assignments
at ray vertices) on the �-crater centered at w in Ts to the �-crater centered at �(w) in T , but
since S\S(n) = T \S(n) this is the same as �-crater centered at �(w) in S.

Combining the maps, the required isomorphism φ̂ : Ts → S can be summarized as
follows. For ŵ ∈ Ts :

123



An example of Tateno disproving conjectures of Bonato–Tardif... 127

Fig. 24 Proposition 2.35: the case S(n) ∼= Ts (n)

φ̂(ŵ) = φ(ŵ) if ĥt zs (ŵ) ≤ n;
= φw(ŵ) if � = ĥt zs (ŵ) > n, and

ŵ belongs to the �-crater of the target vertex w.
This completes the proof. 
�
We finally have all the ingredients to prove our first main theorem.

Theorem 1. For each non-zero s ∈ N, there is a locally finite tree T with exactly s siblings,
considered either as relational structures or trees. Moreover, for s = 1, the tree is not a ray,
yet it has a non-surjective embedding.
Thus the conjectures of Bonato–Tardif, Thomassé, and Tyomkyn regarding the sibling num-
ber of trees and relational structures are all false.

Proof By Propositions 2.34 and 2.35, T is a locally finite tree with sib(T ) = s, hence
disproving the Bonato–Tardif conjecture in the case s ≥ 2, and hence also Tyomkyn’s first
conjecture.

By Lemma 2.33, any sibling of T = T0 viewed as a substructure of T differs from T
by a finite set of ray vertices of different type assignments, meaning a single leaf has been
removed from finitely many type 1 vertices to become type 0 vertices. But this means that
T ⊕ 1 does not embed in T , and hence any sibling of T , viewed as a binary relational
structure, is connected and thus a tree. In this case Thomassé’s conjecture is equivalent to
Bonato–Tardif’s conjecture, and thus also false.

Finally consider the special case s = 1 so that sib(T ) = 1. The embedding φ ofD0 given
by translation φ(vi ) = vi+1, and its natural extension to T , is a proper embedding (v1 of type
1 has become type 0), and T is certainly not a ray. Thus in this case T disproves Tyomkyn’s
second conjecture. 
�

3 Siblings of partial orders

The above construction of locally finite trees with prescribed finite number of siblings can
be adapted to provide a similar construction of partial orders with a prescribed finite number
of siblings, hence our second main theorem.
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Fig. 25 The gadget PK (2n,m) as a partial order

Theorem 2. For each non-zero s ∈ N, there is a partial order P with exactly s siblings (up
to isomorphy).

We briefly outline the main ingredients for the proof. This will be done by following the
construction using the modified double rays D′ as described earlier (see Fig. 9), to obtain
locally finite trees T ′ with a prescribed finite number of siblings. Then a partial order is
defined on T ′ to create a partial order P so to have the same monoid of embeddings (either
as a tree or as a partial order), and hence the result follows.

3.1 Partial ordering on the gadgets

In the construction of T (and T ′), we have used various gadgets of the form PK (2n,m), and
we define a partial order on PK (2n,m) in the form of a fence as follows.

Definition 3.1 On PK (2n,m), the finite gadget formed by connecting u ∈ K1,m = (u, V )

to the end vertex u2n of a path 〈u0, u1, . . . , u2n〉 of length 2n, define a partial order in the
form of a fence as follows (see Fig. 25):

1. u2i < u2i+1 for 0 ≤ i < n,
2. u2i < u2i−1 for 0 < i ≤ n,
3. u2n < v for all v ∈ V .

We record the following immediate observation.

Observation 3.2 PK (2n,m) embeds into PK (2n′,m′) as rooted trees if and only if n = n′
and m ≤ m′.
Moreover any graph embedding of such a gadget into another one as a rooted tree is an
order embedding, and vice-versa.

3.2 Partial ordering on (R, r)

To define a partial ordering on (R, r), we will need the following property.

Lemma 3.3 Given a path Pw1,w2 in (R, r) between tree verticesw1, w2 with unimodal labels
〈01 · · · kk · · · 10〉 increasing to k > 0 and back to 0, then signw1(w2) = −signw2(w1).

Proof Let w so that Pr ,w1 ∩ Pr ,w2 = Pr ,w, and we may assume without loss of generality
(by interchanging w1 andw2 if necessary) that w 	= w1 (see Fig. 26).

First suppose that w = w2. If further r = w, then r and w2 are clearly in the same
neighbourhood of w1, so by Definition 2.8 and definition of spin we have signw1(w2) =
spinr (w1) = −signw2(w1). Otherwise if r 	= w, then w1 and r belong to opposite neigh-
bourhoods of w2, and hence signw2(w1) = −spinr (w2) according to Definition 2.8.
Further in this case, w2 and r belong to the same neighbourhood of w1, and hence
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Fig. 26 Lemma 3.3:
Pr ,w1 ∩ Pr ,w2 = Pr ,w

signw1(w2) = spinr (w1) again according to Definition 2.8. But spinr (w1) = spinr (w2)

since the path Pw1,w2 contains a single consecutive pair and one more tree vertex beyondw2.
Hence signw1(w2) = −signw2(w1) again in this case.

Now assume that w 	= w2, w1. Then w1 and r belong to the same neighbourhoods of
w2, and similarly w2 and r belong to the same neighbourhoods of w1. Hence signw2(w1) =
spinr (w2) and signw1(w2) = spinr (w1) by Definition 2.8. But the single consecutive pair
of Pw1,w2 will be counted exactly once in either spinr (w2) or spinr (w1), and hence since
the number of tree vertices is the same in both cases we get spinr (w2) = −spinr (w1). Thus
again signw1(w2) = −signw2(w1). 
�

Lemma 3.3 justifies item (2) of the following definition, showing that the choice of the
tree vertex w closest to either u or v yields the same order.

Definition 3.4 Consider adjacent vertices u, v ∈ R.

1. If lab(u) = n and lab(v) = n + 1, then let w ∈ R0 be the tree vertex nearest to u (or v),
and define:
u < v if signw(v) = +1,
u > v if signw(v) = −1.

2. If lab(u) = lab(v), then let w ∈ R0 be the tree vertex nearest to u, and define:
u > v if signw(u) = +1,
u < v if signw(u) = −1.

This provides the partial order we need on R.

Observation 3.5 The transitive closure of the above relations makes (R,<) a partial order.

Now since a graph embedding of (R, r) is a similarity by Lemma 2.26, in particular it
preserves the sign function at tree vertices, and as a result is an order preserving embedding
as defined above. Conversely we claim that an order embedding φ of (R,<) is a graph
embedding. First consider an edge uv with lab(v) = lab(u) + 1, and therefore u and v are
comparable. Then u′ = φ(u) and v′ = φ(v) have the same labels as u and v respectively due
to the gadgets. But if v′′ is the neighbour of u′ with lab(v′′) = lab(v), then any non-trivial
path from v′ to v′′ would contain a consecutive pair, and thus v′ 	= v′′ would imply that
u′ is incomparable to v′. Similarly if uv is a consecutive pair and thus again u and v must
be comparable. Let w1 and w2 be the tree vertices closest to u and v respectively. From the
above argument the paths Pw1,u and Pw2,v aremapped to the paths Pφ(w1),φ(u) and Pφ(w2),φ(v)

respectively. Since φ(w1) 	= φ(w2), the path from φ(u) to φ(v) must contain a consecutive
pair, and φ(u) is incomparable to φ(v) unless it is the edge φ(u)φ(v) we are looking for.

We record this discussion as follows.

Lemma 3.6 The monoid of embeddings of (R, r) as a tree is the same as that of (R,<) as a
partial order.
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Fig. 27 The partial order on a typical double ray D′ (plus the order on the gadgets as above)

3.3 Partial ordering on double rays

This is where we use the special double raysD′ described in Fig. 27. We order such a double
ray as a fence, and together with the ordering of gadgets above yields a partial ordering of
double rays.

Again we record the correspondence between graph and order embeddings.

Lemma 3.7 The monoid of embeddings of a double ray D′ as a tree is the same as that of
(D′,<) as a partial order.

3.4 The posets 〈Ps : s < s〉

For a non-zero s ∈ N, the posets 〈Ps : s < s〉 we are seeking to produce consist of the
trees 〈T ′

s : s < s〉 constructed as before but now using the special double rays D′
s (with type

assignments on even indexed vertices), equipped with the (transitive closure) of the above
orderings on copies of (R, r) and double rays.

It is now clear that order embeddings ofPs will preserve copies of (R, r) and double rays.
First note that two vertices in a copy of (R, r) are connected through a path in the compara-
bility graph of Ps , hence so is their image; but if their image belongs to different copies of
(R, r) that path would go through an odd-indexed vertex of a double ray, which is impossible
due to the gadgets being mutually non-embedable. Similarly two vertices on a double ray
cannot be mapped to different double rays since again the image of their comparability path
would be required to contain a vertex of positive label, which is again impossible due to the
gadgets being mutually non-embedable.

Hence order embeddings of Ps coincide with graph embeddings of T ′
s . Thus P = P0 has

indeed exactly s siblings up to isomorphism. This completes the proof of the second main
theorem.
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