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Abstract
We study lines on smooth cubic surfaces over the field of p-adic numbers, from a theoretical
and computational point of view. Segre showed that the possible counts of such lines are
0, 1, 2, 3, 5, 7, 9, 15 or 27. We show that each of these counts is achieved. Probabilistic
aspects are investigated by sampling both p-adic and real cubic surfaces from different
distributions and estimating the probability of each count.We link this to recent results on
probabilistic enumerative geometry. Some experimental results on theGalois groups attached
to p-adic cubic surfaces are also discussed.

Keywords p-adic cubic surfaces · Real cubic surfaces · Probabilistic enumerative geometry

Mathematics Subject Classification 14Q10 · 14N10 · 60B99

1 Introduction

Smooth cubic surfaces are arguably one of the most famous objects in classical algebraic
geometry [1–3]. The problem of counting lines on such surfaces also has a long standing
history and there is a vast literature on the topic. In the nineteenth century, Cayley [4] and
Schläfli [5] proved that a smooth cubic surface over the complex numbers always has 27
lines, while over the real numbers it can have 3, 7, 15 or 27 lines. Segre [6] showed that over
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150 R. A. El Manssour et al.

Table 1 Classification of
possible line counts for the fields
C, R, Q, Fq

Base field Numbers attained References

C 27 [4]

R 3, 7, 15, 27 [5]

Q 0, 1, 2, 3, 5, 7, 9, 15, 27 [6]

Fq , q > 5 odd 0, 1, 2, 3, 5, 7, 9, 15, 27 [8]

F2n , n ≥ 2 0, 1, 2, 3, 5, 7, 9, 15, 27 [8]

F5 0, 1, 2, 3, 5, 7, 9, 15 [8]

F2, F3 0, 1, 2, 3, 5, 9, 15 [8, 9]

any field, a smooth cubic surface can only have 0, 1, 2, 3, 5, 7, 9, 15, or 27 lines1. Depending
on the base field, some of these numbers may not be attained. Since then, the problem of
counting lines on cubic surfaces over different fields attracted many mathematicians and
some cases have already been classified; see Table1.

Recently, McKean [7] showed that all of the numbers 0, 1, 2, 3, 5, 7, 9, 15 and 27 occur
when the base field is finitely generated with at least 22 elements or a finite transcendental
extension of an arbitrary field; see [7, Corollary 1.6].

In this text, our main aim is to get an idea of how many lines are on a cubic surface over
Qp or R from a probabilistic point of view. To this end, we conduct numerical experiments
when the base field is Q7 or R. While over the real numbers, a cubic surface can only have
either 3, 7, 15 or 27 lines, by adapting the approach in an earlier version of [7]2 to the case
we are interested in, we get the following:

Theorem 1.1 Let n ∈ {0, 1, 2, 3, 5, 7, 9, 15, 27}. Then there exists a smooth cubic surface
over Qp that contains exactly n lines. In other words, all possible line counts occur when
the base field is Qp.

In Sect. 2, we explain how to explicitly construct (by blowing up the projective plane
in 6 suitable points) a smooth cubic surface having any of the line counts mentioned in
Theorem1.1. Sections3 and 4 focus on probabilistic computations and heuristics for both
the p-adic and real case, respectively. For the p-adic case, we sample from the family of
smooth cubic surfaces with four different probability measures (see Sect. 3), and compute
the probability of seeing each number of lines. Table3 summarizes the distributions of the
number of lineswhen p = 7. For the real case,we consider a one-parameter family (Pλ)0<λ<1

of Gaussian distributions studied in [10]. The probability distribution of line counts is then
a curve in the 3-simplex which is depicted in Fig. 1. The Galois groups attached to smooth
cubic surfaces are of special interest. The final section of this paper (Sect. 5) is devoted to
experimental results on which Galois groups appear for cubic surfaces defined over Qp . Our
results suggest that Galois groups should be quite small and usually abelian. This motivates
an inverse Galois problem for smooth cubic surfaces over Qp in line with Elsenhans and
Jahnel’s work [11] on the inverse Galois problem for smooth cubic surfaces over Q.

Most of the results in this text were found by computation. The codes and data are made
available at

https://mathrepo.mis.mpg.de/27pAdicLines/index.html. (1)

1 In his work, Segre actually points out that his statement fails in characteristic 2, but this is not correct; see
[7, Section 3.1].
2 This was done prior to the appearance of McKean’s stronger result [7, Theorem 1.3].
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Lines on p-adic and real cubic Surfaces 151

Our computations were carried out using the computer algebra systems Magma [12], Julia
[13] and Macaulay2 [14].

2 Lines on smooth p-adic cubic surfaces

In the following, we recall a well-known representation of smooth cubic surfaces: the blow-
up of the projective plane P

2 at six Qp-rational points in general position is a smooth cubic
surface (see, for example, [15] for a detailed treatment). Up to a change of coordinates, the
six points lie on the cuspidal cubic curve

C : θ �−→ (1 : θ : θ3)

and can be represented as the columns of the matrix
⎡
⎣
1 1 1 1 1 1
θ1 θ2 θ3 θ4 θ5 θ6
θ31 θ32 θ33 θ34 θ35 θ36

⎤
⎦ . (2)

The six points are said to be in general position if no three of them lie on a line and not all
of them lie on a conic. Equivalently the points are in general position if both the maximal
minors of (2), which are given by

[i jk] := (θi − θ j )(θi − θk)(θ j − θk)(θi + θ j + θk) for 1 ≤ i < j < k ≤ 6,

and the polynomial

[134][156][235][246] − [135][146][234][256]
:= (θ1 + θ2 + θ3 + θ4 + θ5 + θ6)

∏
1≤i< j≤6

(θi − θ j ),

do not vanish. These polynomials split into linear forms that together determine the hyper-
plane arrangement of type E6 (see [16, Section 6] for more details):

θi − θ j for 1 ≤ i < j ≤ 6,
θi + θ j + θk for 1 ≤ i < j < k ≤ 6,
θ1 + θ2 + · · · + θ6.

(3)

Definition 2.1 Let F =
6∏

i=1
(X − θi ) ∈ Qp[X ] be a univariate polynomial of degree 6 whose

roots lie in the complement of the hyperplane arrangement (3).We denote byS(F) the smooth
cubic surface that is the blow-up of the projective plane at the six points {[1 : θi : θ3i ]}1≤i≤6.

The defining equation of S(F) in P
3 in terms of the θi is determined in [15, Equation 4].

The 27 Qp-rational lines on S(F) are of three distinct types:

(i) {Ei : i = 1, . . . , 6}, where Ei is the exceptional divisor of the point C(θi );
(ii) {Fi, j : i, j = 1, . . . , 6, i �= j}, where Fi, j is the strict transform of the line passing

through the points C(θi ) and C(θ j );
(iii) {Gi : i = 1, . . . , 6}, whereGi is the strict transform of the unique conic passing through

the points {C(θ1), . . . , C(θ6)} \ {C(θi )}.
In view of constructing smooth cubic surfaces that have a prescribed number of Qp-

rational lines, we investigate the action of the absolute Galois group G = Gal(Qp/Qp) on
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152 R. A. El Manssour et al.

Table 2 A list of surfaces S(F) that realize all possible line-counts over Qp

Polynomial F (�, q) # of lines on S(F)

X6 + pX5 + p (0, 0) 0

(X4 + p)(X2 + pX + p) (0, 1) 1

X(X5 + pX4 + p) (1, 0) 2

(X2 + p)(X2 + pX + p)(X2 + p2X + p) (0, 3) 3

(X + 1)(X + 2)(X4 + p) (2, 0) 5

(X + 1)(X + 2)(X2 + p)(X2 + pX + p) (2, 2) 7

(X + 1)(X + 2)(X + 3)(X3 + pX2 + p) (3, 0) 9

(X + 1)(X + 2)(X + 3)(X + 4)(X2 + p) (4, 1) 15

X(X + 1)(X + 2)(X + 3)(X + 4)(X + 5) (6, 0) 27

S(F), and show that the line-count depends only on the decomposition of F into irreducible
factors over Qp .

Lemma 2.2 The smooth cubic surface S(F) is Qp-rational and contains exactly

2� + q +
(

�

2

)

Qp-rational lines, where � and q are the number of linear and quadratic irreducible factors
of F in Qp[X ], respectively.
Proof The absolute Galois group G acts on S(F) and lines on it by permuting the roots
θ1, . . . , θ6. In particular, for every element σ of G, we have

σ(S(F)) = S(σ (F)), σ (Ei ) = Eσ(i), σ (Fi, j ) = Fσ(i),σ ( j), σ (Gi ) = Gσ(i),

where we define σ(i) by enforcing σ(θi ) = θσ(i). Since G acts trivially on F ∈ Qp[X ], the
surface S(F) is stable under G. Hence it is Qp-rational. Note that the number of G-stable
Ei ’s is �, the number of G-stable Fi, j ’s is q + (

�
2

)
, and the number of G-stable Gi ’s is �. This

finishes the proof. �	
Proof of Theorem 1.1 This is a direct consequence of the above lemma. The polynomials in
Table2 have the desired numbers of irreducible linear and quadratic factors. The discriminant,
the degree 5 coefficients θ1 + · · · + θ6 and the expression∏

#{i, j,k}=3

θi + θ j + θk

are symmetric and can be expressed as polynomials in the coefficients of F . The non-
vanishing of these quantities for the polynomials in Table2 was certified using Macaulay2
(see (1)); therefore, the equations in (3) are not satisfied for any of these 9 polynomials. �	

Remark 2.3 (1) It is clear that Theorem1.1 continues to hold if we replace Qp with any
finite extension of Qp . In fact, it holds for any local field (one just needs to modify the
above proof slightly). But, as we mentioned in the introduction, this is a special case of
a theorem proved by McKean, after our work was completed, in the final version of his
paper; see [7, Corollary 1.6]. We think it is still valuable to have explicit polynomials
that yield the desired surfaces.
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(2) It is important to note that, while any cubic surface over Qp is isomorphic to the blow-up
of 6 points in general position in QpP

2 that is not the case over Qp . In other words, there
are cubic surfaces defined over Qp which do not arise from the blow-up construction
as in Sect. 2. The cubic surfaces arising in that way are the cubic surfaces which have a
Galois invariant (i.e. Gal(Qp/Qp)-invariant) double-six. A double-six is a configuration
of 12 lines {L1, . . . , L6} and {L ′

1, . . . , L
′
6} in QpP

3 arranged in matrix form
(
L1 L2 L3 L4 L5 L6

L ′
1 L ′

2 L ′
3 L ′

4 L ′
5 L ′

6

)
,

such that any two lines of these 12 are secant if and only if they are not on the same row
or column. With the notation of Definition2.1, the configuration of lines {E1, . . . , E6}
and {G1, . . . ,G6} is a Galois invariant double-six; see, for example, [1, Remark V.4.9.1].

3 Heuristics for the p-adic numbers

There are plenty of ways one can construct a smooth cubic surface over Qp . Each leads to a
different way of sampling such surfaces and hence a measure on the space of smooth cubic
surfaces. For our probabilistic investigations,we focus on four samplingmethods anddescribe
both the measures and how the sampling process is implemented in our computations.

3.1 The haar measure

We endow the space of cubics Qp[x0, x1, x2, x3](3) with its natural measure, defined by
choosing the 20 coefficients ξα of the degree 3 cubic

f =
∑
|α|=3

ξαx
α (4)

to be independent and uniformly distributed in Zp with respect to the Haar measure on Zp .

Definition 3.1 The probability measure of the random smooth cubic surface S( f ) defined as
the zero set of a random polynomial f as in (4) is called the Haar measure on the space of
cubic surfaces.

Note that the singular cubics lie on a hypersurface of Qp[x0, x1, x2, x3](3) and hence with
probability 1 the random cubic f in (4) defines a smooth surface.Moreover, the Haarmeasure
in Definition3.1 is invariant under change of variables, i.e.

for any g ∈ GL4(Zp), f (g · x) has the same istribution as f (x).

Remark 3.2 We remark that one may make a different choice of basis in (4) and get another
measure on the space of polynomials Qp[x0, x1, x2, x3](3). The reason we chose the mono-
mial basis in (4) is because it is guaranteed to be invariant under change of variables,moreover
when p is big enough, namely p > 3, the resulting measure is actually the only one that is
invariant under the action of GL4(Zp), see [17, Theorem 1.1].

For our computational experiments, we can determine the coefficients only up to finite
precision. So in practice, we sample the variables ξα are considered to be random variables
with uniform distribution on the set {0, 1, . . . , pN+1 − 1} for some precision N .
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We note that the Haar measure has already been used on the space of cubic surfaces over
Qp to compute the expected number of lines; see [18]. To the best of our knowledge, the
other measures (to be defined next) are not recorded anywhere in the literature.

3.2 The blow-upmeasure

As we saw in Sect. 2, one way to construct a cubic surface is to blow the plane P
2 at six

points in general position. If the six points are chosen randomly, we then get a random cubic
surface. More precisely we define a new measure on the space of cubic surfaces as follows:

Definition 3.3 (The blow-up measure) Let ξ0, . . . , ξ6 be independent uniformly distributed
random variables in Zp and let F be the random polynomial F = ξ0 + ξ1X + · · · + ξ6X6.
With probability 1, the polynomial F has degree 6, its roots θ1, . . . , θ6 are simple and lie in
the complement of the hyperplane arrangement (3). This defines a measure on the space of
degree 6 polynomials. The map F �−→ S(F) determines a measure on the space of smooth
cubic surfaces via pushforward which we call the blow-up measure.

Again, in practice, sampling a polynomial F is done by choosing a large integer N and
sampling the coefficients of F from the set {0, 1, . . . , pN+1 − 1} independently with respect
to the uniform distribution. The number of lines on the cubic surface S(F) is determined by
factorizing F over the field K and applying Lemma2.2.

As mentioned in Remark2.3, not all cubic surfaces over Qp arise from a blow-up of 6
points in P

2. Therefore, the blow-upmeasure only sees cubic surfaces with a Galois-invariant
double-six.

3.3 The tropical (generic) measure

The following theorem suggests that the number of lines on a smooth cubic surface S(F) is
tightly linked to the tropicalization of F :

Theorem 3.4 (Theorem 3.5 in [15]) Fix a prime p ≥ 5 and a cubic surface S(F) over Qp,
as in Definition2.1. If S(F) is “tropically smooth”, then the 27 lines on S(F) have distinct
tropicalizations in the tropical projective space TP

3. In that case, all 27 lines on S(F) are
defined over Qp.

When it comes to the combinatorial type of the cubic equation f (i.e., the regular subdi-
vision it induces on the polytope 3�3), sampling from the Haar measure is not the best way
of sampling polynomials with a diverse combinatorial types (or tropicalizations). Under the
Haar measure onZp , it is quite rare to see elements with a large valuation. In order to remedy
this shortcoming, we may sample from Qp[x0, x1, x2, x3](3) by prescribing the valuation of
each coefficient of f . More precisely,

Definition 3.5 (The tropical measure) Let N be a positive integer and let (να)|α|=3 be inde-
pendent uniform random variables in {0, . . . , N }. We then obtain the random cubic equation

f =
∑
|α|=3

pνα xα.

When N is large enough, the cubic surface S( f ) defined by f is almost surely smooth. This
defines a measure on the space of smooth cubic surfaces which we call the tropical measure.

It is quite natural to adapt this measure in the following way:
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Table 3 The distribution of the number of lines for different probabilistic measures over the 7-adic numbers

# of Q7-Lines Haar Mes. Blow-up Mes. Trop. Mes. Trop. Gen. Mes.

0 0.43995 0.19446 0.22230 0.25580

1 0.34534 0.12608 0.29004 0.26891

2 0.08686 0.19604 0.02106 0.02083

3 0.08564 0.21602 0.29145 0.26952

5 0.03169 0.12778 0.04620 0.04988

7 0.00467 0.07337 0.06708 0.06911

9 0.00401 0.05099 0.02868 0.03443

15 0.00045 0.01500 0.02582 0.02666

27 0.00001 0.00026 0.00487 0.00406

Average 1.01023 3.00964 2.68398 2.67200

Definition 3.6 (The tropical generic measure) Let N be a positive integer and let (να)|α|=3 be
independent uniform random variables in {0, . . . , N } and (cα)|α|=3 be independent uniform
random variables inZ

×
p (with respect to the Haar measure onZp). We then obtain the random

cubic equation

f =
∑
|α|=3

pναuαx
α.

The cubic surface S( f ) is then smooth with probability 1. The measure so defined on the
space of smooth cubic surfaces is called the tropical generic measure.

3.4 Experiments for p = 7

For each probability measure μ on the space of cubic surfaces, we can obtain a probability
measureπ(μ) on the set {0, 1, 2, 3, 5, 7, 9, 15, 27} of possible line counts, whereπ

(μ)
i records

the probability under μ that a cubic surface contains i lines. In general, given the measure
μ, it is quite hard to determine the distribution (π

(μ)
i ), even for the probability distributions

defined in Sect. 3. Hence, we sample a large number of cubic surfaces under each measure
and use Monte–Carlo estimation to get an idea of how this distribution looks like for the
measures we defined above.

We investigated each of the above measures experimentally by sampling 105 instances of
smooth cubic surfaces and counting the corresponding number of lines. The latter is accom-
plished by using Gröbner basis techniques, or rather Lemma2.2 for the blow-up measure.
The resulting distributions on the number of lines are depicted in Table3. The code we used
for sampling surfaces and counting lines can be found at (1).

It is important to note the following:

(1) Our result only estimates3 the distribution π(μ) =
(
π

(μ)
k

)
for any chosen measure μ.

This approximation relies on the law of large numbers, so our results are random but
converge to the correct distribution as the sample size gets larger and larger.

3 Using a Monte-Carlo method.
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(2) The dimension of the space of cubic equations is 20, which would make the computation
of integrals4 quite expensive. One of the advantages of the estimation method we used
is that it is not affected by the dimension of the space we sample from.

(3) When dealing with computations over a p-adic field, one has to be careful with precision.
Our computation were conducted with an absolute p-adic precision of 300, while a
random p-adic number in Zp was sampled from the uniform distribution on the set
{0, . . . , p8−1}. All these choices weremade so that the computation runs in a reasonable
time all the while keeping the results significant.

(4) Finally, it should also be mentioned that our implementations in (1) can be optimized a
great deal from a performance point of view. So it is very much possible to go beyond
the sample sizes we have used.

3.5 Interpretation of the results

We observe from Table3 that under the Haar measure the probabilities of the line counts
decrease. Actually most surfaces have 0 or 1 Qp-lines so under this measure, it is quite rare
to find a cubic surfaces with a high count of p–adic lines, in particular 27-lines (around
� 10−5 probability). This explains that the average number of p-adic lines under the Haar
measure is almost 1. In fact, the following theorem quantifies the expected number which is
� 1.01749 for p = 7.

Theorem 3.7 ([18, Theorem 3]) The expected number of p-adic lines on a random uniform

p-adic cubic surface in P
3 is (p3−1)(p2+1)

p5−1
.

We observe that under both tropical measures, the chance of seeing bigger line counts is
significantly higher compared to theHaarmeasure. Notice also that bothmeasures yieldmore
or less the same distribution of line counts. This is probably due to the fact that the number
of lines depends heavily on the tropicalization of the cubic equation f , and hence also on the
induced triangulation on the newton polytope 3�3. This is in light of [15, Conjecture 4.1].

As far as the blow-up measure is concerned, we see again bigger number of lines with
higher probability compared to any of the other measures. This can be explained by the fact
that this measure only sees the cubic surfaces with aQp-rational double-six, which generally
have more lines than those that do not. This is in line with the results from [19, Theorem 1]
where the probability ρn(r) that a degree n polynomial with random independent and uniform
coefficients in Zp has exactly r roots is given recursively. The particular case of interest to
us is the case n = 6 and p = 7, where we get

ρ6(0) + ρ6(1) = 7280010099060058135701356421229303451929

9915124900168002703437229470076926702000
� 0.7343,

ρ6(2) = 132142086852025648305980401844338671377

661008326677866846895815298005128446800
� 0.19991,

ρ6(3) = 6274737460539590192834937928502919283

123939061252100033792965368375961583775
� 0.05063,

ρ6(4) = 3279805090966404942802616745034685803

220336108892622282298605099335042815600
� 0.01489,

ρ6(5) = 0,

ρ6(6) = 379252487878267254806025930638752849

1101680544463111411493025496675214078000
� 0.00035.

4 The probability that a random surface has a certain number of lines is an integral.
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Table 4 Comparison of theoretical and experimental results for the blow-up measure

# of roots of F 0, 1 2 3 4 6

# of lines on S(F) 0, 1, 2, 3 5, 7 9 15 27

Results from [19] 0.73423 0.19991 0.05063 0.01489 0.00035

Estimates from table3 0.73260 0.20115 0.05099 0.01500 0.00026

Table4 compares the exact results from [19] to the estimates obtained in our experiments.

4 Heuristics for the real numbers

Let V = R[x0, x1, x2, x3](3) be the real vector space of homogeneous degree three polyno-
mials in x = (x0, x1, x2, x3). We endow V with the inner product 〈·, ·〉 defined as

〈 f1, f2〉 := 1

4π2

∫
R4

f1(x) f2(x)e
− ‖x‖2

2 dx .

The space V is endowed with the action of the orthogonal group O(4, R) by change of
variables, i.e.,

(g · f )(x) = f (g−1x) for any f ∈ V , g ∈ O(4, R).

This makes V a linear representation of O(4, R) which is moreover unitary, i.e., the inner
product 〈·, ·〉 is stable under O(4, R):

〈g · f1, g · f2〉 = 〈 f1, f2〉 for f1, f2 ∈ V and g ∈ O(4, R).

However, V is not irreducible, so 〈·, ·〉 is the not the unique O(4, R)-invariant inner product
on V . The representation V splits into two irreducible orthogonal sub-representations as
follows:

V = H3 ⊕ ‖x‖2 · H1 (5)

whereH3 is the subspace of homogeneous harmonic polynomials of degree 3 andH1 is the
space of homogeneous degree 1 polynomials. Let p1 and p2 be the orthogonal projections
of V onto H3 and ‖x‖2 H1, respectively.

Definition 4.1 Let λ and μ be positive real numbers. We define the inner product 〈·, ·〉λ,μ on
V as follows:

〈 f1, f2〉λ,μ = 1

λ2
〈p1( f1), p1( f2)〉 + 1

μ2 〈p2( f1), p2( f2)〉.

We also define the centered Gaussian measure (Pλ,μ)λ,μ>0 on V associated to 〈·, ·〉λ,μ i.e.
the measure on V whose density φλ,μ is proportional to

φλ,μ( f ) ∝ exp

(−〈 f , f 〉λ,μ

2

)
, for f ∈ V .

The two parameter family in Definition4.1 parametrizes all O(4, R)-invariant inner prod-
ucts on V and hence all non-degenerate Gaussian measures on V that are O(4, R)-invariant
are of the form Pλ,μ (see [10, Section 4] for more details).

To sample a randomcubic f ∈ V with respect to themeasurePλ,μ, we use the orthonormal
basis {H3,i }1≤i≤16 and {H1, j }1≤ j≤4 respectively of H3 and ‖x‖2 H1 given in [20, Table 1].
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Fig. 1 The curve (π(λ))λ∈(0,1)
inside the 3-dimensional
probability simplex

Table 5 The distribution of number of real lines under the Kostlan measure

π
(1/3)
3 π

(1/3)
7 π

(1/3)
15 π

(1/3)
27 Average # of lines

0.570252 0.338973 0.089406 0.001369 5.46162

More precisely, let (ξ3,i )1≤i≤16 and (ξ1, j )1≤ j≤4 be two independent sequences of independent
identically distributed standard Gaussian random variables and let us define the random cubic
f as follows:

f = λ
∑

1≤i≤16

ξ3,i H3,i + μ
∑

1≤ j≤4

ξ1, j H1, j .

Since multiplying with a scalar does not change the zero set of f , we may assume that
λ + μ = 1. Then we may focus on the 1-parameter family of measures

Pλ := Pλ,1−λ, λ ∈ (0, 1).

For each λ ∈ (0, 1), we have sampled 105 cubics under Pλ and estimated the probability

distribution π(λ) =
(
π

(λ)
3 , π

(λ)
7 , π

(λ)
15 , π

(λ)
27

)
where

π
(λ)
k = Pλ (#{R-rational lines in S( f )} = k) for k = 3, 7, 15, 27.

The result is a curve

(0, 1) → �3, λ �→ π(λ) =
(
π

(λ)
3 , π

(λ)
7 , π

(λ)
15 , π

(λ)
27

)
,

in the 3-dimensional �3 simplex:

�3 := {
(p1, p2, p3, p4) ∈ R

4≥0 : p1 + p2 + p3 + p4 = 1
}
.

The 3-dimensional simplex�3 is contained in the affine hyperplane inR
4 given by {x1+x2+

x3+x4 = 1}.Wepick an orthogonal basis (e1, e2, e3)of the hyperplane {x1+x2+x3+x4 = 0}
and write expand the curve λ �→ π(λ) as follows

π(λ) = 1

4
(1, 1, 1, 1) + y1(λ)e1 + y2(λ)e2 + y3(λ)e3.

Figure1 depicts the curve λ �→ (y1(λ), y2(λ), y3(λ)).
A particular case of interest is the distribution π(1/3) obtained when we sample from the

Kostlan distribution P1/3. To estimate π(1/3), we sampled 106 cubics f ∈ V under P1/3

and counted the number of lines on S( f ). Table5 summarizes the estimate we obtained for
π(1/3).

We note that our experiments corroborate the following results of [21] and [20]:
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Theorem 4.2 ([21, Theorem 5]) The average number of real lines on a random cubic surface
in RP

3 under the Kostlan distribution P 1
3
is 6

√
2 − 3 � 5.48528.

Theorem 4.3 ([20, Theorem 1]) The expected number of real lines on a random real cubic
surfaces under the measure Pλ is

Eλ = 9(8λ2 + (1 − λ)2)

2λ2 + (1 − λ)2

⎛
⎝ 2λ2

8λ2 + (1 − λ)2
− 1

3
+ 2

3

√
8λ2 + (1 − λ)2

20λ2 + (1 − λ)2

⎞
⎠ .

Our computationswere carried out using the Julia packageHomotopyContinuation.jl [22].
Code and data are available at (1).

4.1 Interpretation of the results

Notice that, as λ → 0, the distribution π(λ) converges to the vertex π(0) = (1, 0, 0, 0).
So when λ is small, we can only hope to see surfaces with 3 real lines under Pλ; see [20,
Proposition 2]. As λ → 1 we see higher number of lines with bigger probabilities. The curve
in Fig. 1 depicts of π(λ) as λ ranges in (0, 1). We observe that the limit distribution as λ → 1
(a random cubic surface under the measure P1 supported on H3 is smooth with probability
1) lies in the interior of the 3-dimensional probability simplex but is not easy to determine
explicitly.

This poses the following question:

Question 4.4 Is the curve (π(λ))λ∈(0,1) algebraic, and if yes, what are the equations defining
it?

5 Galois groups

Let S be a smooth cubic surface defined over a perfect field K , and let L be the field of
definition of the 27 lines on S. Then the extension L/K is Galois, and the Galois group
Gal(L/K ) is a subgroup of W (E6), the Weyl group of order 51840 = 27 · 34 · 5. A natural
question to ask iswhich subgroups ofW (E6) can be realized in this way. The answer depends,
of course, on the base field K . Elsenhans–Jahnel proved the following:

Theorem 5.1 ([11, Theorem 0.1]) All subgroups of W (E6) can be realized when K = Q.

Let us now consider the case where K is a non-archimedean local field of characteristic
0; such a field is isomorphic to a finite extension of Qp for some prime p. In this case, there
are certain constraints on the possible Galois groups that can arise. Let us make this more
precise. Let L be a finite Galois extension of K with Galois group G, and consider (the first
parts of) the ramification group filtration on G:

G ⊇ G0 ⊇ G1.

Here, G0 and G1 are the inertia and ramification groups, respectively. It is well-known that

• the group G1 is a p-group,
• the quotient G/G0 must be cyclic, and
• the quotient G0/G1 must be cyclic of order coprime to p
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Table 6 The 24107 abelian groups that appeared in our sample for p = 5

C2 C3 C4 C5 C6 C8 C9 C10 C12 C2
2 C2

4 C2 × C4 C2 × C6

242 246 2117 2042 5154 2928 2126 2647 3613 475 30 1193 1294

Table 7 The 893 non-abelian groups that appeared in our sample for p = 5

D5 D6 D10 F5 S3 OD16 C2 × F5 C3 × S3 C4 × S3 C6 × S3 C3 � C4 C3 � C8

2 98 2 13 204 7 21 323 4 47 170 2

Table 8 The 24922 abelian groups that appeared in our sample for p = 7

C2 C3 C4 C5 C6 C8 C9 C10 C12 C2
2 C2

3 C2 × C4 C2 × C6 C3 × C6

284 286 2263 2149 5513 3001 2303 2835 3931 333 42 787 1043 152

Table 9 The 78 non-abelian
groups that appeared in our
sample for p = 7

D4 F5 C2 × F5 C4 � C4

50 7 3 18

(see, for example, [23, Chapter IV]). In addition to these constraints, we also have the fol-
lowing:

Proposition 5.2 The Galois group G is solvable.

Proof This well-known result follows from the fact that every p-group is nilpotent. �	
Because of this proposition, the statement inTheorem5.1 clearly cannot be true for K since

W (E6) has non-solvable subgroups. Indeed, there are precisely 19 non-solvable subgroups
of W (E6) up to conjugation, and they can be computed using the following Magma code:

R_E6 := RootDatum(“E6”);

Cox_E6 := CoxeterGroup(R_E6);

WE6 := StandardActionGroup(Cox_E6);

print NonsolvableSubgroups(WE6);

These observations pose the following question:

Question 5.3 Which subgroups of W (E6) can arise as Galois groups of lines on smooth
cubic surfaces over Qp? How does this list depend on p?

The results of our experiments suggest that Galois groups should be quite small and they
are usually abelian. Tables6, 7 (resp. Tables8, 9) summarize the Galois groups5 obtained
for a sample of 25000 surfaces over Q5 (resp. Q7) sampled from the Haar measure, and the
number of times they occurred. Our code can be found at (1).

5 In the tables, we use the notation provided by Magma. In particular, Fq is the Frobenius group Fq � F
×
q ,

and OD2k is the “other-dihedral” group C2k−1 � C2 with C2 acting as 2k−2 + 1.
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Remark 5.4 Notice that the Galois groups that appeared for p = 5 are more complicated.
This is expected since the prime 5 divides the order of the Weyl group W (E6). We have also
tried to make the same computation for the other primes with the same property, namely 2
and 3. Determining Galois groups using theMagma’s GaloisGroup() function, however,
was significantly slower in these cases. This means that more interesting groups show up for
the primes 2 and 3.

We see that while the generic Galois group for surfaces overQ isW (E6), over the p-adics
there is no “generic” group but rather a list of “small” groups that can occur with positive
probability. Question5.3 would be interesting to answer in future work. We conclude this
section with the following remark.

Remark 5.5 Elsenhans–Jahnel also showed that some Galois groups are possible over any
field of odd characteristic as long as a field extention with that group exists; see [24, 25]. This
might give some information on what happens over Qp by lifting surfaces over Fp to Zp .
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