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Abstract
In this paper, we firstly generalize the Brunn–Minkowski type inequality for Ekeland–Hofer–
Zehnder symplectic capacity of bounded convex domains established by Artstein-Avidan–
Ostrover in 2008 to extended symplectic capacities of bounded convex domains constructed
by authors based on a class of Hamiltonian non-periodic boundary value problems recently.
Then we introduce a class of non-periodic billiards in convex domains, and for them we
prove some corresponding results to those for periodic billiards in convex domains obtained
by Artstein-Avidan–Ostrover in 2012.
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1 Introduction andmain results

Throughout this paper, a compact, convex subset of Rm with nonempty interior is called a
convex body in R

m . The set of all convex bodies in R
m is denoted by K(Rm). As usual, a

domain in R
m means a connected open subset of Rm . For r > 0 and p ∈ R

m let Bm(p, r)
be the open ball centered at p of radius r in Rm , and Bm(r) := Bm(0, r), Bm := Bm(1). We
always use J to denote standard complex structure onR2n ,R2n−2 andR2 without confusions.
With the linear coordinates (q1, . . . , qn, p1, . . . , pn) on R

2n it is given by the matrix

J =
(

0 −In
In 0

)

where In denotes the identity matrix of order n. We also use GL(n) and O(n) to denote the
set of invertible real matrix and orthogonal real matrix of order n, respectively.

For a convex body K ⊂ R
2n containing 0 in its interior, let

jK : R2n → R, jK (z) = inf
{
λ > 0

∣∣∣ z

λ
∈ K

}
(1.1)

be the Minkowski functional of K and let

hK : R2n → R, hK (z) = sup{〈x, z〉 | x ∈ K }
be the support function of K . The polar body of K is defined by K ◦ = {x ∈ R

2n | 〈x, y〉 ≤
1 ∀y ∈ K }. Then hK = jK ◦ ([15, Theorem 1.7.6]). For two convex bodies D, K ⊂ R

2n

containing 0 in their interiors and a real number p ≥ 1, there exists a unique convex body
D +p K ⊂ R

2n with support function

R
2n � w �→ hD+pK (w) = (h p

D(w) + h p
K (w))

1
p

([15, Theorem 1.7.1]). D +p K is called the p-sum of D and K by Firey (cf. [15, (6.8.2)]).
For any two convex bodies D, K ⊂ R

2n containing 0 in their interiors, Artstein-Avidan
and Ostrover [2] proved that their Ekeland–Hofer–Zehnder symplectic capacities satisfy the
following Brunn–Minkowski type inequality

(
cEHZ(D +p K )

) p
2 ≥ (cEHZ(D))

p
2 + (cEHZ(K ))

p
2 , p ∈ R & p ≥ 1. (1.2)

As applications, Artstein-Avidan andOstrover [3] used them to derive several very interesting
bounds and inequalities for the length of the shortest periodic billiard trajectory in a smooth
convex body in Rn .

Recently, we established extended versions of Ekeland–Hofer and Hofer–Zehnder sym-
plectic capacities in [13],1 which are not symplectic capacities in general. For the reader’s
convenience, we recall the definition of the extended Hofer–Zehnder symplectic capacities

1 The preprint was split into two papers, which were submitted independently. The present paper is one of
them, mainly consisting of contents in Sections 8, 9 of [13].
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with respect to symplectomorphisms on symplectic manifolds (Definition 2.1) and also some
related properties in Sect. 2. In particular, for given � ∈ Sp(2n,R) and B ⊂ R

2n such that
B ∩ Fix(�) �= ∅, we constructed the extended versions of Ekeland–Hofer capacity cEH(B)

and Hofer–Zehnder capacity cHZ(B) relative to �, denoted respectively by

c�
EH(B) and c�

HZ(B).

If � = I2n , then c�
EH(B) = cEH(B) and c�

HZ(B) = cHZ(B). As the Ekeland–Hofer and
Hofer–Zehnder symplectic capacities, c�

EH and c�
HZ agree on any convex body D ⊂ R

2n .
In this case we denote

c�
EHZ(D) := c�

HZ(D, ω0)(= c�
EH(D))

and refer to it as extended Ekeland–Hofer–Zehnder capacity of D. Because of these, it is
natural to generalize work by Artstein-Avidan and Ostrover [2, 3]. The precise versions will
be stated in the following two subsections, respectively.

1.1 A Brunn–Minkowski type inequality for c9EHZ-capacity of convex bodies

Here is the first main result of this paper.

Theorem 1.1 Let D, K ⊂ R
2n be two convex bodies containing 0 in their interiors. Then for

any � ∈ Sp(2n,R) and any real p ≥ 1 it holds that

(
c�
EHZ(D +p K )

) p
2 ≥ (

c�
EHZ(D)

) p
2 + (

c�
EHZ(K )

) p
2 . (1.3)

Moreover, the equality in (1.3) holds if D and K satisfy the condition:

There exist c�
EHZ − carriers for D and K , γD : [0, T ] → ∂D and

γK : [0, T ] → ∂K , such that they coincide up to dilation and
translation by elements in Ker(� − I2n), i .e., γD = αγK + b
for some α ∈ R \ {0} and b ∈ Ker(� − I2n) ⊂ R

2n .

⎫⎪⎪⎬
⎪⎪⎭

(1.4)

When p > 1 the condition (1.4) is also necessary for the equality in (1.3) holding.

Readers can refer to Definition 2.7 for the concept of c�
EHZ-carriers for a convex body.

Theorem 1.1 has some interesting corollaries, see Sect. 3.2.

1.2 Length estimate for a class of non-periodic billiard trajectories in convex
domains

Using the inequality (1.2) and its corollaries Artstein-Avidan and Ostrover [3] studied the
length estimates of the shortest periodic billiard trajectory in a smooth convex body in R

n

and obtained some very interesting results. Since the Ekeland–Hofer capacity of a smooth
convex body D ⊂ R

2n is equal to the minimum of absolute values of actions of closed
characteristics on the boundary ∂D, andwe generalized this relation to our extendedEkeland–
Hofer–Zehnder capacity c�

EHZ(D) and �-characteristics on ∂D in [13], it is natural using
Theorem1.1 orCorollaries 3.5, 3.6 to study corresponding conclusions for some non-periodic
billiard trajectory in a smooth convex body inRn , which motivates the following definitions.

Definition 1.2 For a convex body 
 ⊂ R
n with boundary ∂
 of class C2 and A ∈ O(n), a

nonconstant, continuous, and piecewise C∞ path σ : [0, T ] → 
 with σ(T ) = Aσ(0) is
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4 R. Jin, G. Lu

called an A-billiard trajectory in 
 if there exists a finite set Bσ ⊂ (0, T ) such that σ̈ ≡ 0
on (0, T ) \ Bσ and the following conditions are also satisfied:

(ABi) �Bσ ≥ 1 and σ(t) ∈ ∂
 ∀t ∈ Bσ .
(ABii) For each t ∈ Bσ , σ̇±(t) := limτ→t± σ̇ (τ ) fulfils the equation

σ̇+(t) + σ̇−(t) ∈ Tσ(t)∂
, σ̇+(t) − σ̇−(t) ∈ (Tσ(t)∂
)⊥ \ {0}. (1.5)

(So |σ̇+(t)|2−|σ̇−(t)|2 = 〈σ̇+(t)+ σ̇−(t), σ̇+(t)− σ̇−(t)〉Rn = 0 for each t ∈ Bσ ,
that is, |σ̇ | is constant on (0, T ) \ Bσ .) Let

σ̇+(0) = lim
t→0+ σ̇ (t) and σ̇−(T ) = lim

t→T− σ̇ (t). (1.6)

If σ(0) ∈ ∂
 (resp. σ(T ) ∈ ∂
) let σ̇−(0) (resp. σ̇+(T )) be the unique vector
satisfying

σ̇+(0) + σ̇−(0) ∈ Tσ(0)∂
, σ̇+(0) − σ̇−(0) ∈ (Tσ(0)∂
)⊥ (1.7)

(resp.

σ̇+(T ) + σ̇−(T ) ∈ Tσ(T )∂
, σ̇+(T ) − σ̇−(T ) ∈ (Tσ(T )∂
)⊥.) (1.8)

(ABiii) If {σ(0), σ (T )} ∈ int
 then

Aσ̇+(0) = σ̇−(T ). (1.9)

(ABiv) If σ(0) ∈ ∂
 and σ(T ) ∈ int
, then either (1.9) holds, or

Aσ̇−(0) = σ̇−(T ). (1.10)

(ABv) If σ(0) ∈ int
 and σ(T ) ∈ ∂
, then either (1.9) holds, or

Aσ̇+(0) = σ̇+(T ). (1.11)

(ABvi) If {σ(0), σ (T )} ∈ ∂
, then either (1.9) or (1.10) or (1.11) holds, or

Aσ̇−(0) = σ̇+(T ). (1.12)

Remark 1.3 (i) For each t ∈ Bσ , (1.5) is a reflection condition which describes the motion
of a billiard when arriving at the boundary of the billiard table.

(ii) Roughly speaking, A-billiard trajectory requires a billiard trajectory to satisfy boundary
conditions for starting position and ending position, as well as for starting velocity and
ending velocity. If A = In , an A-billiard trajectory becomes periodic (or closed). In this
case, σ(T ) = σ(0) and (ABiv) and (ABv) do not occur. If (ABiii) holds then all bounce
times of this periodic billiard trajectory σ consist of elements ofBσ . If σ(0) = σ(T ) ∈
∂
 and either (1.9) or (1.12) holds then the periodic billiard trajectory σ is tangent to
∂
 at σ(0), and so the set of its bounce times is also Bσ . When σ(0) = σ(T ) ∈ ∂


and either (1.10) or (1.11) holds, it follows from (1.7)–(1.8) that

σ̇+(0) + σ̇−(T ) ∈ Tσ(0)∂
 and σ̇+(0) − σ̇−(T ) ∈ (Tσ(0)∂
)⊥.

When σ̇+(0)− σ̇−(T ) = 0, the set of all bounce times of this periodic billiard trajectory
σ isBσ .When σ̇+(0)−σ̇−(T ) =�= 0, the set of all bounce times of this periodic billiard
trajectory σ is Bσ ∪ {0} = Bσ ∪ {T } (because 0 and T are identified).

(iii) If A �= In , an A-billiard trajectory in 
 might not be periodic even if σ(0) = σ(T )

since the starting velocity and ending velocity may not satisfy the condition for periodic
billiard trajectory.
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A Brunn–Minkowski type inequality... 5

The existence of A-billiard trajectories in 
 will be studied in other places.
Definition 1.2 can be generalized to convex domain with non-smooth boundary. Recall

that for a convex body � ∈ R
n and q ∈ ∂�

N∂�(q) = {y ∈ R
2n | 〈u − q, y〉 ≤ 0 ∀u ∈ �}

is the normal cone to � at q ∈ ∂�. y ∈ N∂�(q) is called an outward support vector of � at
q ∈ ∂�. It is unique if q is a smooth point of ∂�. Corresponding to the generalized periodic
billiard trajectory introduced by Ghomi [9], we have the following generalized version of the
billiard trajectory in Definition 1.2.

Definition 1.4 For a convex body in � ⊂ R
n and A ∈ O(n), a generalized A-billiard

trajectory in � is defined to be a finite sequence of points in �

q = q0, q1, . . . , qm = Aq

with the following properties:

(AGBi) m ≥ 2 and {q1, . . . , qm−1} ⊂ ∂�.
(AGBii) Both q0, . . . , qm−1 and q1, . . . , qm are sequences of distinct points.
(AGBiii) For every i = 1, . . . ,m − 1,

νi := qi − qi−1

‖qi − qi−1‖ + qi − qi+1

‖qi − qi+1‖
is an outward support vector of � at qi .

(AGBiv) If {q, Aq} ⊂ int(�) then

A(q1 − q0)

‖q1 − q0‖ = qm − qm−1

‖qm − qm−1‖ . (1.13)

(AGBv) If q ∈ ∂� and Aq ∈ int(�), then either (1.13) holds or there exists a unit vector
b0 ∈ R

n such that

ν0 := b0 − q1 − q0
‖q1 − q0‖ ∈ N∂�(q) and Ab0 = qm − qm−1

‖qm − qm−1‖ . (1.14)

(AGBvi) If q ∈ int(�) and Aq ∈ ∂�, then either (1.13) holds or there exists a unit vector
bm ∈ R

n such that

νm := qm − qm−1

‖qm − qm−1‖ − bm ∈ N∂�(Aq) and
A(q1 − q0)

‖q1 − q0‖ = bm . (1.15)

(AGBvii) If {q, Aq} ⊂ ∂�, then either (1.13) or (1.14) or (1.15) holds, or there exist unit
vectors b′

0, b
′
m ∈ R

n such that

ν0 :=b′
0−

q1−q0
‖q1−q0‖ ∈ N∂�(q), νm := qm − qm−1

‖qm − qm−1‖ − b′
m ∈ N∂�(Aq) and Ab′

0 = b′
m .

(1.16)

Remark 1.5 (i) It is easily checked that a generalized In-billiard trajectory in � is exactly
a generalized periodic billiard trajectory in the sense of [9].

(ii) For a smooth convex body in � ⊂ R
n and A ∈ O(n), a nonconstant, continuous, and

piecewise C∞ path σ : [0, T ] → � with σ(T ) = Aσ(0) is an A-billiard trajectory in
� with Bσ = {t1 < · · · < tm−1} if and only if the sequence

q0 = σ(0), q1 = σ(t1), . . . , qm−1 = σ(tm−1), qm = σ(T )

is a generalized A-billiard trajectory in �.
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6 R. Jin, G. Lu

In order to study A-billiard via extended Ekeland–Hofer–Zehnder capacity, we will define
(A,�,�)-billiard trajectory for A ∈ GL(n) and convex domians � ⊂ R

n
q and � ⊂ R

n
p ,

following the idea in [3] which defines closed (�,�)-billiard trajectory.
Suppose that � ⊂ R

n
q and � ⊂ R

n
p are two smooth convex bodies containing the

origin in their interiors. Then � × � is a smooth manifold with corners ∂� × ∂� in
the standard symplectic space (R2n, ω0) = (Rn

q × R
n
p, dq ∧ dp). Note that ∂(� × �) =

(∂� × ∂�) ∪ (Int(�) × ∂�) ∪ (∂� × Int(�)). Since j�×�(q, p) = max{ j�(q), j�(p)},
we have

∇ j�×�(q, p) =
{

(0,∇ j�(p)) ∀(q, p) ∈ Int(�) × ∂�,

(∇ j�(q), 0) ∀(q, p) ∈ ∂� × Int(�).

Moreover, for (q, p) ∈ ∂� × ∂� there holds

N∂(�×�)(q, p) = {(y1, y2) | y1 ∈ N∂�(q), y2 ∈ N∂�(p)}
= {μ(∇ j�(q), 0) + λ(0,∇ j�(p)) | λ ≥ 0, μ ≥ 0}.

Define

X(q, p) := J∇ j�×�(q, p) =
{

(−∇ j�(p), 0) ∀(q, p) ∈ Int(�) × ∂�,

(0,∇ j�(q)) ∀(q, p) ∈ ∂� × Int(�).

It is well-known that every A ∈ GL(n) induces a natural linear symplectomorphism

�A : Rn
q × R

n
p → R

n
q × R

n
p, (q, v) �→ (Aq, (At )−1v), (1.17)

where At is the transpose of A.

Definition 1.6 Let A ∈ GL(n), and let � ⊂ R
n
q and � ⊂ R

n
p be two smooth convex

bodies containing the origin in their interiors. A continuous and piecewise smooth map
γ : [0, T ] → ∂(� × �) with γ (T ) = �Aγ (0) is called an (A,�,�)-billiard trajectory if

(BT1) for some positive constant κ it holds that γ̇ (t) = κX(γ (t)) on [0, T ]\γ −1(∂�×∂�);
(BT2) γ has a right derivative γ̇ +(t) at any t ∈ γ −1(∂� × ∂�)\{T } and a left derivative

γ̇ −(t) at any t ∈ γ −1(∂� × ∂�)\{0}, and γ̇ ±(t) belong to

{−λ(∇ j�(γp(t)), 0) + μ(0,∇ j�(γq(t))) | λ ≥ 0, μ ≥ 0, (λ, μ) �= (0, 0)} (1.18)

with γ (t) = (γq(t), γp(t)).

Remark 1.7 (i) Every (A,�,�)-billiard trajectory is a generalized �A-characteristic on
∂(�×�) in the sense of Definition 2.4(ii). In fact, we only need to note that for (q, p) ∈
∂� × Int(�) ∪ (Int)1 × @3 there holds

X(q, p) = J∇ j�×�(q, p)

and for (q, p) ∈ ∂� × ∂� there holds

J N∂(�×�) = {−λ(∇ j�(γp(t)), 0) + μ(0,∇ j�(γq(t))) | λ ≥ 0, μ ≥ 0, (λ, μ) �= (0, 0)}.
(ii) For a given A ∈ GL(n), we can generalize Definition 1.6 to smooth convex bodies

� ⊂ R
n
q and � ⊂ R

n
p satisfying

Fix(A) ∩ Int(�) �= ∅ and Fix(At ) ∩ Int(�) �= ∅, (1.19)

(which not necessarily contain the origin in their interiors). In this case, a continuous
and piecewise smooth map γ : [0, T ] → ∂(� × �) is said to be an (A,�,�)-billiard
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trajectory if there exists q̄ ∈ Fix(A) ∩ Int(�) and p̄ ∈ Fix(At ) ∩ Int(�) such that
γ − (q̄, p̄) is an (A,� − q̄,� − p̄)-billiard trajectory in the sense of Definition 1.6.
(Here γ − (q̄, p̄) is the composition of γ and the affine linear symplectomorphism

�(q̄, p̄) : Rn
q × R

n
p → R

n
q × R

n
p, (u, v) �→ (u − q̄, v − p̄), (1.20)

which commutes with �A.) The condition (1.19) insures that

Int(� × �) ∩ Fix(�A) �= ∅
so that c�A

EHZ(�×�) is well defined andwe can associate the lengths of (A,�,�)-billiard
trajectories with it.

Corresponding to the classification for closed (�,�)-trajectories in [3] we introduce:

Definition 1.8 Let A, � and � satisfy (1.19). An (A,�,�)-billiard trajectory is called
proper (resp. gliding) if γ −1(∂� × ∂�) is a finite set (resp. γ −1(∂� × ∂�) = [0, T ], i.e.,
γ ([0, T ]) ⊂ ∂� × ∂� completely).

For A ∈ GL(n,Rn) and convex bodies � ⊂ R
n
q and � ⊂ R

n
p satisfying (1.19), we define

ξ A
�(�) = c�A

EHZ(� × �) and ξ A(�) = c�A
EHZ(� × Bn). (1.21)

If A = In then ξ A(�) becomes ξ(�) defined in [3, p. 177]. Clearly, ξ A
�1

(�1) ≤ ξ A
�2

(�2) if
both are well-defined and �1 ⊂ �2 and �1 ⊂ �2.

In Sect. 4, based on studies on the above several classes of billiard trajectories we show
in Proposition 4.4 that ξ A(�) provides a positive lower bound for infimum of length of A-
billiard trajectories in �. Therefore it is important to study properties of ξ A(�) and more
general ξ A

�(�). As in the proof of [3, Theorem 1.1] using Corollary 3.5 we may derive the
following Brunn–Minkowski type inequality for ξ A

� , which is the second main result of this
paper.

Theorem 1.9 For A ∈ GL(n), suppose that convex bodies�1,�2 ⊂ R
n
q and� ⊂ R

n
p satisfy

Int(�1) ∩ Fix(A) �= ∅, Int(�2) ∩ Fix(A) �= ∅ and Int(�) ∩ Fix(At ) �= ∅. Then
ξ A
�(�1 + �2) ≥ ξ A

�(�1) + ξ A
�(�2) (1.22)

and the equality holds if there exist c�A
EHZ-carriers for �1 × � and �2 × � which coincide

up to dilation and translation by elements in Ker(�A − I2n).

When � = Bn and A = In , this result was first proved in [3], and Irie also gave a new
proof in [12].

In order to estimate ξ A(�), for a symplectic matrix � ∈ Sp(2n,R) we define

g� : R → R, s �→ det(� − es J ), (1.23)

where et J = ∑∞
k=0

1
k! t

k J k . The set of zeros of g� in (0, 2π] is a nonempty finite set ([13,
Lemma A.1]) and

t(�) := min{t ∈ (0, 2π ] | g�(t) = 0} = 2c�
EHZ(B2n) (1.24)

by [13, (1.28)]. In particular, if � = I2n then t(�) = 2π ([13, Lemma A.1]) and
(1.24) becomes cEHZ(B2n) = π . Since �A = diag(A, (At )−1) for A ∈ GL(n), by [13,
Lemma A.5], t(�A) is equal to the smallest zero in (0, 2π] of the function

R → R, s �→ det(In + (At )−1A − cos s(A + (At )−1)). (1.25)
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8 R. Jin, G. Lu

(It must exist!) Moreover, if A is an orthogonal matrix similar to one of form [13, (A.2)],
i.e.,

A = diag

((
cos θ1 sin θ1

− sin θ1 cos θ1

)
, . . . ,

(
cos θm sin θm

− sin θm cos θm

)
, Ik,−Il

)
,

where 2m + k + l = n and 0 < θ1 ≤ · · · ≤ θm < π , then

t(�A) =
⎧⎨
⎩

θ1 if m > 0,
π if m = 0 and l > 0,
2π if m = l = 0.

(1.26)

Thewidth of a convex body� ⊂ R
n
q is the thickness of the narrowest slab which contains

�, i.e., width(�) = min{h�(u) + h�(−u) | u ∈ Sn}, where Sn = {u ∈ R
n | ‖u‖ = 1}. Let

Sn� := {u ∈ Sn |width(�) = h�(u) + h�(−u)}, (1.27)

Hu := {x ∈ R
n | 〈x, u〉 = (h�(u) − h�(−u))/2}, (1.28)

Z2n
� := ([−width(�)/2,width(�)/2] × R

n−1) × ([−1, 1] × R
n−1). (1.29)

Proposition 1.10 Let A ∈ GL(n) and a convex body � ⊂ R
n
q satisfy Fix(A) ∩ Int(�) �= ∅.

(i) If � contains a ball Bn(q̄, r) with Aq̄ = q̄, then

ξ A(�) ≥ rc�A
EHZ(Bn × Bn, ω0) ≥ r t(�A)

2
. (1.30)

(ii) For any u ∈ Sn�, q̄ ∈ Hu and anyO ∈ O(n) such thatOu = e1 = (1, 0, . . . , 0) ∈ R
n let

�O,q̄ : Rn
q × R

n
p → R

n
q × R

n
p, (q, v) �→ (O(q − q̄),Ov), (1.31)

that is, the composition of translation (q, v) �→ (q − q̄, v) and �O defined by (1.17),
then

ξ A(�) ≤ c
�O,q̄�A�−1

O,q̄
EHZ (Z2n

� ,ω0). (1.32)

Moreover, the right-side is equal to c
�O�A�−1

O
EHZ (Z2n

� ,ω0) if Aq̄ = q̄ , and to c�A
EHZ(Z2n

� ,ω0)

if Aq̄ = q̄ and AO = OA.

By Proposition 4.4 and (1.30) we immediately get our third main result.

Theorem 1.11 For A ∈ O(n) and a smooth convex body � ⊂ R
n
q with Fix(A)∩ Int(�) �= ∅,

if � contains a ball Bn(q̄, r) with Aq̄ = q̄ then it holds that

r t(�A)

2
≤ inf{L(σ ) | σ is an A−billiard trajectory in �}. (1.33)

Recall that the inradius of a convex body� ⊂ R
n
q is the radius of the largest ball contained

in �, i.e., inradius(�) = supx∈� dist(x, ∂�). For any centrally symmetric convex body
� ⊂ R

n
q , Artstein-Avidan, Karasev, and Ostrover recently proved in [4, Theorem 1.7]:

cHZ(� × �◦, ω0) = 4. (1.34)

As a consequence of this and (1.33) we obtain:

Corollary 1.12 (Ghomi [9]) Every periodic billiard trajectory σ in a centrally symmetric
convex body � ⊂ R

n
q has length L(σ ) ≥ 4 inradius(�).
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A Brunn–Minkowski type inequality... 9

Proof Since c�A
HZ = cHZ for A = In , from the first inequality in (1.30) and (1.34) we deduce

ξ(�) := ξ In (�) ≥ 4 inradius(�). (1.35)

When� is smooth, since ξ(�) is equal to the length of the shortest periodic billiard trajectory
in � (see the bottom of [3, p. 177]), we get L(σ ) ≥ 4 inradius(�). (In this case another new
proof of [9, Theorem 1.2] was also given by Irie [12, Theorem 1.9].) For general case we
may approximate � by a smooth convex body �∗ ⊇ � such that σ is also periodic billiard
trajectory �∗. Thus L(σ ) ≥ ξ(�∗) ≥ ξ(�) ≥ 4 inradius(�) because of monotonicity of
cHZ. ��
Remark 1.13 (i) Corollary 1.12 only partially recover [9, Theorem 1.2] by Ghomi. [9,

Theorem 1.2] did not require � to be centrally symmetric. It also stated that L(σ ) =
4 inradius(�) for some σ if and only if width(�) = 4 inradius(�).

(ii) When A = In we may take r = inradius(�) in (1.33), and get a weaker result than
Corollary 1.12: L(σ ) ≥ π inradius(�) for every periodic billiard trajectory σ in �.

(iii) In order to get a corresponding result for each A-billiard trajectory in � as in Corol-
lary 1.12, an analogue of (1.35) is needed. Hence we expect that (1.34) has the following
generalization:

c�A
EHZ(� × �◦) = 2

π
t(�A). (1.36)

For a bounded domain 
 ⊂ R
n with smooth boundary, there exist positive constants

Cn , C ′
n only depending on n, C independent of n, and (possibly different) periodic billiard

trajectories γ1, γ2, γ3 in 
 such that their length satistfies

L(γ1) ≤ CnVol(
)
1
n (Viterbo[18]), (1.37)

L(γ2) ≤ Cdiam(
)(Albers and Mazzucchelli[1]), (1.38)

L(γ3) ≤ C ′
n inradius(
)(Irie[11]), (1.39)

where inradius(
) is the inradius of 
, i.e., the radius of the largest ball contained in 
. If

 is a smooth convex body � ⊂ R

n
q , Artstein-Avidan and Ostrover [3] recently obtained the

following more concrete estimates than (1.39) and (1.37):

ξ(�) ≤ 2(n + 1)inradius(�), (1.40)

ξ(�) ≤ C ′√nVol(�)
1
n , (1.41)

where C ′ is a positive constant independent of n.
Remark 1.14 Since c�A

HZ = cHZ for A = In , from (1.32) we recover (1.40) as follows

ξ(�) = ξ In (�) ≤ cHZ(Z2n
� ,ω0) = 2width(�) ≤ 2(n + 1)inradius(�)

because width(�) ≤ (n + 1)inradius(�) by [16, (1.2)].

Finally, we have an improvement for (1.38) in the case that 
 is a smooth convex body.

Theorem 1.15 For a smooth convex body� ⊂ R
n
q , suppose that periodic billiard trajectories

in � include projections to � of periodic gliding billiard trajectories in � × Bn. Then

L(σ ) ≤ πdiam(�)

for some periodic billiard trajectory σ in �.

Organization of the paper. Section3 proves Theorem 1.1 and Corollaries 3.5, 3.6. In Sect. 4
we give the classification of (A,�,�)-billiard trajectories and studied related properties of
proper trajectories. Theorems 1.9, 1.15 and Proposition 1.10 will be proved In Sect. 5.
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10 R. Jin, G. Lu

2 The extended Hofer–Zehnder symplectic capacities

For convenience we review the extended Hofer–Zehnder symplectic capacities and related
results in [13]. Given a symplectic manifold (M, ω) and a symplectomorphism � ∈
Symp(M, ω), let O ⊂ M be an open subset such that O∩Fix(�) �= ∅. Denote byH�(O, ω)

the set of smooth functions H : O → R satisfying

(i) there exists a nonempty open subsetU ⊂ O (depending on H ) such thatU∩Fix(�) �= ∅
and H |U = 0,

(ii) there exists a compact subset K ⊂ O\∂O (depending on H ) such that H |O\K =
m(H) := max H ,

(iii) 0 ≤ H ≤ m(H).

Denote by XH the Hamiltonian vector field defined by ω(XH , ·) = −dH . Note that for
H ∈ H�(O, ω), the condition U ∩ Fix(�) �= ∅ ensures that there exists a constant solution
to the Hamiltonian boundary value problem{

ẋ = XH (x),
x(T ) = �x(0).

(2.1)

We call H ∈ H�(O, ω) �-admissible if all solutions x : [0, T ] → O to the Hamil-
tonian boundary value problem (2.1) with 0 < T ≤ 1 are constant. The set of all such
�-admissible Hamiltonians is denoted byH�

ad(O, ω). In [13] we defined the following ana-
logue (or extended version) of the Hofer–Zehnder capacity of (O, ω).

Definition 2.1 For open subset O in symplectic manifold (M, ω) and symplectomorphism
� ∈ Symp(M, ω), define

c�
HZ(O, ω) = sup{max H | H ∈ H�

ad(O, ω)}.
Clearly If � = idM then c�

HZ(O, ω) = cHZ(O, ω) for any open subset O ⊂ M , where
cHZ(O, ω) is the Hofer–Zehnder capacity defined in [10].

The following proposition lists some basic properties of the extended Hofer–Zehnder
capacity. In this paper, the standard symplectic structure onR2n is given byω0 = ∑n

i=1 dqi ∧
dpi with linear coordinates (q1, . . . , qn, p1, . . . , pn). Let Sp(2n,R) denote the set of sym-
plectic matrix of order 2n. Each symplectic matrix � ∈ Sp(2n,R) is identified with the
linear symplectomorphism on (R2n, ω0)which has the representing matrix� under the stan-
dard symplectic basis of (R2n, ω0), (e1, . . . , en, f1, . . . , fn), where the i-th(resp. i + n-th)
coordinate of ei (resp. fn+i ) is 1 and other coordinates are zero.

Proposition 2.2 [13, Proposition 1.2]

(i) (Conformality.) c�
HZ(M, αω) = αc�

HZ(M, ω) for any α ∈ R>0, and c�−1

HZ (M, αω) =
−αc�

HZ(M, ω) for any α ∈ R<0.
(ii) (Monotonicity.) Suppose that�i ∈ Symp(Mi , ωi ) (i = 1, 2). If there exists a symplectic

embedding φ : (M1, ω1) → (M2, ω2) of codimension zero such that φ ◦ �1 = �2 ◦ φ,
then for open subsets Oi ⊂ Mi with Oi ∩ Fix(�i ) �= ∅ (i = 1, 2) and φ(O1) ⊂ O2, it
holds that c�1

HZ(O1, ω1) ≤ c�2
HZ(O2, ω2).

(iii) (Inner regularity.) For any precompact open subset O ⊂ M with O ∩ Fix(�) �= ∅, we
have

c�
HZ(O, ω) = sup{c�

HZ(K , ω) | K open, K ∩ Fix(�) �= ∅, K ⊂ O}.
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A Brunn–Minkowski type inequality... 11

(iv) (Continuity.) For a bounded convex domain A ⊂ R
2n, suppose that � ∈ Sp(2n,R)

satisfies A ∩ Fix(�) �= ∅. Then for every ε > 0 there exists some δ > 0 such that for
all bounded convex domain O ⊂ R

2n intersecting with Fix(�), it holds that

|c�
HZ(O, ω0) − c�

HZ(A, ω0)| ≤ ε

provided that A and O have the Hausdorff distance dH(A, O) < δ.

Remark 2.3 (i) The two symplectomorphisms �i ∈ Symp(Mi , ω1) (i = 1, 2) involved in
the above monotonicity property are different in general.

(ii) By the above mononicity property, for any �,φ ∈ Symp(M, ω) and any open subset
O ⊂ M with O ∩ Fix(�) �= ∅, there holds

c�
HZ(O, ω) = cφ◦�◦φ−1

HZ (φ(O), ω). (2.2)

In particular, denote Symp�(M, ω) := {φ ∈ Symp(M, ω) | φ ◦ � = � ◦ φ}, i.e.,
the set of stabilizers at � for the adjoint action on Symp(M, ω). Then for any φ ∈
Symp�(M, ω) there holds

c�
HZ(O, ω) = c�

HZ(φ(O), ω).

That is to say, unlike the Hofer–Zehnder capacity which is invariant under the action of
Symp(M, ω), the extended Hofer–Zehnder capacity c�

HZ(O, ω) is only invariant under
the action of a subgroup of Symp(M, ω) related to �.

(iii) For � ∈ Sp(2n,R) and any open set O � 0 in (R2n, ω0), (i)–(ii) of Proposition 2.2
implies

c�
HZ(αO, ω0) = α2c�

HZ(O, ω0), ∀α ≥ 0. (2.3)

In [2], a key for the proof of the inequality (1.2) is the representation theorem for Ekeland–
Hofer and Hofer–Zehnder capacity of convex bodies [7, 8, 10, 17]. To present such a
representation theorem for c�

EHZ(D) given in [13], which is crucial for the proof of The-
orem 1.1, we recall the concept of characteristic on hypersurfaces in symplectic manifolds.

Definition 2.4 [13, Definition 1.1] (i) For a smooth hypersurface S in a symplectic manifold
(M, ω) and � ∈ Symp(M, ω), a C1 embedding z from [0, T ] (for some T > 0) into S is
called a �-characteristic on S if

z(T ) = �z(0) and ż(t) ∈ (LS)z(t) ∀t ∈ [0, T ],
where LS is the characteristic line bundle given by

LS =
{
(x, ξ) ∈ TS

∣∣∣ ωx (ξ, η) = 0 for all η ∈ TxS
}
.

Clearly, z(T − ·) is a �−1-characteristic, and for any τ > 0 the embedding [0, τT ] →
S, t �→ z(t/τ) is also a �-characteristic.
(ii) If S is the boundary of a convex body D in (R2n, ω0), corresponding to the definition of
closed characteristics on S in Definition 1 of [6, Chap.V,§1] we say a nonconstant absolutely
continuous curve z : [0, T ] → S (for some T > 0) to be a generalized characteristic on S
if

ż(t) ∈ J NS(z(t)) a.e.,

where

NS(x) = {y ∈ R
2n | 〈u − x, y〉 ≤ 0 ∀u ∈ D}
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12 R. Jin, G. Lu

is the normal cone to D at x ∈ S. If z satisfies z(T ) = �z(0) for � ∈ Sp(2n,R) in
addition, then we call z a generalized�-characteristic on S. For a generalized characteristic
z : [0, T ] → S, define its action by

A(x) = 1

2

∫ T

0
〈−J ẋ, x〉dt, (2.4)

where 〈·, ·〉 = ω0(·, J ·) is the standard inner product on R2n .

Remark 2.5 If S in (ii) is also C1,1 then generalized �-characteristics on S are �-
characteristics up to reparameterization.

As a generalization of the representation theorem for Ekeland–Hofer and Hofer–Zehnder
capacity of convex bodies [7, 8, 10, 17], we have:

Theorem 2.6 [13, Theorem 1.8] Let � ∈ Sp(2n,R) and let D ⊂ R
2n be a convex bounded

domain with boundary S = ∂D and contain a fixed point p of �. Then there is a generalized
�-characteristic x∗ on S such that

A(x∗) = min{A(x) > 0 | x is a generalized �-characteristic on S} (2.5)

= c�
EHZ(D, ω0). (2.6)

If S is of class C1,1, (2.5) and (2.6) become

c�
EHZ(D, ω0) = A(x∗) = inf{A(x) > 0 | x is a �-characteristic on S}.

Definition 2.7 A generalized�-characteristic x∗ on S satisfying (2.5)–(2.6) is called a c�
EHZ-

carrier for D.

3 Proofs of Theorem 1.1 and Corollaries

3.1 Proof of Theorem 1.1

The basic proof ideas are similar to those of [2]. For � ∈ Sp(2n), let E1 ⊂ R
2n be the

eigenvector spacewhich belongs to eigenvalue 1 of � and E⊥
1 be the orthogonal complement

of E1 with respect to the standard Euclidean inner product in R2n . For p > 1, let

Fp = {x ∈ W 1,p([0, 1],R2n) | x(1) = �x(0) & x(0) ∈ E⊥
1 },

which is a subspace of W 1,p([0, 1],R2n). Since the functional

Fp � x �→ A(x) = 1

2

∫ 1

0
〈−J ẋ(t), x(t)〉dt

is C1 and d A(x)[x] = 2 for any x ∈ Fp with A(x) = 1, we deduce that

Ap := {x ∈ Fp | A(x) = 1}
is a regular C1 submanifold.

Recall that for convex body D ⊂ R
2n , hD is the support function (see the beginning in

Sect. 1.1). If D contains 0 in its interior, then jD is the associated Minkowski function. H∗
D

is the Legendre transform of HD := ( jD)2.
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Remark 3.1 (i) By the homogeneity of HD and H∗
D , there exist constants R1, R2 ≥ 1 such

that
|z|2
R1

≤ HD(z) ≤ R1|z|2, |z|2
R2

≤ H∗
D(z) ≤ R2|z|2, ∀z ∈ R

2n . (3.1)

(ii) For p > 1, let q = p/p−1, denote by
(
j pD/p

)∗
the Legendre transform of j pD/p. Then

there holds (
1

p
j pD

)∗
(w) = 1

q
(hD(w))q . (3.2)

In particular, we obtain that H∗
D and the support function hD have the following relation:

H∗
D(w) = hD(w)2

4
. (3.3)

In fact, we can compute directly as follows:(
1

p
j pD

)∗
(w) = sup

ξ∈R2n

(〈ξ,w〉 − 1

p
( j pD(ξ))

)

= sup
t≥0,ζ∈∂D

(〈tζ,w〉 − t p

p
( j pD(ζ ))

)

= sup
ζ∈∂D,〈ζ,w〉≥0

max
t≥0

(〈tζ,w〉 − t p

p

)

= sup
ζ∈∂D,〈ζ,w〉≥0

〈ζ,w〉q
q

= sup
ζ∈D,〈ζ,w〉≥0

〈ζ,w〉q
q

= 1

q
(hD(w))q .

To prove Theorem 1.1, we need the following representation for (c�
EHZ(D))

p
2 for convex

body D ⊂ R
2n and p ≥ 1, which is a generalization of [2, Proposition 2.1].

Proposition 3.2 For p1 > 1 and p2 ≥ 1, there holds

(c�
EHZ(D))

p2
2 = min

x∈Ap1

∫ 1

0
(H∗

D(−J ẋ(t)))
p2
2 dt = min

x∈Ap1

1

2p2

∫ 1

0
(hD(−J ẋ))p2dt .

Proposition 3.2 is derived based on the following Lemma. For the case � = I2n , it is
proved in [2, Proposition 2.2].

Lemma 3.3 For p > 1, there holds

(c�
EHZ(D))

p
2 = min

x∈Ap

∫ 1

0
(H∗

D(−J ẋ(t)))
p
2 dt . (3.4)

We firstly give the proof of Lemma 3.3 and Proposition 3.2. The proof of Theorem 1.1 is
given in the final part of this section.

Proof of Lemma 3.3 Define

Ip : Fp → R, x �→
∫ 1

0
(H∗

D(−J ẋ(t)))
p
2 dt .
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14 R. Jin, G. Lu

Then Ip is convex. If D is strictly convexwithC1-smooth boundary then Ip is aC1 functional
with derivative given by

d Ip(x)[y] =
∫ 1

0
〈∇(H∗

D)
p
2 (−J ẋ(t)),−J ẏ〉dt, ∀x, y ∈ Fp.

By Theorem 2.6, in order to prove (3.4) we only need to show that

min{A(x) > 0 | x is a generalized �-characteristic on ∂D} = (min
x∈Ap

Ip)
2
p . (3.5)

We will prove this in four steps.
Step 1. μp := inf x∈Ap Ip(x) is positive. It is easy to prove that

‖x‖L∞ ≤ C̃1‖ẋ‖L p ∀x ∈ Fp (3.6)

for some constant C̃1 = C̃1(p) > 0. So for any x ∈ Ap we have

2 = 2Ap(x) ≤ ‖x‖Lq ‖ẋ‖L p ≤ ‖x‖L∞‖ẋ‖L p ≤ C̃1‖ẋ‖2L p ,

and thus ‖ẋ‖L p ≥
√
2/C̃1, where 1/p + 1/q = 1. Let R2 be as in (3.1). These lead to

Ip(x) ≥
(

1

R2

)p/2

‖ẋ‖p
L p ≥ C̃2, where C̃2 =

(
2

R2C̃1

) p
2

> 0.

Step 2. There exists u ∈ Ap such that Ip(u) = μp , i.e. the infimum of Ip on Ap can be
attained by some u ∈ Ap . Let (xn) ⊂ Ap be a sequence satisfying limn→+∞ Ip(xn) = μp .
Then there exists a constant C̃3 > 0 such that(

1

R2

)p/2

‖ẋn‖p
L p ≤ Ip(xn) ≤ C̃3, ∀n ∈ N.

By (3.6) and the fact that ‖x‖L p ≤ ‖x‖L∞ , we deduce that (xn) is bounded in
W 1,p([0, 1],R2n). Note thatW 1,p([0, 1]) is reflexive for p > 1. (xn) has a subsequence, also
denoted by (xn), which converges weakly to some u ∈ W 1,p([0, 1],R2n). By Arzelá-Ascoli
theorem, there also exists û ∈ C0([0, 1],R2n) such that

lim
n→+∞ sup

t∈[0,1]
|xn(t) − û(t)| = 0.

A standard argument yields u(t) = û(t) almost everywhere. We may consider that xn con-
verges uniformly to u. Hence u(1) = �u(0) and u(0) ∈ E⊥

1 . As in Step 2 of [13, Section 4.1],
we also have Ap(u) = 1, and so u ∈ Ap . Standard argument in convex analysis shows that

there exists ω ∈ Lq([0, 1],R2n) such that ω(t) ∈ ∂(H∗
D)

p
2 (−J u̇(t)) almost everywhere.

These lead to

Ip(u) − Ip(xn) ≤
∫ 1

0
〈ω(t),−J (u̇(t) − ẋn(t))〉dt → 0 as n → ∞,

since xn converges weakly to u. Hence μp ≤ Ip(u) ≤ limn→∞ Ip(xn) = μp .
Step 3. There exists a generalized �-characteristic on ∂D, x∗ : [0, 1] → ∂D, such that

A(x∗) = (μp)
2
p . Since u is the minimizer of Ip|Ap , applying Lagrangian multiplier theorem

(cf. [5, Theorem 6.1.1]) we get some λp ∈ R such that 0 ∈ ∂(Ip + λp A)(u) = ∂ Ip(u) +
λp A′(u). This means that there exists some ρ ∈ Lq([0, 1],R2n) satisfying

ρ(t) ∈ ∂(H∗
D)

p
2 (−J u̇(t)) a.e. (3.7)
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and ∫ 1

0
〈ρ(t),−J ζ̇ (t)〉 + λp

∫ 1

0
〈u(t),−J ζ̇ (t)〉 = 0 ∀ζ ∈ Fp.

From the latter we derive that for some a0 ∈ Ker(� − I ),

ρ(t) + λpu(t) = a0, a.e.. (3.8)

Computing as in the case of p = 2 (cf. Step 3 of [13, Section 4.1]), we get that

λp = − p

2
μp.

Since p > 1, q = p/(p − 1) > 1. From (3.2) we may derive that (H∗
D)

p
2 = ( hD2 )p has the

Legendre transformation given by
(
h p
D

2p

)∗
(x) =

(
h p
D

p

)∗ (
2

p
1
p

x

)
= 1

q
jqD

(
2

p
1
p

x

)
= 2q

qp
q
p
jqD(x) = 2q

qpq−1 jqD(x).

Using this and (3.7)–(3.8), we get that

−J u̇(t) ∈ 2q

qpq−1 ∂ jqD(−λpu(t) + a0), a.e..

Let v(t) := −λpu(t) + a0. Then

−J v̇(t) ∈ −λp
2q

qpq−1 ∂ jqD(v(t)) and v(1) = �v(0).

This implies that jqD(v(t)) is a constant by [14, Theorem 2], and

−2q−1λp

pq−1 jqD(v(t)) =
∫ 1

0

−2q−1λp

pq−1 jqD(v(t))dt = 1

2

∫ 1

0
〈−J v̇(t), v(t)〉dt = λ2p =

( pμp

2

)2

by the Euler formula [19, Theorem 3.1]. Therefore jqD(v(t)) = ( p
2

)q
μp and

A(v) = 1

2

∫ 1

0
〈−J v̇(t), v(t)〉dt = λ2p =

( pμp

2

)2
.

Let x∗(t) = v(t)
jD(v(t)) . Then x∗ is a generalized �-characteristic on ∂D with action

A(x∗) = 1

j2D(v(t))
A(v) = μ

2
p
p .

Step 4. For any generalized �-characteristic on ∂D with positive action, y : [0, T ] → ∂D,

there holds A(y) ≥ μ
2
p
p . Since [5, Theorem 2.3.9] implies ∂ jqD(x) = q( jD(x))q−1∂ jD(x),

by [13, Lemma 4.2], after reparameterization we may assume that y ∈ W 1,∞([0, T ],R2n)

and satisfies

jD(y(t)) ≡ 1 and − J ẏ(t) ∈ ∂ jqD(y(t)) a.e. on [0, T ].
It follows that

A(y) = qT

2
. (3.9)
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Similar to the case p = 2, define y∗ : [0, 1] → R
2n , t �→ y∗(t) = ay(tT ) + b, where a > 0

and b ∈ E1 are chosen so that y∗ ∈ Ap . Then (3.9) leads to

1 = A(y∗) = a2A(y) = a2qT

2
. (3.10)

Moreover, it is clear that

−J ẏ∗(t) ∈ 2q

qpq−1 ∂( jqD)

(
(aT )

1
q−1

q
1

q−1 p

2p
y(tT )

)
.

We use this, (3.2) and the Legendre reciprocity formula (cf. [6, Proposition II.1.15]) to derive

2q

qpq−1 jqD

(
(aT )

1
q−1

q
1

q−1 p

2p
y(tT )

)
+

(
h p
D

2p

)∗
(−J ẏ∗(t))

=
〈
−J ẏ∗(t), (aT )

1
q−1

q
1

q−1 p

2p
y(tT )

〉

and hence

(H∗
D(−J ẏ∗(t)))

p
2 =

(
h p
D

2p

)∗
(−J ẏ∗(t))

= (aT )p
q p p

2p
− (aT )p

q p−1 p

2p

= (aT )p
q p−1 p(q − 1)

2p

= (aT )p
q p

2p
≥ μp.

By Step 1 we get Ip(y∗) ≥ μp and so (aT )p
q p

2p ≥ μp . This, (3.9) and (3.10) lead to

A(y) ≥ μ
2
p
p .

Summarizing the four steps we get (3.5) and hence (3.4) is proved. ��

Remark 3.4 (i) Checking Step 3, it is easily seen that for a minimizer u of Ip|Ap there exists
a0 ∈ Ker(� − I ) such that

x∗(t) = (
c�
EHZ(D)

)1/2
u(t) + 2

p

(
c�
EHZ(D)

)(1−p)/2
a0

gives a generalized �-characteristic on ∂D with action A(x∗) = c�
EHZ(D), namely, x∗

is a c�
EHZ-carrier for ∂D.

(ii) For a generalized �-characteristic on ∂D with action A(x∗) = c�
EHZ(D), computation

in Step 4 implies that

u(t) = x∗(tT )√
c�
EHZ(D)

+ b = x∗(tT )√
A(x∗)

+ b, for some b ∈ E1

is a minimizer of Ip|Ap .
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A Brunn–Minkowski type inequality... 17

Proof of Proposition 3.2 Firstly, suppose p1 ≥ p2 > 1. Then Ap1 ⊂ Ap2 and the first two
steps in the proof of Proposition 3.3 implies that Ip1 |Ap1

has a minimizer u ∈ Ap1 . It follows
that

c�
EHZ(D) =

(∫ 1

0
(H∗

D(−J u̇(t)))
p1
2 dt

) 2
p1

≥
(∫ 1

0
(H∗

D(−J u̇(t)))
p2
2 dt

) 2
p2

≥ inf
x∈Ap1

(∫ 1

0
(H∗

D(−J ẋ(t)))
p2
2 dt

) 2
p2

≥ inf
x∈Ap2

(∫ 1

0
(H∗

D(−J ẋ(t)))
p2
2 dt

) 2
p2

= c�
EHZ(D),

where two equalities come from Lemma 3.3 and the first inequality is because of Hölder’s

inequality. Hence the functional
∫ 1
0 (H∗

D(−J ẋ(t)))
p2
2 dt attains its minimum at u onAp1 and

c�
EHZ(D) = min

x∈Ap1

(∫ 1

0
(H∗

D(−J ẋ(t)))
p2
2 dt

) 2
p2

. (3.11)

Next, if p2 ≥ p1 > 1, then Ap2 ⊂ Ap1 and we have u ∈ Ap2 minimizing Ip2 |Ap2
such

that

c�
EHZ(D) =

(∫ 1

0
(H∗

D(−J u̇(t)))
p2
2 dt

) 2
p2

≥ inf
x∈Ap1

(∫ 1

0
(H∗

D(−J ẋ(t)))
p2
2 dt

) 2
p2

≥ inf
x∈Ap1

(∫ 1

0
(H∗

D(−J ẋ(t)))
p1
2 dt

) 2
p1

= c�
EHZ(D).

This yields (3.11) again.
Finally, for p2 = 1 and p1 > 1 let u ∈ Ap1 minimize Ip1 |Ap1

. It is clear that

c�
EHZ(D) =

(∫ 1

0
(H∗

D(−J u̇(t)))
p1
2 dt

) 2
p1

≥
(∫ 1

0
(H∗

D(−J u̇(t)))
1
2 dt

)2

≥ inf
x∈Ap1

(∫ 1

0
(H∗

D(−J ẋ(t)))
1
2 dt

)2

(3.12)

Let R2 be as in (3.1). Then

(H∗
D(−J ẋ(t)))

p
2 ≤ (R2|ẋ(t)|2)

p
2 ≤ (R2 + 1)

p1
2 |ẋ(t)|p1
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18 R. Jin, G. Lu

for any 1 ≤ p ≤ p1. By (3.11)

c�
EHZ(D) = min

x∈Ap1

(∫ 1

0
(H∗

D(−J ẋ(t)))
p
2 dt

) 2
p

, 1 < p ≤ p1.

Letting p ↓ 1 and using Lebesgue dominated convergence theorem we get

c�
EHZ(D) ≤ inf

x∈Ap1

(∫ 1

0
(H∗

D(−J ẋ(t)))
1
2 dt

)2

.

This and (3.12) show that the functional Ap1 � x �→ ∫ 1
0 (H∗

D(−J ẋ(t)))
1
2 dt attains its

minimum at u and

c�
EHZ(D) = min

x∈Ap1

(∫ 1

0
(H∗

D(−J ẋ(t)))
1
2 dt

)2

.

Proposition 3.2 is proved. ��

Proof of Theorem 1.1 Choose a real p1 > 1. Then for p ≥ 1 Proposition 3.2 implies

c�
EHZ(D +p K )

p
2 = min

x∈Ap1

1

2p

∫ 1

0
(hD+pK (−J ẋ))pdt (3.13)

= min
x∈Ap1

1

2p

∫ 1

0
((hD(−J ẋ))p + (hK (−J ẋ))p)dt

≥ min
x∈Ap1

1

2p

∫ 1

0
(hD(−J ẋ))p + min

x∈Ap1

1

2p

∫ 1

0
(hK (−J ẋ))pdt

= c�
EHZ(D)

p
2 + c�

EHZ(K )
p
2 . (3.14)

Now suppose that p ≥ 1 and there exist c�
EHZ carriers γD : [0, T ] → ∂D and γK :

[0, T ] → ∂K satisfying γD = αγK + b for some α ∈ R \ {0} and some b ∈ Ker(� − I2n).
We will prove the equality in (1.3) holds. (2.4) implies A(γD) = α2A(γK ). Moreover by
Remark 3.4(ii) for suitable vectors bD,bK ∈ Ker(� − I2n)

zD(t) = 1√
A(γD)

γD(T t) + bD and zK (t) = 1√
A(γK )

γK (T t) + bK

in Ap1 satisfy

c�
EHZ(D)

p
2 = min

x∈Ap1

1

2p

∫ 1

0
(hD(−J ẋ))pdt = 1

2p

∫ 1

0
(hD(−J żD))pdt, (3.15)

c�
EHZ(K )

p
2 = min

x∈Ap1

1

2p

∫ 1

0
(hK (−J ẋ))pdt = 1

2p

∫ 1

0
(hK (−J żK ))pdt . (3.16)
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A Brunn–Minkowski type inequality... 19

It follows that żD(t) = α
(
A(γK )
A(γD)

)1/2
żK = żK because A(γD) = α2A(γK ). Then (3.15)

and (3.16) lead to

c�
EHZ(D)

p
2 + c�

EHZ(K )
p
2

= 1

2p

∫ 1

0
((hD(−J żD))p + (hK (−J żD))p)dt

= 1

2p

∫ 1

0
hD+pK (−J żD)pdt

≥ min
x∈Ap1

1

2p

∫ 1

0
(hD+pK (−J ẋ))pdt

= c�
EHZ(D +p K )

p
2 .

Combined with (3.13) we get

c�
EHZ(D +p K )

p
2 = c�

EHZ(D)
p
2 + c�

EHZ(K )
p
2 .

Now suppose that p > 1 and the equality in (1.3) holds. We may require that the above
p1 satisfies 1 < p1 < p. By Proposition 3.2 there exists u ∈ Ap1 such that

c�
EHZ(D +p K )

p
2 = 1

2p

∫ 1

0

(
(hD+pK (−J u̇))

)p
dt .

The equality in (1.3) yields

1

2p

∫ 1

0
((hD(−J u̇))p + (hK (−J u̇))p)dt

= min
x∈Ap1

1

2p

∫ 1

0
(hD(−J ẋ))pdt + min

x∈Ap1

1

2p

∫ 1

0
(hK (−J ẋ))pdt

and thus

c�
EHZ(D)

p
2 = min

x∈Ap1

1

2p

∫ 1

0
(hD(−J ẋ))pdt = 1

2p

∫ 1

0
(hD(−J u̇))pdt and

c�
EHZ(K )

p
2 = min

x∈Ap1

1

2p

∫ 1

0
(hK (−J ẋ))pdt = 1

2p

∫ 1

0
(hK (−J u̇))pdt .

These and Propositions 3.3, 3.2 and Hölder’s inequality lead to

min
x∈Ap1

(∫ 1

0
(hD(−J ẋ))p1dt

) 1
p1 = 2(c�

EHZ(D))
1
2

= min
x∈Ap1

(∫ 1

0
(hD(−J ẋ))pdt

) 1
p

=
(∫ 1

0
(hD(−J u̇))pdt

) 1
p

≥
(∫ 1

0
(hD(−J u̇))p1dt

) 1
p1

,
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20 R. Jin, G. Lu

min
x∈Ap1

(∫ 1

0
(hK (−J ẋ))p1dt

) 1
p1 = 2(c�

EHZ(K ))
1
2

= min
x∈Ap1

(∫ 1

0
(hK (−J ẋ))pdt

) 1
p

=
(∫ 1

0
(hK (−J u̇))pdt

) 1
p

≥
(∫ 1

0
(hK (−J u̇))p1dt

) 1
p1

.

It follows that

2(c�
EHZ(D))

1
2 =

(∫ 1

0
(hD(−J u̇))pdt

) 1
p

=
(∫ 1

0
(hD(−J u̇))p1dt

) 1
p1

,

2(c�
EHZ(K ))

1
2 =

(∫ 1

0
(hK (−J u̇))pdt

) 1
p

=
(∫ 1

0
(hK (−J u̇))p1dt

) 1
p1

.

By Remark 3.4(i) there are aD, aK ∈ Ker(� − I2n) such that

γD(t) = (
c�
EHZ(D)

)1/2
u(t) + 2

p1

(
c�
EHZ(D)

)(1−p1)/2 aD,

γK (t) = (
c�
EHZ(K )

)1/2
u(t) + 2

p1

(
c�
EHZ(K )

)(1−p1)/2 aK

are c�
EHZ carriers for ∂D and ∂K , respectively. Clearly, they coincide up to dilation and

translation in Ker(� − I2n). Theorem 1.1 is proved. ��

3.2 Some interesting consequences of Theorem 1.1

Since D +1 K = D + K = {x + y | x ∈ D and y ∈ K } we have:
Corollary 3.5 Let � ∈ Sp(2n,R), and let D, K ⊂ R

2n be two convex bodies containing
fixed points of � in their interiors. Then

(i) (
c�
EHZ(D + K )

) 1
2 ≥ (

c�
EHZ(D)

) 1
2 + (

c�
EHZ(K )

) 1
2 , (3.17)

and the equality holds if there exist c�
EHZ-carriers for D and K which coincide up to

dilation and translation by elements in Ker(� − I2n).
(ii) For x, y ∈ Fix(�), if both Int(D)∩Fix(�)− x and Int(D)∩Fix(�)− y are intersecting

with Int(K ), then

λ
(
c�
EHZ(D ∩ (x + K ))

)1/2 + (1 − λ)
(
c�
EHZ(D ∩ (y + K ))

)1/2
≤ (

c�
EHZ(D ∩ (λx + (1 − λ)y + K ))

)1/2
, ∀ 0 ≤ λ ≤ 1. (3.18)

In particular, if D and K are centrally symmetric, i.e., −D = D and −K = K, then

c�
EHZ(D ∩ (x + K )) ≤ c�

EHZ(D ∩ K ), ∀x ∈ Fix(�). (3.19)

Proof (i) Indeed, let p ∈ Fix(�) ∩ Int(D) and q ∈ Fix(�) ∩ Int(K ). Then (1.3) implies

(
c�
EHZ(D + K − p − q)

) 1
2 = (

c�
EHZ((D − p) + (K − q))

) 1
2

≥ (
c�
EHZ(D − p)

) 1
2 + (

c�
EHZ(K − q)

) 1
2 .
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A Brunn–Minkowski type inequality... 21

For z ∈ R
2n , consider the symplectomorphism φz : (R2n, ω0) → (R2n, ω0), x �→ x − z.

Since p, q and p + q are all fixed points of �, and φp , φq and φp+q commute with �, by
Proposition 2.2 it is clear that

c�
EHZ(D + K − p − q) = c�

EHZ(φp+q(D + K )) = c�
EHZ(D + K ),

c�
EHZ(D − p) = c�

EHZ(φp(D)) = c�
EHZ(D),

c�
EHZ(K − q) = c�

EHZ(φq(K )) = c�
EHZ(K ).

Other claims easily follow from the arguments therein.
(ii) Since x, y ∈ Fix(�), both Int(D)∩Fix(�)− x and Int(D)∩Fix(�)− y are intersecting
with Int(K ), we deduce that for any 0 ≤ λ ≤ 1 interiors of λ(D∩ (x + K )) and (1−λ)(D∩
(y + K )) contain fixed points of �. (3.18) follows from Proposition 2.2 and (i) directly.

Suppose further that D and K are centrally symmetric, i.e.,−D = D and−K = K . Then
D ∩ (−x + K ) = −(D ∩ (x + K )) and c�

EHZ(−(D ∩ (x + K ))) = c�
EHZ(D ∩ (x + K )) since

the symplectomorphism R
2n → R

2n, z �→ −z commutes with �. Thus taking y = −x and
λ = 1/2 in (3.18) leads to c�

EHZ(D ∩ (x + K )) ≤ c�
EHZ(D ∩ K ). ��

Let D, K and � be as in Corollary 3.5. As in [2, 3] we may derive from Corollary 3.5
that the limit

lim
ε→0+

c�
EHZ(D + εK ) − c�

EHZ(D)

ε
(3.20)

exists, denoted by d�
K (D). In fact, by the assumptionswe can choose p ∈ Fix(�)∩Int(D) and

q ∈ Fix(�)∩Int(K ). Then (K−q) ⊂ R(D− p) for some R > 0 (since 0 ∈ int(D−q)). Note
that p+εq ∈ Fix(�)∩ Int(D+εK ). By the proof of Corollary 3.5(i) and Proposition 2.2(ii)
we get

c�
EHZ(D + εK ) − c�

EHZ(D) = c�
EHZ((D − p) + ε(K − q)) − c�

EHZ(D − p)

≤ c�
EHZ((D − p) + εR(D − p)) − c�

EHZ(D − p)

≤ (1 + εR)c�
EHZ(D − p) − c�

EHZ(D − p)

= εRc�
EHZ(D)

and therefore that the function of ε > 0 in (3.20) is bounded. This function is also decreasing
by Corollary 3.5(i) (see reasoning [2, pp. 21–22]). Hence the limit in (3.20) exists.

The number d�
K (D) may be viewed as the rate of change of the function D �→ c�

EHZ(D)

in the “direction" K . From Corollary 3.5 we can estimate it as follows.

Corollary 3.6 Let D, K and � be as in Corollary 3.5. Then it holds that

2(c�
EHZ(D))1/2(c�

EHZ(K ))1/2 ≤ d�
K (D) ≤ inf

zD

∫ 1

0
hK (−J żD(t))dt, (3.21)

where zD : [0, 1] → ∂D takes over all c�
EHZ-carriers for D.

In [2, 3] lengthJ K ◦(zD) = ∫ 1
0 jJ K ◦(żD(t))dt is called the length of zD with respect to

the convex body J K ◦. In the case 0 ∈ int(K ), since hK (−Jv) = jJ K ◦(v), (3.21) implies

d�
K (D) ≤ inf

zD

∫ 1

0
jJ K ◦(żD(t))dt and hence c�

EHZ(D)c�
EHZ(K ) ≤ 1

4
inf
zD

(lengthJ K ◦(zD))2.

It is not hard to see that (3.19) may not hold if one of D and K is not convex. Therefore the
symplectic capacities only show good behavior in the convex category.
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22 R. Jin, G. Lu

Proof of Corollary 3.6 The first inequality in (3.21) easily follows from Corollary 3.5(i). In
order to prove the second one let us fix a real p1 > 1. By Proposition 3.2 we have u ∈ Ap1
such that

(c�
EHZ(D))

1
2 = (c�

EHZ(D − p))
1
2 = min

x∈Ap1

1

2

∫ 1

0
hD−p(−J ẋ))

= 1

2

∫ 1

0
hD−p(−J u̇)) (3.22)

and that for some a0 ∈ Ker(� − I2n)

x∗(t) = (
c�
EHZ(D)

)1/2
u(t) + 2

p1

(
c�
EHZ(D)

)(1−p1)/2 a0 (3.23)

is a c�
EHZ carrier for ∂(D − p) by Remark 3.4. Proposition 3.2 also leads to

(c�
EHZ(D + εK ))

1
2 = (c�

EHZ((D − p) + ε(K − q)))
1
2 (3.24)

= min
x∈Ap1

1

2

∫ 1

0
(hD−p(−J ẋ) + εhK−q(−J ẋ))

≤ 1

2

∫ 1

0
hD−p(−J u̇) + ε

2

∫ 1

0
hK−q(−J u̇)

= (c�
EHZ(D, ω0))

1
2 + ε

2

∫ 1

0
hK−q(−J u̇) (3.25)

because of (3.22). Let zD(t) = x∗(t) + p for 0 ≤ t ≤ 1. Since q and a0 are fixed points of
� it is easily checked that zD is a c�

EHZ carrier for ∂D. From (3.24) it follows that

(c�
EHZ(D + εK ))

1
2 − (c�

EHZ(D))
1
2

ε
≤ 1

2

(
c�
EHZ(D)

)− 1
2

∫ 1

0
hK−q(−J żD). (3.26)

Since hK−q(−J żD) = hK (−J żD)+〈q, J żD〉 (see page 37 and Theorem 1.7.5 in [15]) and
∫ 1

0
〈q, J żD〉 = 〈q, J (zD(1) − zD(0))〉 = −〈Jq, �zD(0)〉 + 〈Jq, zD(0)〉 = 0

(by the fact � t J = J�−1), letting ε → 0+ in (3.26) we arrive at the second inequality in
(3.21). ��

4 Classification of (A,1,3)-billiard trajectories and related properties
of proper trajectories

In this section, we give the classification of (A,�,�)-billiard trajectories, related properties
of proper trajectories, the relation between A-billiard trajectories in� and (A,�, Bn)-billiard
trajectories. Moreover, on the base of the latter we prove that ξ A(�) provides a lower bound
of lengths of A-billiard trajectory in �.

Proposition 4.1 Let A, � and � be as in (1.19).

(i) If both� and� are also strictly convex (i.e., they have strictly positive Gauss curvatures
at every point of their boundaries), then every (A,�,�)-billiard trajectory is either
proper or gliding.
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A Brunn–Minkowski type inequality... 23

(ii) Every proper (A,�,�)-billiard trajectory γ : [0, T ] → ∂(�×�) cannot be contained
in �× ∂� or ∂�×�. Consequently, γ −1(∂�× ∂�) contains at least a point in (0, T ).

Remark 4.2 If the condition “proper” in (ii) in the above claim is dropped, then “� × ∂� or
∂� × �” should changed into “Int(�) × ∂� or ∂� × Int(�)”.

Proof of Proposition 4.1 (i) can be obtained form Proposition 2.12 in [3]. Let us prove (ii).
By the definition we may assume that � ⊂ R

n
q and � ⊂ R

n
p contain the origin in their

interiors. We only need to prove that every proper (A,�, Bn)-billiard trajectory cannot be
contained in � × ∂�. (Another case may be proved with the same arguments.) Otherwise,
let γ = (γq , γp) : [0, T ] → ∂(� × �) be such a trajectory, that is, γ ([0, T ]) ⊂ � × ∂�.
Then γ −1(∂� × ∂�) is finite (including empty) and there holds

γ̇ (t) = (γ̇q(t), γ̇p(t)) = (κ∇ j�(γp(t)), 0) ∀t ∈ [0, T ] \ γ −1(∂� × ∂�)

for some positive constant κ . It follows that γp is constant on each component of
[0, T ]\γ −1(∂�× ∂�), and so constant on [0, T ]\γ −1(∂�× ∂�) by continuity of γ . Hence
γp ≡ p0 ∈ ∂�, and so γq(t) = q0 + κt∇ j�(p0) on [0, T ], where q0 = γq(0). Now

(q0 + κT∇ j�(p0), p0) = γ (T ) = �Aγ (0) = (Aγq(0), (A
t )−1γp(0)) = (Aq0, (A

t )−1 p0).

This implies that At p0 = p0 and q0 − Aq0 = −κT∇ j�(p0). The former equality leads to
〈p0, v−Av〉 = 0 ∀v ∈ R

n . Combing this with the latter equality we obtain 〈p0,∇ j�(p0)〉 =
0. This implies j�(p0) = 0 and so p0 = 0, which contradicts p0 ∈ ∂� since 0 ∈ int(�). ��

Recall that the action of an (A,�,�)-billiard trajectory γ is given by (2.4). The length
of an A-billiard trajectory σ : [0, T ] → � is given by

L(σ ) :=
n∑

i=0

‖q j+1 − q j‖,

with

q0 = σ(0), q1 = σ(ti ), . . . , qm−1 = σ(tm−1), qm = σ(T ),

where

{t1, . . . , tm−1} := Bσ

is the finite set in Definition 1.2. Here ‖ · ‖ is the Euclid norm in R
n .

The following proposition gives the relation between A-billiard trajectories in � and
(A,�, Bn)-billiard trajectories.

Proposition 4.3 For a smooth convex body in � ⊂ R
n and A ∈ O(n) satisfying Fix(A) ∩

Int(�) �= ∅, every A-billiard trajectory in �, σ : [0, T ] → �, is the projection to � of a
proper (A,�, Bn)-billiard trajectory whose action is equal to the length of σ .

Proof By the definitions we only need to consider the case that 0 ∈ Int(�). Let σ : [0, T ] →
� be a A-billiard trajectory in � with Bσ = {t1 < · · · < tk} ⊂ (0, T ) as in Definition 1.4.
Then |σ̇ (t)| is equal to a positive constant κ in (0, T ) \ Bσ .

Suppose that (ABiii) occurs. Define

α1(t) = (σ (t),− 1

κ
σ̇+(0)), 0 ≤ t ≤ t1,

β1(t) = (σ (t1),− 1

κ
σ̇+(0) + t

κ
(σ̇−(t1) − σ̇+(t1)), 0 ≤ t ≤ 1.
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Since the second equality in (1.5) implies that σ̇−(ti ) − σ̇+(ti ) is an outer normal vector to
∂� at σ(ti ) for each ti ∈ Bσ , it is easily checked that both are generalized characteristics on
∂(� × �) and α1(t1) = β1(0). Similarly, define

α2(t) = (σ (t),− 1

κ
σ̇+(t1)), t1 ≤ t ≤ t2,

β2(t) = (σ (t1),− 1

κ
σ̇+(t1) + t

κ
(σ̇−(t2) − σ̇+(t2)), 0 ≤ t ≤ 1,

...

αk(t) = (σ (t),− 1

κ
σ̇+(tk−1)), tk−1 ≤ t ≤ tk,

βk(t) = (σ (tk−1),− 1

κ
σ̇+(tk−1) + t

κ
(σ̇−(tk) − σ̇+(tk)), 0 ≤ t ≤ 1,

αk+1(t) = (σ (t),− 1

κ
σ̇+(tk)) = (σ (t),− 1

κ
σ̇−(T )), tk ≤ t ≤ T .

Then β1(1) = α2(t1), α2(t2) = β2(0), . . ., βk(1) = αk+1(tk), that is, α1β1 · · · αkβkαk+1 is a
path. Note also that

αk+1(T ) = (σ (T ),− 1

κ
σ̇−(T )) = (Aσ(0),− 1

κ
Aσ̇+(0)) = �Aα1(0)

by (1.9). Hence γ := α1β1 · · · αkβkαk+1 is a generalized �A-characteristic on ∂(� × �).
Clearly, β1, . . . , βk all have zero actions. So

A(γ ) =
k+1∑
i=0

∫ ti+1

ti
〈−σ̇ (t),− 1

κ
σ̇+(ti )〉Rn dt = κT = L(σ ).

Suppose that (ABiv) occurs. Let αi and β j be defined as above for i = 1, . . . , k + 1 and
j = 1, . . . , k. If (1.9) holds,we also defineγ as above, andget a generalized�A-characteristic
on ∂(� × �).

If (1.10) occurs, we also need to define

β0(t) = (σ (0),− 1

κ
σ̇−(0) + t

κ
(σ̇−(0) − σ̇+(0)), 0 ≤ t ≤ 1.

By (1.8), σ̇−(0) − σ̇+(0) is an outer normal vector to ∂� at σ(0). It is easy to see that β0 is
a generalized characteristic on ∂(� × �) satisfying β0(1) = α1(0). Moreover

�Aβ0(0) = �A(σ (0),− 1

κ
σ̇−(0))=(Aσ(0),− 1

κ
Aσ̇−(0))=(σ (T ),−1

κ
σ̇−(T ))=αk+1(T )

by (1.10). Thus γ := β0α1β1 · · · αkβkαk+1 is a generalized �A-characteristic on ∂(� × �).
Suppose that (ABv) occurs. If (1.9) holds, we define γ as in the case of (ABv). When

(1.11) occurs, we need to define

βk+1(t)=(σ (T ),−1

κ
σ̇−(T )+ t

κ
(σ̇−(T )−σ̇+(T )), 0 ≤ t ≤ 1.

Then γ := α1β1 · · · αkβkαk+1βk+1 is a generalized �A-characteristic on ∂(� × �).
Suppose that (ABvi) occurs. If (1.9) or (1.10) or (1.11) holds, we define

γ :=α1β1 · · · αkβkαk+1, or γ :=β0α1β1 · · · αkβkαk+1, or γ :=α1β1 · · · αkβkαk+1βk+1.

Finally, if (1.12) holds, we define γ := β0α1β1 · · · αkβkαk+1βk+1. ��
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However, under the assumptions of Proposition 4.3 we cannot affirm that the projection
to � of a proper (A,�, Bn)-billiard trajectory is an A-billiard trajectory in �.

Proposition 4.4 Let � ⊂ R
n be a smooth convex body and A ∈ O(n) satisfy Fix(A) ∩

Int(�) �= ∅. Then it holds that
ξ A(�) ≤ inf{L(σ ) | σ is an A−billiard trajectory in �}.

Proof This may directly follow from Proposition 4.3, Remark1.7(i) and Theorem 2.6. ��
The statement about relation between the action of a proper (A,�, Bn)-billiard trajectory

and the length of its projection to � in Proposition 4.3 is a special case of the following
proposition. When A = In it was showed in [3, (7)].

Proposition 4.5 Let A, � and � satisfy (1.19). If γ : [0, T ] → ∂(� × �) is a proper
(A,�,�)-billiard trajectory with γ −1(∂� × ∂�) ∩ (0, T ) = {t1 < · · · < tm}, then the
action of γ is given by

A(γ ) =
m∑
j=0

h�(q j − q j+1) (4.1)

with q j = πq(γ (t j )), j = 0, . . . ,m + 1, where t0 = 0, tm+1 = T and qm+1 = Aq0. In
particular, if � = Bn(τ ) for τ > 0 and L(πq(γ )) denotes the length of the projection of γ

in � then

A(γ ) = τ

m∑
j=0

‖q j+1 − q j‖ = τ L(πq(γ )) (4.2)

since �◦ = 1
τ
Bn and thus h� = j�◦ = τ‖ · ‖. Moreover, if � is strictly convex, then the

action of any gliding (A,�, Bn)-billiard trajectory γ : [0, T ] → ∂(� × Bn) is also equal
to the length of the projection πq(γ ) in �.

Proof Firstly, we prove (4.1) in the case that 0 ∈ Int(�) and 0 ∈ Int(�). By a direct
computation we have

A(γ ) = 1

2

∫ T

0
〈−J γ̇ (t), γ (t)〉dt

= 1

2

m∑
j=0

∫ t j+1

t j
〈−J γ̇ (t), γ (t)〉dt

= 1

2

m∑
j=0

∫ t j+1

t j
[( ṗ(t), q(t))Rn − (q̇(t), p(t))Rn ] dt

= −
m∑
j=0

∫ t j+1

t j
(q̇(t), p(t))Rn dt + 1

2

m∑
j=0

[
(q(t j+1), p(t j+1))Rn − (q(t j ), p(t j ))Rn

]

= −
m∑
j=0

∫ t j+1

t j
(q̇(t), p(t))Rn dt + 1

2

[
(q(tm+1), p(tm+1))Rn − (q(t0), p(t0))Rn

]

= −
m∑
j=0

∫ t j+1

t j
(q̇(t), p(t))Rn dt
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since (q(tm+1), p(tm+1))Rn = (Aq(t0), (At )−1 p(t0))Rn = (q(t0), p(t0))Rn . By (BT1) we
have

−
∫ ti+1

ti
(q̇(t), p(t))Rn dt = −(q(ti+1) − q(ti ), p(ti ))Rn = −(qi+1 − qi , pi )Rn ,

where j�(pi ) = 1 and qi+1 −qi = −κ(ti+1 − ti )∇ j�(pi ). The last two equalities mean that
−(qi+1 − qi , pi )Rn is either the maximum or the minimum of the function p �→ −(qi+1 −
qi , p)Rn on j−1

� (1). Note that

−
∫ ti+1

ti
(q̇(t), p(t))Rn dt =

∫ ti+1

ti
(κ∇ j�(p(ti )), p(ti ))Rn dt = κ(ti+1 − ti ) > 0.

So −(qi+1 − qi , pi )Rn must be the maximum of the function p �→ −(qi+1 − qi , p)Rn on
j−1
� (1), which by definition equals h�(qi − qi+1). In this case (4.1) follows immediately.
Next, we deal with the general case. Now we have q̄ ∈ Int(�) and p̄ ∈ Int(�) such that

the above result can be applied to γ − (q̄, p̄) yielding

A(γ − (q̄, p̄)) =
m∑
j=0

h�− p̄((q j − q̄) − (q j+1 − q̄)) =
m∑
j=0

h�− p̄(q j − q j+1)

=
m∑
j=0

h�(q j − q j+1) −
m∑
j=0

( p̄, q j − q j+1)Rn

because h�− p̄(u) = h�(u) − ( p̄, u)Rn , where q j = πq(γ (ti )), i = 0, . . . ,m + 1, where
t0 = 0, tm+1 = T and qm+1 = Aq0. Moreover, as above we may compute

A(γ ) = −
m∑
j=0

∫ t j+1

t j
(q̇(t), p(t))Rn dt,

A(γ − (q̄, p̄)) = −
m∑
j=0

∫ t j+1

t j
(q̇(t), p(t) − p̄)Rn dt

= −
m∑
j=0

∫ t j+1

t j
(q̇(t), p(t))Rn dt −

m∑
j=0

( p̄, q j − q j+1)Rn

These lead to the desired (4.1) directly.
Thirdly, we prove the final claim. Now p̄ = 0, The above expressions show that A(γ ) =

A(γ − (q̄, 0). Since πq(γ ) − q̄ and πq(γ ) have the same length, we only need to prove the
case q̄ = 0.

Since γ is gliding, by Proposition 4.1(i) we have

γ̇ (t) = (γ̇q(t), γ̇p(t)) = (−α(t)γp(t)/|γp(t)|, β(t)∇g�(γq(t))),

where α and β are two smooth positive functions satisfying a condition as in [3, (8)]. Hence
γq = πq(γ ) has length

L(γq) =
∫ T

0
|γ̇q(t)|dt =

∫ T

0
α(t)dt .
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On the other hand, as above we have

A(γ ) = 1

2

∫ T

0
〈−J γ̇ (t), γ (t)〉dt

= 1

2

∫ T

0

(
(γ̇p(t), γq(t))Rn − (γ̇q(t)γp(t)))Rn

)
dt

= −
∫ T

0
(γp(t), γ̇q(t)))Rn dt =

∫ T

0
α(t)dt .

��

5 Proofs of Theorems 1.9, 1.15 and Proposition 1.10

Proof of Theorem 1.9 Let λ ∈ (0, 1). Since Int(�1) ∩ Fix(A) �= ∅, Int(�2) ∩ Fix(A) �= ∅
and Int(�)∩Fix(At ) �= ∅, Fix(�A) is intersecting with both Int(�1 ×�) and Int(�2 ×�).
Note that (

λ�1
) × (

λ�
) + (

(1 − λ)�2
) × (

(1 − λ)�
)

= (
λ�1 + (1 − λ)�2

) × (
λ� + (1 − λ)�

)
= (

λ�1 + (1 − λ)�2
) × �.

It follows from Corollary 3.5 that

(
c�A
EHZ

(
λ�1 × λ�

)) 1
2 + (

c�A
EHZ

(
(1 − λ)�2 × (1 − λ)�

)) 1
2

≤ (
c�A
EHZ

((
λ�1 + (1 − λ)�2

) × �
)) 1

2 , (5.1)

which is equivalent to

λ
(
c�A
EHZ

(
�1 × �

)) 1
2 + (1 − λ)

(
c�A
EHZ

(
�2 × �

)) 1
2

≤ (
c�A
EHZ

((
λ�1 + (1 − λ)�2

) × �
) 1
2 . (5.2)

By this and the weighted arithmetic–geometric mean inequality

λ
(
c�A
EHZ

(
�1 × �

)) 1
2 + (1 − λ)

(
c�A
EHZ

(
�2 × �

)) 1
2

≥
((

c�A
EHZ

(
�1 × �

)) 1
2

)λ ((
c�A
EHZ

(
�2 × �

)) 1
2

)(1−λ)

,

we get
((

c�A
EHZ

(
�1 × �

)) 1
2

)λ ((
c�A
EHZ

(
�2 × �

)) 1
2

)(1−λ)

≤ (
c�A
EHZ

((
λ�1 + (1 − λ)�2

) × �
) 1
2 . (5.3)

Replacing �1 and �2 by �′
1 := λ−1�1 and �′

2 := (1 − λ)−1�2, respectively, we arrive at

((
c�A
EHZ

(
�′

1 × �
)) 1

2

)λ ((
c�A
EHZ

(
�′

2 × �
)) 1

2

)(1−λ)

≤ (
c�A
EHZ

((
�1 + �2

) × �
) 1
2 .

(5.4)
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For any μ > 0, since

φ : (�1 × �,μω0) → ((μ�1) × �,ω0), (x, y) �→ (μx, y)

is a symplectomorphism which commutes with �A, we have

c�A
EHZ

(
�′

1 × �
) = λ−1c�A

EHZ

(
�1 × �

)
, c�A

EHZ

(
�′

2 × �
) = (1 − λ)−1c�A

EHZ

(
�2 × �

)
.

Let us choose λ ∈ (0, 1) such that ϒ := c�A
EHZ

(
�′

1 × �
) = c�A

EHZ

(
�′

2 × �
)
, i.e.,

λ = c�A
EHZ(�1 × �)

c�A
EHZ(�1 × �) + c�A

EHZ(�2 × �)
. (5.5)

Then

ξ A
�(�1 + �2) = c�A

EHZ

((
�1 + �2

) × �
)

≥
(
c�A
EHZ

(
�′

1 × �
))λ (

c�A
EHZ

(
�′

2 × �
))(1−λ)

= ϒ = λϒ + (1 − λ)ϒ

= λc�A
EHZ

(
�′

1 × �
) + (1 − λ)c�A

EHZ

(
�′

2 × �
)

= c�A
EHZ

(
�1 × �

) + c�A
EHZ

(
�2 × �

)
= ξ A

�(�1) + ξ A
�(�2) (5.6)

and hence (1.22) holds.
Final claim follows from Corollary 3.5. Theorem 1.9 is proved. ��

Proof of Proposition 1.10 (i) By the definition of ξ A and Proposition 2.2(i)–(ii) we have

ξ A(�) = c�A
EHZ(� × Bn)

≥ c�A
EHZ(Bn(q̄, r) × Bn)

= c�A
EHZ(Bn(0, r) × Bn) (5.7)

since (q̄, 0) is a fixed point of �A. Note that

Bn(0, r) × Bn → Bn(0,
√
r) × Bn(0,

√
r), (q, p) �→ (q/

√
r ,

√
r p) (5.8)

is a symplectomorphism which commutes with�A. Using Proposition 2.2(i)–(ii) we deduce

c�A
EHZ(Bn(0, r) × Bn) = c�A

EHZ(Bn(0,
√
r) × Bn(0,

√
r))

= rc�A
EHZ(Bn × Bn)

≥ rc�A
EHZ(B2n) = r t(�A)

2

because of (1.24). Then (1.30) follows from (5.7).
(ii) For any u ∈ Sn�, � sits between support planes H(�, u) and H(�,−u), and the hyper-
plane Hu is between H(�, u) and H(�,−u) and has distance width(�)/2 to H(�, u) and
H(�,−u) respectively. Obverse that �O,q̄(� × Bn) = (O(� − q̄)) × Bn is contained in
Z2n

� . From this and (2.2) it follows that

ξ A(�) = c�A
EHZ(� × Bn) = c

�O,q̄�A�−1
O,q̄

EHZ (�O,q̄(� × Bn)) ≤ c
�O,q̄�A�−1

O,q̄
EHZ (Z2n

� ).

Hence (1.32) is proved. ��
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In order to prove Theorem 1.15 we need:

Lemma 5.1 For A ∈ GL(n) and a convex body � ⊂ R
n
q with Fix(A) ∩ Int(�) �= ∅, if � is

contained in the closure of the ball Bn(q̄, R) with Aq̄ = q̄ ∈ Int(�), then

ξ A(�) ≤ t(�A)R. (5.9)

Proof As in the proof of Proposition 1.10(i) we deduce

ξ A(�) = c�A
EHZ(� × Bn)

≤ c�A
EHZ(Bn(q̄, R) × Bn)

= c�A
EHZ(Bn(0, R) × Bn)

= c�A
EHZ(Bn(0,

√
R) × Bn(0,

√
R))

= Rc�A
EHZ(Bn × Bn)

≤ Rc�A
EHZ(B2n(0,

√
2)) ≤ t(�A)R

by (1.24). This and Theorem 2.6 yield the desired claims. ��
Proof of Theorem 1.15 Under the assumptions of Theorem 1.15 it was stated in the bottom
of [3, p. 177] that ξ(�) = L(σ ) for some periodic billiard trajectory σ in �. It follows from
Lemma 5.1 that ξ(�) = ξ In (�) ≤ πdiam(�), and so L(σ ) ≤ πdiam(�). ��
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