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Abstract
In this article we study the relation between flat solvmanifolds and G2-geometry. First, we 
give a classification of 7-dimensional flat splittable solvmanifolds using the classification 
of finite subgroups of ��(n,ℤ) for n = 5 and n = 6 . Then, we look for closed, coclosed 
and divergence-free G2-structures compatible with the flat metric on them. In particular, 
we provide explicit examples of compact flat manifolds with a torsion-free G2-structure 
whose finite holonomy is cyclic and contained in G2 , and examples of compact flat mani-
folds admitting a divergence-free G2-structure.
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1 Introduction

A G2-structure on a 7-dimensional manifold M is a globally defined 3-form � which can be 
pointwise written as

with respect to a suitable basis {e1,… , e7} of the cotangent space where eijk denotes 
ei ∧ ej ∧ ek . Such a 3-form � induces a Riemannian metric g� , a Hodge star ⋆𝜑 and a vol-
ume form vol� on M.

G2-structures can be divided into classes, which are characterized by the expression of 
the exterior derivatives d� and d ⋆𝜑 𝜑 [12]. A G2-structure is called closed if d� = 0 and 
coclosed if d ⋆𝜑 𝜑 = 0.

� = e123 + e145 + e167 + e246 − e257 − e347 − e356,
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The intrinsic torsion of a G2-structure � can be identified with the covariant deriv-
ative ∇�� , where ∇� is the Levi-Civita connection of g� . By a classical theorem of 
Fernández-Gray [12], ∇�� vanishes if and only if d� = 0 and d ⋆𝜑 𝜑 = 0 . In this case 
the G2-structure � on M is called torsion-free.

The importance of torsion-free G2-structures comes both from its historical relevance 
and its nice topological properties. In 1955, Berger’s classification theorem [3] sug-
gested that G2 might possibly be the holonomy group of certain Riemannian 7-mani-
folds. However, not a single example of such a manifold had yet been discovered until 
1984. The first examples of non-compact 7-manifolds with holonomy G2 were con-
structed by Bryant [5]. Around 1994, Joyce [14] found the first examples in the compact 
case. Regarding the topology of manifolds equipped with torsion-free G2-structures, it 
follows from the holonomy principle that if � is torsion-free then Hol(g𝜑) ⊂ G2 , and in 
the compact case the equality holds if and only if �1(M) is finite [14]. Moreover, when 
the G2-structure is torsion-free, the induced metric g� is Ricci-flat. Thus, according to 
[1], if g� is homogeneous then g� is flat.

One possible approach to find torsion-free G2-structures is to construct a flow of G2

-structures which under certain conditions would converge to a torsion-free one. This 
approach was originally taken by Bryant when he introduced the Laplacian flow of closed 
G2-structures [6]. Later, Karigiannis, McKay and Tsui introduced the Laplacian coflow for 
coclosed G2-structures [15]. These two flows share the property that the fixed points are 
precisely torsion-free G2-structures in both cases. This highlights the importance of find-
ing closed and coclosed G2-structures. Another type of flows which have been considered 
recently are isometric flows of G2-structures, that is, flows that preserve the metric, while 
modifying the G2-structure (a survey of recent progress can be seen in [13]). For instance, 
one can consider the evolution of the 3-form � via the equation

where the vector field divT� is the divergence of the full torsion tensor T� (see (6) below). 
It is clear that G2-structures with divT� = 0 are critical points of (1). It is known that closed 
G2-structures satisfy divT� = 0 (see for instance [13]).

Our aim in this article is to study the existence of closed, coclosed, torsion-free and also 
divergence-free G2-structures in the world of flat solvmanifolds.

A solvmanifold is defined as a compact homogeneous space Γ�G of a simply connected 
solvable Lie group G by a discrete subgroup Γ . Solvmanifolds generalize the well known 
nilmanifolds which are defined similarly when G is nilpotent. Both nilmanifolds and solv-
manifolds have provided a large number of examples and counterexamples in differential 
geometry. For instance, the first example of a symplectic manifold without Kähler struc-
ture, the so-called ”Kodaira–Thurston manifold”, is a four dimensional nilmanifold [23]. 
However, many important global properties of nilmanifolds cannot be generalized to solv-
manifolds, and for this reason these manifolds are currently widely studied.

On the other hand, compact flat manifolds are well understood due to the three clas-
sical Bieberbach’s theorems and they have been used to study different phenomena 
in geometry. For instance, questions about isospectrality (see [19] and the references 
therein), Kähler flat metrics with holonomy in ��(n) [8], among others. The class of 
flat solvmanifolds lies in the intersection between the two theories of solvmanifolds and 
compact flat manifolds, and thus provide a nice interplay between them. Also, this class 
is rich enough to produce a diverse collection of examples. We will focus on a particular 

(1)
{ 𝜕𝜑(t)

𝜕t
= 𝜄divT𝜑(t) (⋆𝜑(t)𝜑(t))

𝜑(0) = 𝜑0,
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class of flat solvmanifolds, namely the splittable ones, which have a certain structure 
that allows them to be classified in a systematic way.

In Sect. 3 we will follow an approach considered in [24, 25] by the author to clas-
sify the n-dimensional splittable flat solvmanifolds for n ≤ 6 . We imitate the ideas to 
classify 7-dimensional splittable flat solvmanifolds which will serve as very explicit 
examples to our purpose of studying G2-geometry. The classification is divided in two 
cases, according to whether we start from an almost abelian Lie algebra ℝ⋉ℝ

6 or a non 
almost abelian Lie algebra ℝ2 ⋉ℝ

5.
Section  4 is devoted to studying the existence of G2-structures in the almost abe-

lian and non almost abelian cases. In the former case, we find examples of compact flat 
manifolds equipped with a torsion-free G2-structure satisfying that the holonomy group 
of the underlying metric is cyclic, finite and contained in G2 . In the latter case we prove 
that there are no closed G2-structures, meanwhile all 7-dimensional splittable flat solv-
manifolds admit G2-structures which are coclosed and divergence-free, respectively.

2  Preliminaries

2.1  Flat solvmanifolds

In [18], Milnor characterized those Lie groups which admit a flat left invariant metric 
and he showed that they are all solvable of a very restricted form, proving that its Lie 
algebra decomposes orthogonally as an abelian subalgebra and an abelian ideal, where 
the action of the subalgebra on the ideal is by skew-symmetric endomorphisms. Such 
a Lie group equipped with a flat left invariant metric (G, ⟨⋅, ⋅⟩) will be called a flat Lie 
group and (�, ⟨⋅, ⋅⟩e) will be called a flat Lie algebra.

Using Milnor’s characterization, Barberis, Dotti and Fino decompose further a flat 
Lie algebra in the following way.

Theorem 2.1 [2, Proposition 2.1] Let (�, ⟨⋅, ⋅⟩e) be a flat Lie algebra. Then � splits as an 
orthogonal direct sum,

where � is an abelian subalgebra, [�, �] is abelian and the following conditions are 
satisfied: 

(1) ad ∶ � → ��([�, �]) is injective,
(2) dim[�, �] is even, and
(3) dim � ≤

dim[�,�]

2
.

As a consequence, {adX ∣ X ∈ �} is an abelian subalgebra of ��([�, �]) and therefore, 
it is contained in a maximal abelian subalgebra. Since these are all conjugate, there exist 
an orthonormal basis B of �(�)⊕ [�, �] and �1,… , �n ∈ �∗ such that for X ∈ �,

� = �⊕ �(�)⊕ [�, �]
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where n =
dim[�,�]

2
 and s = dim �(�).

Note that a flat Lie algebra (�, ⟨⋅, ⋅⟩e) is 2-step solvable, since [�, �] is abelian, and 
unimodular, since adX is skew-symmetric for all X ∈ � . It also follows that the nilradical 
of � is �(�)⊕ [�, �].

We are interested in discrete subgroups Γ of a flat simply-connected Lie group G 
such that Γ�G is compact. This space endowed with the flat metric induced from G is a 
compact flat manifold.

In general, if G is a simply-connected solvable Lie group, a discrete and cocompact 
subgroup Γ of G is called a lattice and the quotient Γ�G is called a solvmanifold. With 
this definition, solvmanifolds are always compact, orientable, and parallelizable.

It is well known that every simply-connected solvable Lie group G is diffeomorphic 
to ℝn for n = dimG . Moreover, �1(Γ�G) ≅ Γ.

The fundamental group of a solvmanifold plays an important role. Indeed, Mos-
tow [20] proved that two solvmanifolds with isomorphic fundamental groups are 
diffeomorphic.

Since a flat solvmanifold Γ�G is, as mentioned before, a compact flat manifold, its funda-
mental group is isomorphic to a discrete torsion-free and cocompact subgroup of isometries 
of ℝm with m = dim(Γ�G) . These subgroups are called (m-dimensional) Bieberbach groups 
and are well described by the three classical theorems known as “Bieberbach’s theorems”.

A purely algebraic characterization of the Bieberbach groups independent of their 
embedding into Iso (ℝm) was given by Zassenhaus [27].

Theorem 2.2 An abstract group Γ is isomorphic to an n-dimensional Bieberbach group if 
and only if Γ contains a finite index, normal, free abelian subgroup Λ of rank n, that is also 
maximal abelian.

The subgroup Λ is the unique normal maximal abelian subgroup of Γ and is called the 
translation group of Γ . In other words, a Bieberbach group Γ satisfies an exact sequence

where H = Γ∕Λ is a finite group and rankΛ = m . It is well known that the group H can be 
identified with the Riemannian holonomy group of the compact flat manifold whose funda-
mental group is Γ (see for instance [7]).

We will focus in a special class of flat solvmanifolds, namely the splittable ones.
A simply-connected solvable Lie group G is called splittable if it is isomorphic to 

ℝ
k ⋉� N where N is the nilradical of G and � ∶ ℝ

k
→ Aut(N) is an homomorphism. A 

lattice Γ of a splittable Lie group ℝk ⋉� N will be called splittable if it can be written 
as Γ = Γ1 ⋉� Γ2 where Γ1 ⊂ ℝ

k and Γ2 ⊂ N are lattices of ℝk and N respectively. Con-
sequently Γ�G will be called a splittable solvmanifold. According to [4], when k = 1 and 
N ≃ ℝ

n every lattice is splittable. The Lie groups ℝ⋉� ℝ
n are called almost abelian.

(2)[adX]B =

⎛
⎜⎜⎜⎜⎜⎜⎝

0s
0 − �1(X)

�1(X) 0

⋱

0 − �n(X)

�n(X) 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

1 → Λ
�
���→ Γ

�
������→ H → 1,
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The next theorem, which is a particular case of a more general theorem proved in [26], 
gives a criterion to determine the splittable lattices in a splittable Lie group G = ℝ

k ⋉� ℝ
m.

Theorem 2.3 Let G = ℝ
k ⋉� ℝ

m be a splittable Lie group, where ℝm is the nilradical of G. 
Then G has a splittable lattice if and only if there exists a basis {X1,… ,Xk} of ℝk such that 
the family {exp(adXi

)}k
i=1

 is simultaneously similar1 to integer matrices E1,… ,Ek , respec-
tively. In this case, the lattice is Γ = (

⨁k

i=1
ℤXi)⋉� Pℤm where Ei = P−1 exp(adXi

)P.

Denoting Ei = P−1 exp(adXi
)P , the lattice Γ = (

⨁k

i=1
ℤXi)⋉� Pℤm is isomorphic to the 

group ΣE1,…,Ek
∶= ℤ

k ⋉E1,…,Ek
ℤ

m , whose multiplication is given by

Note that the multiplication is well defined because EiEj = EjEi for all i, j.
A flat Lie algebra � = �⊕ �(�)⊕ [�, �] can be written as � = ℝ

k ⋉ad ℝ
s+2n , where � ≃ ℝ

k 
and the nilradical is given by �(�)⊕ [�, �] ≃ ℝ

s+2n . The corresponding simply-connected flat 
Lie group can be written as G = ℝ

k ⋉� ℝ
s+2n where �(

∑k

i=1
siXi) =

∏k

i=1
exp(siadXi

) , with 
{adXi

}k
i=1

 as in (2). Therefore a flat Lie group is a splittable Lie group.
To classify the splittable flat solvmanifolds, we have to classify the splittable lattices of 

flat Lie groups (up to isomorphism, by Mostow’s theorem).
The next results, proved in [25], show some sort of relation between the splittable lat-

tices of flat Lie groups G = ℝ
k ⋉ℝ

s+2n and the finite abelian subgroups of ��(s + 2n,ℤ).

Proposition 2.4 Let G = ℝ
k ⋉� ℝ

s+2n be a splittable flat Lie group and Γ a splittable 
lattice given by Γ = (

⨁k

i=1
ℤXi)⋉� Pℤs+2n , where Ei ∶= P−1 exp(adXi

)P is integer for 
1 ≤ i ≤ k . Then Hol (Γ�G) ≅ ⟨E1,… ,Ek⟩.

In particular, the holonomy group of a flat almost abelian solvmanifold is (finite) cyclic 
(see also [24, Theorem 3.7]).

Two conjugate subgroups of ��(s + 2n,ℤ) which can be obtained as the holonomy 
group of a flat solvmanifold give rise to isomorphic lattices, as the next lemma shows.

Lemma 2.5 Let E1,… ,Ek,F1,… ,Fk ∈ ��(s + 2n,ℤ) be commuting matrices of finite order. 
If ⟨E1,… ,Ek⟩ is conjugate to ⟨F1,… ,Fk⟩ in ��(s + 2n,ℤ) then ΣE1,…,Ek

≅ ΣF�
1
,…,F�

k
 for some 

generating set {F�
i
}k
i=1

 of ⟨F1,… ,Fk⟩ . Furthermore, suppose that the cardinal of a minimal 
generating set of ⟨E1,… ,Ek⟩ is � < k . Then ℤk ⋉E1,…,Ek

ℤ
s+2n ≅ ℤ

𝓁 ⋉H�
1
,…,H�

𝓁

ℤ
s+2n+k−𝓁 , 

where H�
i
=

(
Ik−�

Hi

)
 and {Hi}

�

i=1
 is a generating set of ⟨E1,… ,Ek⟩.

In conclusion, to determine all the isomorphism classes of splittable lattices, we must 
first look at the finite abelian subgroups of ��(n,ℤ) up to conjugacy and see which of them 
can be obtained as the holonomy group of a flat solvmanifold. Then, we have to distinguish 
the lattices. A classification of the finite subgroups of ��(n,ℤ) for n ≤ 6 was obtained (for 
n = 5, 6 with aid of CARAT, see [21]). A list of these subgroups can be found in https://
www.math.kyoto-u.ac.jp/∼yamasaki/Algorithm/RatProbAlgTori/crystdat.html.

(r, t) ⋅ (r�, t�) =
(
r + r�, t + E

r1
1
⋯E

rk
k
t�
)
, r = (r1,… , rk), r

� ∈ ℤ
k, t, t� ∈ ℤ

m.

1 Throughout this article, a n × n matrix A will be said to be similar (or conjugated) to B if there exists 
P ∈ ��(n,ℝ) such that P−1

AP = B and integrally similar if P ∈ ��(n,ℤ).
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2.2  G
2
‑structures

Let {u1,… , u7} be the canonical basis of ℝ7 and {u1,… , u7} its dual basis. Let 
�0 ∈ Λ3(ℝ7)∗ given by

where uijk is shorthand for ui ∧ uj ∧ uk . It is a well known fact that the isotropy group 
{A ∈ ��(7,ℝ) ∣ A ⋅ �0 = �0} is isomorphic to the exceptional 14-dimensional Lie group 
G2 , where the action ⋅ is defined by

Definition 2.6 Let M be a 7-dimensional differentiable manifold. A smooth 3-form � on 
M is a G2-structure if for all p ∈ M , there exists an isomorphism �p ∶ ℝ

7
→ TpM so that 

�∗
p
�p = �0 where �0 is as (3). Such a 3-form is called positive (or definite).

As a consequence for any p ∈ M there exists a basis {e1,… , e7} of TpM such that 
�p ∈ Λ3(T∗

p
M) can be written as �p = e123 + e145 + e167 + e246 − e257 − e347 − e356.

Remark 2.7 In the literature another three-form on ℝ7 used as a model for G2-structures 
is 𝜑0 = u127 + u347 + u567 + u135 − u146 − u236 − u245 . The positivity condition does not 
depend on the model form used since 𝜑0 ∈ ��(7,ℝ) ⋅ 𝜑0.

The existence of a G2-structure is entirely a topological question. While not all smooth 
7-manifolds admit G2-structures, there are many that do and they are completely character-
ized by the following proposition proved in [17].

Proposition 2.8 A smooth 7-manifold M admits a G2-structure if and only if M is both ori-
entable and spinnable.2

A G2-structure � on a manifold M gives rise to a Riemannian metric g� with volume 
form vol� via the identity

The existence of a G2-structure � on M determines a decomposition of the space of 
forms on M into irreducible G2-representations. The space Ωk ∶= Ωk(M) is irreducible if 
k = 0, 1, 6, 7 . The spaces of 2-forms and 3-forms decompose as

where each Ωk
�
 has (pointwise) dimension � and this decomposition is orthogonal with 

respect to the metric g� . The spaces Ω2
7
 and Ω3

7
 are both isomorphic to the cotangent bundle 

Ω1
7
= T∗M . In [6], Bryant gives explicit isomorphisms between the space Ω2

14
 and the Lie 

algebra �2 and between Ω3
27

 and the space of traceless symmetric 2-tensors Sym2
0
(T∗M) on 

(3)�0 = u123 + u145 + u167 + u246 − u257 − u347 − u356,

h ⋅ �0(x, y, z) = �0(h
−1x, h−1y, h−1z), x, y, z ∈ ℝ

7.

(4)g�(X, Y)vol� =
1

6
�X� ∧ �Y� ∧ �, X, Y ∈ �(M).

Ω2 = Ω2
7
⊕Ω2

14
, Ω3 = Ω3

1
⊕Ω3

7
⊕Ω3

27
,

2 A spin manifold is an oriented Riemannian manifold with a spin structure.
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M. The first identification comes from the canonical isomorphism between Ω2 and ��(7) , 
the second one is given by the maps � ∶ Sym2

0
(T∗M) → Ω3

27
 , defined on decomposable ele-

ments of Sym2
0
(T∗M) by

and the map � ∶ Ω3
27

→ Sym2
0
(T∗M) given by

The decompositions Ω4 = Ω4
1
⊕Ω4

7
⊕Ω4

27
 and Ω5 = Ω5

7
⊕Ω5

14
 are obtained by taking the 

Hodge star of the decompositions of Ω3 and Ω2 , respectively.
Applying this decomposition to d� and d ⋆𝜑 𝜑 gives the following definition.

Definition 2.9 Let � be a G2-structure on a 7-manifold M. Then there are unique forms 
�0 ∈ Ω0, �1 ∈ Ω1

7
, �2 ∈ Ω2

14
 and �3 ∈ Ω3

27
 , called the torsion forms of � , such that

The torsion forms can be explicitly computed from � and ⋆𝜑𝜑 by means of the follow-
ing identities:

Moreover, the torsion forms are completely encoded in the full torsion tensor T� which is 
the (0, 2)-tensor defined by

Contracting with the metric, T� can be seen as T� ∈ End(TM) and the expression above is 
expressed in terms of the irreducible G2-decomposition End(TM) = W0 ⊕W1 ⊕W2 ⊕W3 , 
where W0 ≃ Ω0,W1 ≃ Ω3

7
,W2 ≃ Ω2

14
 and W3 ≃ Ω3

27
 , see e.g. [12]. The endomorphism 

T� ∈ End(TM) satisfies ∇X𝜑 = 𝜄T𝜑(X) ⋆𝜑 𝜑.
Since the torsion T� decomposes into four independent components, each component 

can be zero or nonzero. This gives 16 distinct classes of G2-structures, called Fernández-
Gray classes. Some relevant classes with their names are given in the following table:

Name Conditions Torsion forms

Closed d� = 0 �0 = �1 = �3 = 0

Coclosed d ⋆𝜑 𝜑 = 0 �1 = �2 = 0

Coclosed of pure type d ⋆𝜑 𝜑 = 0, d𝜑 ∧ 𝜑 = 0 �0 = �1 = �2 = 0

Locally conformal parallel d� = 3�1 ∧ � , d ⋆𝜑 𝜑 = 4𝜏1 ∧ ⋆𝜑𝜑 �0 = �2 = �3 = 0

Nearly parallel d𝜑 = 𝜆 ⋆𝜑 𝜑 ( � ≠ 0) �1 = �2 = �3 = 0

Torsion-free d� = 0 and d ⋆𝜑 𝜑 = 0 �0 = �1 = �2 = �3 = 0

We can define a G2-structure on any real 7-dimensional Lie algebra � with basis {ei}7i=1 
as a 3-form �0 ∈

⋀3
�∗ in the form of (3). This structure on the Lie algebra gives rise to a 

𝜄(𝛼◦𝛽) = 𝛼 ∧ ⋆𝜑(𝛽 ∧ ⋆𝜑𝜑) + 𝛽 ∧ ⋆𝜑(𝛼 ∧ ⋆𝜑𝜑),

𝚥(𝜏)(v,w) = ⋆𝜑(𝜄v𝜑 ∧ 𝜄w𝜑 ∧ 𝜏).

d𝜑 = 𝜏0 ⋆𝜑 𝜑 + 3𝜏1 ∧ 𝜑 + ⋆𝜑𝜏3, and d ⋆𝜑 𝜑 = 4𝜏1 ∧ ⋆𝜑𝜑 + ⋆𝜑𝜏2.

(5)
𝜏0 =

1

7
⋆𝜑 (d𝜑 ∧ 𝜑), 𝜏1 = −

1

12
⋆𝜑 (⋆𝜑d𝜑 ∧ 𝜑),

𝜏2 = ⋆𝜑d ⋆𝜑 𝜑 − 4 ⋆𝜑 (𝜏1 ∧ d ⋆𝜑 𝜑), 𝜏3 = ⋆𝜑d𝜑 − 𝜏0𝜑 − 3 ⋆𝜑 (𝜏1 ∧ 𝜑).

(6)T𝜑 =
𝜏0

4
g𝜑 − ⋆𝜑(𝜏1 ∧ ⋆𝜑𝜑) −

1

2
𝜏2 −

1

4
𝚥(𝜏3).
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left invariant G2-structure on the corresponding Lie group. Therefore, any 7-dimensional 
Lie group has a left invariant G2-structure. Note that if this left invariant G2-structure is 
torsion-free, then the left invariant metric g� is flat since it is Ricci-flat [1].

Given a left-invariant G2-structure � on a solvable Lie group G which admits a lattice Γ , 
we can naturally define a G2-structure �̃� in the solvmanifold Γ�G as follows:

The G2-structure �̃� will be called an invariant G2-structure.
Given a solvmanifold Γ�G with an invariant G2-structure �̃� defined as in (7), it is easily 

seen that the conditions in the table above are satisfied by �̃� if and only if they are satisfied 
by the 3-form � defined at the Lie algebra level.

As a corollary of Proposition 2.8 and the existence of invariant G2-structures on a solv-
manifold we have

Corollary 2.10 Any 7-dimensional solvmanifold admits a spin structure.

In particular, any flat solvmanifold admits a spin structure, and thus we obtain many 
examples of spinnable compact flat manifolds, which are interesting according to [22].

3  Classification of 7‑dimensional splittable flat solvmanifolds

The goal of this section is to classify 7-dimensional splittable flat solvmanifolds. We will 
follow the method given in [25], which we described in the last part of the preliminaries of 
flat solvmanifolds.

Let � be a non-abelian 7-dimensional flat Lie algebra. According to Theorem 2.1 there 
are two possibilities for dim � , namely dim � = 1 or dim � = 2 . If dim � = 1 then � is almost 
abelian and if dim � = 2 then � is not almost abelian.

3.1  Almost abelian case

A 7-dimensional almost abelian flat Lie algebra can be written as � = ℝx⋉adx
ℝ

6 where 
adx can be written in some basis B of �(�)⊕ [�, �] as the block matrix3

The corresponding Lie group is G = ℝ⋉� ℝ
6 with

(7)�̃�𝜋(p)(u, v,w) = 𝜑p((d𝜋)
−1
p
u, (d𝜋)−1

p
v, (d𝜋)−1

p
v), p ∈ G, u, v,w ∈ T𝜋(p)(Γ�G).

[
ad

x

]
=

(
0 − a

a 0

)
⊕

(
0 − b

b 0

)
⊕

(
0 − c

c 0

)
, a

2 + b
2 + c

2 ≠ 0,

(8)

𝜙(t) =

(
cos(at) − sin(at)

sin(at) cos(at)

)
⊕

(
cos(bt) − sin(bt)

sin(bt) cos(bt)

)
⊕

(
cos(ct) − sin(ct)

sin(ct) cos(ct)

)

3 Throughout the article we will denote the block diagonal matrix 
(
A 0

0 B

)
 by A⊕ B.
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Next we find the values of at0, bt0, ct0 such that �(t0) is similar to an integer matrix so that, 
according to Theorem 2.3, we obtain lattices. Note that if we change at0 by 2�k ± at0 we 
will get a similar matrix to �(t0) so the corresponding lattices will be isomorphic. Taking 
this into account, we have

Theorem  3.1 Let G = ℝ⋉� ℝ
6 with �(t) as in (8). Then �(t0) is similar to an integer 

matrix if and only if one of the following cases occurs:

Case 1: at0, bt0, ct0 ∈
{
2�, �,

2�

3
,
�

2
,
�

3

}
.

Case 2: at0 ∈
{
2�, �,

2�

3
,
�

2
,
�

3

}
,
(
bt0, ct0

)
∈
{(

2�

5
,
4�

5

)
,

(
�

4
,
3�

4

)
,

(
�

5
,
3�

5

)
,

(
�

6
,
5�

6

)}
.

Case 3: 
(
at0, bt0, ct0

)
∈
{(

2�

7
,
4�

7
,
6�

7

)
,

(
2�

9
,
4�

9
,
8�

9

)
,

(
2�

14
,
6�

14
,
10�

14

)
,

(
2�

18
,
10�

18
,
14�

18

)}
.

Proof ⇐) For Cases (1) and (2) the matrices can be conjugated to an integer matrix via a 
block-matrix (see [24, Lemma 5.5]). In Case (3), the eigenvalues of �(t0) are all different so 
�(t0) is similar to the companion matrix of its characteristic polynomial, which is integer.

⇒) If any of at0, bt0 or ct0 are � or 2� the values of the other parameters are the ones obtained 
for the case ℝ⋉ℝ

4 in [24, Lemma 5.5], so we assume next at0, bt0, ct0 ∉ {�, 2�} . Now, since the 
eigenvalues of �(t) belong to the unit circle and �(t0) is similar to an integer matrix, it follows from 
a famous theorem of Kronecker that �(t0) has finite order. Therefore, the characteristic polynomial 
P�(t0)

 of �(t0) has degree 6, no real roots and divides xd − 1 for some d ∈ ℕ . Equivalently, P�(t0)
 is a 

product of cyclotomic polynomials of degree ≥ 2 . Thus, the possibilities are: a product of three cyclo-
tomic polynomials of degree 2, the product of two, one of degree 2 and the other one of degree 4, and 
a cyclotomic polynomial of degree 6. From there we can deduce the possibilities for �(t0) and looking 
at the eigenvalues we can deduce the values for at0, bt0, ct0 as shown in the statement.   ◻

From the classification of finite subgroups of ��(6,ℤ) we were able to extract the finite 
cyclic subgroups of ��(6,ℤ) , using GAP. We obtained 123 subgroups. Each one of these 
gives rise to a group ℤ⋉E ℤ

5 which is (isomorphic to) a lattice of an almost abelian flat 
Lie group. Indeed, conjugating �(t0) via matrices in ��(6,ℝ) we can obtain each one of the 
matrices generating these subgroups, due to the following theorem.

Theorem  3.2 [16] A matrix A ∈ ��(k,ℝ) has finite order if and only if A is similar to 

I
k1
⊕ (−I

k2
)⊕

(
cos t1 − sin t1

sin t1 cos t1

)d1

⊕⋯⊕

(
cos t

r
− sin t

r

sin t
r

cos t
r

)d
r

 , where k1, k2, r ≥ 0 , d1,… , dr ≥ 1 , 

each ti is a rational multiple of 2� with 0 < t1 < ⋯ < tr < 𝜋 , and k1 + k2 + 2(d1 +⋯ + dr) = k.

Each of these 123 lattices are non-isomorphic, since we computed the number of sub-
groups with low index with GAP and this invariant distinguishes them. Thus, we obtain 
123 non-diffeomorphic splittable flat solvmanifolds whose holonomy group is finite cyclic.
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3.2  Non almost abelian case

A 7-dimensional non almost abelian flat Lie algebra can be written as � = ℝ
2 ⋉ad ℝ

5 where 
ℝ

2 = span{x, y} and in some basis B of �(�)⊕ [�, �] ≅ ℝ
5,

where a2 + c2 ≠ 0, b2 + d2 ≠ 0 and ad − bc ≠ 0.
The corresponding simply-connected Lie group G can be written as G = ℝ

2 ⋉� ℝ
5 , where 

�(tx + sy) = exp(tadx) exp(sady) . According to Theorem 2.3, to determine all the splittable 
lattices in G we have to look for {x, y} such that P−1 exp(adx)P = A and P−1 exp(ady)P = B 
with A,B ∈ ��(5,ℤ) , for some P ∈ ��(5,ℝ).

There are 6079 finite subgroups of ��(5,ℤ) . Using GAP, we extract from these the 2-gen-
erated abelian finite subgroups of ��(5,ℤ) . Some subgroups cannot give rise to a group 
ℤ

2 ⋉A,B ℤ
5 isomorphic to a lattice of a flat Lie group since the rank of the abelianization is 

even. This contradicts the fact that the Kähler even-dimensional flat solvmanifold obtained by 
multiplying by S1 must have even first Betti number (and b1(M × S1) = b1(M) + 1 ). Discard-
ing these subgroups, we are left with 45 subgroups, which all give rise to a group ℤ2 ⋉A,B ℤ

5 
which is (isomorphic to) a lattice of a flat Lie group ℝ2 ⋉� ℝ

5 , as Table 1 shows. Again, we 
distinguish the lattices computing the number of subgroups of low index.

Therefore, we get 45 non-diffeomorphic splittable flat solvmanifolds. Note that all these 
solvmanifolds satisfy the condition c = −d (as Table 1 shows), which will be important in the 
next section.

Remark 3.3 The computations performed in GAP for both the almost abelian case and the 
non almost abelian case are available in https:// github. com/ atolc achier/ 7- dimen sional- split 
table- flat- solvm anifo lds.

4  Examples of G
2
‑structures on flat solvmanifolds

The aim of this section is to study the existence of invariant closed and coclosed G2-structures 
in the flat solvmanifolds we found in the previous section.

4.1  Almost abelian solvmanifolds

Let �a,b,c = ℝx⋉adx
ℝ

6 be a flat almost abelian Lie algebra and Ga,b,c = ℝ⋉� ℝ
6 its corre-

sponding simply-connected Lie group, where

The Lie brackets of �a,b,c are given by

adx = (1)⊕

(
0 − a

a 0

)
⊕

(
0 − b

b 0

)
, ady = (1)⊕

(
0 − c

c 0

)
⊕

(
0 − d

d 0

)
,

adx =

(
0 − a

a 0

)
⊕

(
0 − b

b 0

)
⊕

(
0 − c

c 0

)
, a2 + b2 + c2 ≠ 0,

𝜙(t) =

(
cos(at) − sin(at)

sin(at) cos(at)

)
⊕

(
cos(bt) − sin(bt)

sin(bt) cos(bt)

)
⊕

(
cos(ct) − sin(ct)

sin(ct) cos(ct)

)
.

https://github.com/atolcachier/7-dimensional-splittable-flat-solvmanifolds
https://github.com/atolcachier/7-dimensional-splittable-flat-solvmanifolds
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Therefore, the Chevalley–Eilenberg differential d ∶
⋀1

�∗
a,b,c

→
⋀2

�∗
a,b,c

 is given by

Let � ∈
⋀3

�∗
a,b,c

 be the positive form given by

Note that {e1,… , e7} is an orthonormal basis for the induced metric g�.

Proposition 4.1 The 3-form � as above is coclosed for any choice of a, b, c, and it is closed 
(therefore torsion-free) if and only if a + b + c = 0.

Proof We compute d� using (9):

In addition,

Again, using (9) it is easily obtained that d ⋆𝜑 𝜑 = 0 .   ◻

Remark 4.2 This proposition coincides with [10, 11] where the existence of closed 
and coclosed G2-structures on any almost abelian Lie algebra is studied. Indeed, there 
it is established that � is closed if and only if adx ∈ ��(3,ℂ) (i.e. a + b + c = 0 ) and is 
coclosed if and only if adx ∈ ��(3,ℝ) (which always happens in our case, because adx is 
skew-symmetric).

Proposition 4.3 Up to isomorphism of the induced lattices, the values of (at0, bt0, ct0) such 
that �(t0) is similar to an integer matrix and at0 + bt0 + ct0 = 0 are the following:

Proof The characteristic polynomial P�(t0)
 is given by

The values of at0, bt0, ct0 such that �(t0) is similar to an integer matrix were obtained in 
Theorem 3.1. We can change the values of at0, bt0, ct0 by {±at0} + 2�ℤ , {±bt0} + 2�ℤ and 

[e1, e2] = ae3, [e1, e4] = be5, [e1, e6] = ce7,

[e1, e3] = −ae2, [e1, e5] = −be4, [e1, e7] = −ce6.

(9)
de2 = ae13, de3 = −ae12, de4 = be15,

de5 = −be14, de6 = ce17, de7 = −ce16.

(10)� = e123 + e145 + e167 + e246 − e257 − e347 − e356.

d� = (a + b + c)(e1247 + e
1256 + e

1346 − e
1357).

⋆𝜑𝜑 = −e1247 − e
1256 − e

1346 + e
1357 + e

2345 + e
2367 + e

4567.
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(
2�,−

�

2
,−

3�

2

)
,
(
2�,−

�

3
,−

5�

3

)
,
(
2�,−

2�

3
,−

4�

3

)
,

(
�,−

�

2
,−

�

2

)
,
(
�,−

2�

3
,−

�

3

)
,
(
�

3
,
�

3
,−

2�

3

)
,
(
2�

3
,
2�

3
,−

4�

3

)
.

P�(t0)
(x) = (x2 − 2x cos(at0) + 1)(x2 − 2x cos(bt0) + 1)(x2 − 2x cos(ct0) + 1).
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{±ct0} + 2�ℤ so that we do not change the value of the respective cosines. Moreover, we 
want at0 + bt0 + ct0 = 0 , so we have to verify, for the values obtained in Theorem 3.1 if

Equivalently, we have to check if some sum {±at0} + {±bt0} + {±ct0} is equal to 2�k , for 
some k ∈ ℤ . In fact, we have to check only if {±at0} + {±bt0} + ct0 = 2�k . This can be 
done by a straightforward computation and thus the values of the statement are obtained.  
 ◻

With the values of at0, bt0, ct0 obtained, we list in the following table to which integer 
matrices (up to integral similarity) we can conjugate �(t0) . For each one of these triples 
we obtain non-isomorphic lattices (as we saw before) and therefore, we get 30 splittable 
flat solvmanifolds with a torsion-free G2-structure. All of these examples have finite cyclic 
holonomy contained in G2 which can be computed easily from Proposition  2.4 (Table 2).

4.2  Non‑almost abelian solvmanifolds

Let �a,b,c,d = ℝ
2 ⋉ad ℝ

5 be a flat non almost abelian Lie algebra and Ga,b,c,d = ℝ
2 ⋉� ℝ

5 its 
corresponding simply-connected Lie group, where ℝ2 = span

ℝ
{x, y} and

where, a2 + c2 ≠ 0 ≠ b2 + d2, ad − bc ≠ 0.
The Lie brackets are given by

Therefore, the Chevalley–Eilenberg differential d ∶
⋀1

�a,b,c,d →
⋀2

�a,b,c,d is given by

We want to study the existence of closed and coclosed G2-structures in �a,b,c,d . We will 
prove that �a,b,c,d does not admit any closed G2-structure. The key lemma is the following 
one, proved in [9], where the following notation is used. Given a 7-dimensional real Lie 
algebra � , every 3-form � ∈

⋀3
�∗ on � gives rise to a symmetric bilinear map b� by setting 

b� ∶ � × � →
⋀7

�∗ ≃ ℝ,

Lemma 4.4 [9] A 7-dimensional oriented real Lie algebra � does not admit any closed G2

-structure if for every closed 3-form � ∈
⋀3

�∗ one of the following conditions hold for the 
map b� ∶ � × � →

⋀7
�∗ ≃ ℝ ∶

(1) There exists v ∈ 𝔤 ⧵ {0} such that b�(v, v) = 0,

0 ∈ ({±at0} + 2�ℤ) + ({±bt0} + 2�ℤ) + ({±ct0} + 2�ℤ).

adx = (1)⊕

(
0 − a

a 0

)
⊕

(
0 − b

b 0

)
, ady = (1)⊕

(
0 − c

c 0

)
⊕

(
0 − d

d 0

)
,

[e1, e4] = ae5, [e1, e6] = be7, [e2, e4] = ce5, [e2, e6] = de7,

[e1, e5] = −ae4, [e1, e7] = −be6, [e2, e5] = −ce4, [e2, e7] = −de6.

(11)
de4 = ae15 + ce25, de5 = −ae14 − ce24,

de6 = be17 + de27, de7 = −be16 − de26.

(v,w) ↦
1

6
�v� ∧ �w� ∧ �.
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Table 2  Almost abelian 7-dimensional flat solvmanifolds with a torsion-free G2-structure

(at0, bt0, ct0) Similar to Hol (Γ�G
a,b,c)

(
2�

7
,
4�

7
,−

6�

7

) ⎛⎜⎜⎜⎜⎜⎝

−1 0 0 0 1 0

−1 0 1 0 0 0

−1 0 0 0 0 0

1 − 1 0 0 0 0

−1 0 0 0 0 − 1

1 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎠

ℤ7

(
�,−

�

6
,−

5�

6

) ⎛⎜⎜⎜⎝

−1 − 1 0 0

1 1 1 − 1

1 0 1 0

1 0 1 − 1

⎞⎟⎟⎟⎠
⊕ (−I2)

ℤ12

(
2�

3
,
�

6
,−

5�

6

) ⎛⎜⎜⎜⎝

0 0 0 1

0 0 1 − 1

1 0 0 0

0 − 1 0 0

⎞⎟⎟⎟⎠
⊕

�
0 − 1

1 − 1

�

 , 
⎛⎜⎜⎜⎜⎜⎝

0 0 0 0 0 − 1

0 0 1 0 0 − 1

−1 0 0 0 1 0

0 − 1 0 0 0 1

0 0 0 1 0 0

0 0 0 0 1 − 1

⎞⎟⎟⎟⎟⎟⎠

ℤ12

(
�,−

�

4
,−

3�

4

)
⎛⎜⎜⎜⎝

0 1 0 0

0 0 − 1 0

0 0 0 1

1 0 0 0

⎞⎟⎟⎟⎠
⊕ (−I2)

 , 

⎛⎜⎜⎜⎜⎜⎝

−1 0 0 0 0 0

0 0 − 1 − 1 0 1

0 0 0 1 0 0

0 0 0 0 − 1 0

0 − 1 0 0 0 − 1

0 0 0 1 0 − 1

⎞⎟⎟⎟⎟⎟⎠

ℤ8

(
�

2
,
�

4
,−

3�

4

) ⎛⎜⎜⎜⎝

0 0 0 − 1

0 0 1 0

−1 0 0 0

0 − 1 0 0

⎞⎟⎟⎟⎠
⊕

�
0 − 1

1 0

�

 , 
⎛⎜⎜⎜⎜⎜⎝

−1 0 − 1 0 − 1 0

0 0 1 0 0 0

1 0 0 0 0 1

0 − 1 0 0 0 0

1 1 1 1 1 − 1

1 0 1 1 1 0

⎞⎟⎟⎟⎟⎟⎠

ℤ8

⎛⎜⎜⎜⎜⎜⎝

0 0 1 1 0 0

0 0 − 1 0 0 − 1

0 − 1 0 0 1 0

0 1 0 0 0 0

0 0 − 1 0 0 0

1 1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠
(2�, 2�,−4�) I6 {e}

(2�,−�,−�)

−I4 ⊕ I2, (−I3)⊕ (1)⊕

�
0 − 1

−1 0

�
,−I2 ⊕

⎛⎜⎜⎜⎝

0 0 − 1 0

0 0 0 − 1

−1 0 0 0

0 − 1 0 0

⎞⎟⎟⎟⎠ 

ℤ2

(
2�,−

�

2
,−

3�

2

) ⎛⎜⎜⎜⎝

0 − 1 0 − 1

1 0 1 0

0 0 0 1

0 0 − 1 0

⎞⎟⎟⎟⎠
⊕ I2

 , 

(1)⊕

�
0 1

−1 0

�
⊕

⎛⎜⎜⎝

1 0 0

−1 0 1

0 − 1 0

⎞⎟⎟⎠,

ℤ4
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(at0, bt0, ct0) Similar to Hol (Γ�G
a,b,c)

⎛⎜⎜⎜⎜⎜⎝

0 0 0 0 − 1 0

0 0 0 0 0 − 1

0 1 0 0 0 1

−1 0 0 0 − 1 0

0 0 0 1 1 0

0 0 − 1 0 0 1

⎞⎟⎟⎟⎟⎟⎠ (
2�,−

�

3
,−

5�

3

) (
1 1

−1 0

)
⊕

(
0 − 1

1 1

)
⊕ I2

ℤ6

(2�,−
2�

3
,−

4�

3
)
(
−1 1

−1 0

)
⊕

(
−1 − 1

0 1

)
⊕ I2

 , 

(1)⊕

�
−1 − 1

1 0

�
⊕

⎛⎜⎜⎝

0 0 1

−1 0 0

0 − 1 0

⎞⎟⎟⎠,

ℤ3

⎛⎜⎜⎜⎜⎜⎝

0 − 1 0 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 0 0 0 0 − 1

−1 0 0 0 0 0

0 0 − 1 0 0 0

⎞⎟⎟⎟⎟⎟⎠
(�,−

�

2
,−

�

2
) ⎛⎜⎜⎜⎝

0 1 0 1

−1 0 − 1 0

0 0 0 − 1

0 0 1 0

⎞⎟⎟⎟⎠
⊕ (−I2)

 , 

(−1)⊕

�
0 − 1

1 0

�
⊕

⎛⎜⎜⎝

−1 0 0

1 0 − 1

0 1 0

⎞⎟⎟⎠ ,

ℤ4

⎛⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0

0 0 0 0 0 1

0 − 1 0 0 0 − 1

1 0 0 0 1 0

0 0 0 − 1 − 1 0

0 0 1 0 0 − 1

⎞⎟⎟⎟⎟⎟⎠
(�,−

2�

3
,−

�

3
) (

1 − 1

1 0

)
⊕

(
−1 − 1

1 0

)
⊕ (−I2)

 , 

(−I2)⊕

⎛⎜⎜⎜⎝

0 − 1 1 0

1 0 0 0

1 0 0 − 1

0 0 1 0

⎞⎟⎟⎟⎠,

ℤ6

(−1)⊕

�
−1 − 1

1 0

�
⊕

⎛⎜⎜⎝

0 0 − 1

1 0 0

0 1 0

⎞⎟⎟⎠ , 

(−1)⊕

⎛
⎜⎜⎜⎜⎝

0 − 1 0 0 − 1

1 − 1 0 0 0

0 − 1 0 0 0

0 1 − 1 0 0

0 1 0 1 0

⎞
⎟⎟⎟⎟⎠

Table 2  (continued)
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(2) There exist v,w ∈ 𝔤 ⧵ {0} such that b�(v, v)b�(w,w) ≤ 0.

Proposition 4.5 The Lie algebra �a,b,c,d does not admit closed G2-structures.

Proof Let 𝜙 =
∑

i<j<k aijke
ijk be a generic 3-form. For � to be closed we have

Since a2 + c2 ≠ 0 and b2 + d2 ≠ 0 , we have a467 = a567 = 0 and a456 = a457 = 0 respec-
tively. Looking at the last eight pairs of terms we deduce that

From here we have

0 = −(aa235 − ca135)e
1234 + (aa234 − ca134)e

1235

+ (da137 − ba237)e
1236 − (da136 − ba236)e

1237

− (aa256 − da147 − ca156 + ba247)e
1246 − (aa257 + da146 − ca157 − ba246)e

1247

+ (aa246 − ca146 + da157 − ba257)e
1256 + (aa247 − ca147 − da156 + ba256)e

1257

− (aa356 + ba347)e
1346 − (aa357 − ba346)e

1347 + (aa346 − ba357)e
1356 + (aa347 + ba356)e

1357

− ba457e
1456 + ba456e

1457 − aa567e
1467 + aa467e

1567 − (da347 + ca356)e
2346

+ (da346 − ca357)e
2347 + (ca346 − da357)e

2356 + (ca347 + da356)e
2357

− da457e
2456 + da456e

2457 − ca567e
2467 + ca467e

2567.

⎧⎪⎨⎪⎩

aa347 = −ba356
aa356 = −ba347
aa357 = ba346
aa346 = ba357

and

⎧
⎪⎨⎪⎩

da347 = −ca356
da346 = ca357
ca346 = da357
ca347 = −da356

.

a2a346 = aba357 = b2a346

a2a347 = −aba356 = b2a347

c2a346 = cda357 = d2a346

c2a347 = −cda356 = d2a347

Table 2  (continued)

(at0, bt0, ct0) Similar to Hol (Γ�G
a,b,c)

(
�

3
,
�

3
,−

2�

3
)

(
1 1

−1 0

)
⊕

(
1 − 1

1 0

)
⊕

(
0 − 1

1 − 1

)
 , 

�
1 − 1

1 0

�
⊕

⎛⎜⎜⎜⎝

0 0 1 0

1 0 0 0

0 0 0 1

0 − 1 − 1 0

⎞⎟⎟⎟⎠

ℤ6

(
2�

3
,
2�

3
,−

4�

3
) ⎛⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1

0 0 − 1 0 0 0

0 1 − 1 0 0 0

0 0 0 0 − 1 0

0 0 0 1 − 1 0

−1 0 0 0 0 − 1

⎞⎟⎟⎟⎟⎟⎠

ℤ3
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If a346 ≠ 0 or a347 ≠ 0 then a2 = b2 and c2 = d2 . Thus, b = ±a and c = ±d , neither of them 
being zero. The condition ad − bc ≠ 0 rules out the cases b = a, c = d and b = −a, c = −d . 
In the other two cases, looking at the previous equations it follows that a = b = c = d = 0 , 
which contradicts ad − bc ≠ 0 . Therefore, a346 = a347 = a356 = a357 = 0.

Furthermore, from the terms having 4 summands we see that

Using the values we have just found in the expresion for � we compute now

Using (ii) of Lemma 4.4 for v = e4 and w = e5 , we conclude that �a,b,c,d does not admit any 
closed G2-structure, for any choice of values a, b, c, d.   ◻

Although �a,b,c,d does not admit closed G2-structures, it does admit coclosed G2-struc-
tures for some values of a, b, c, d.

Proposition 4.6 Let � ∈
⋀3

�∗
a,b,c,d

 be given as in (10). Then � is coclosed if and only if 
c = −d.

Proof Using (11) we compute

  ◻

Since the 45 non-almost abelian 7-dimensional splittable flat solvmanifolds appear-
ing in Table 1 satisfy d = −c , all these solvmanifolds admit a coclosed G2-structure.

4.3  Divergence‑free examples

Finally, we will show that all 45 non almost abelian 7-dimensional flat solvmanifolds we 
have obtained admit a divergence-free G2-structure. First, we give the formulas of the 
torsion forms �1,… , �4 for the Lie algebra �a,b,c,d.

Proposition 4.7 Let � ∈ Λ3�∗
a,b,c,d

 defined by � = e123 + e145 + e167 + e246 − e257 − e347 − e356 . 
Then, the torsion forms of � are given by

a157 =
(b2 − a2)a246 + (ac − bd)a146

ad − bc
, a257 =

(−ac + bd)a246 + (c2 − d2)a146

ad − bc
,

a156 =
(−ac + bd)a147 + (a2 − b2)a247

ad − bc
, a256 =

(ac − bd)a247 + (d2 − c2)a147

ad − bc
.

�e4� ∧ �e4� ∧ � = −6(a146a345a247 − a147a345a246)e
1…7,

�e5� ∧ �e5� ∧ � = 6(a146a247a345 − a147a246a345)e
1…7.

d ⋆𝜑 𝜑 = (d + c)e12347 + (d + c)e12356.
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Proof We compute �0,… , �3 using Eq. (5).
Since 𝜏0 =

1

7
⋆𝜑 (d𝜑 ∧ 𝜑) , we compute

Therefore,

Now, for 𝜏1 = −
1

12
⋆𝜑 (⋆𝜑d𝜑 ∧ 𝜑) , we compute

Therefore,

We know that 𝜏2 = ⋆𝜑d ⋆𝜑 𝜑 − 4 ⋆𝜑 (𝜏1 ∧ d ⋆𝜑 𝜑) . It follows from Proposition  4.6 and 
the expression of �1 that

Therefore,

Finally, for 𝜏3 = ⋆𝜑d𝜑 − 𝜏0𝜑 − 3 ⋆𝜑 (𝜏1 ∧ 𝜑) , we compute

Therefore,

�0 = −
4

7
(b + a),

�1 = −
1

6
(d + c)e3,

�2 = (d + c)(e47 + e56),

�3 =
1

7
(b + a)(3e257 − 3e246 + 3e347 + 3e356 + 4e123 + 4e145 + 4e167)

+
1

2
(d + c)(e146 − e157 + e245 + e267).

d� =(b + a)(e1247 + e1256 + e1346 − e1357)

+ (d + c)(e2346 − e2357),

d� ∧ � = −4(b + a)e1…7.

�0 = −
4

7
(b + a).

⋆𝜑d𝜑 =(b + a)(e257 − e246 + e347 + e356)

+ (d + c)(e146 − e157),

⋆𝜑d𝜑 ∧ 𝜑 =2(d + c)e124567.

�1 = −
1

6
(d + c)e3.

𝜏1 ∧ d ⋆𝜑 𝜑 = 0.

𝜏2 = ⋆𝜑d ⋆𝜑 𝜑 = (d + c)(e47 + e56).

𝜏1 ∧ 𝜑 =
1

6
(d + c)(e1345 + e

1367 + e
2346 − e

2357),

⋆𝜑(𝜏1 ∧ 𝜑) =
1

6
(d + c)(e146 − e

157 − e
245 − e

267).
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  ◻

Next, we recall the divergence of T� . It is defined as the vector field divT� given by

where {Ei}
7
i=1

 is an orthonormal local frame respect to the induced metric g�.
In the Lie algebra setting, given that the basis {e1,… , e7} of �a,b,c,d is an orthonormal 

basis for ⟨⋅, ⋅⟩� , equation (12) takes the following form:

Theorem 4.8 Let � ∈ Λ3�∗
a,b,c,d

 defined by � = e123 + e145 + e167 + e246 − e257 − e347 − e356 . 
Then, for any choice of values (a, b, c, d) we have divT� = 0 , i.e., � is divergence-free.

Proof We compute ∇ei
ei and ∇ei

ej using Koszul’s formula.

We obtain that ∇ei
ei = 0 for all 1 ≤ i ≤ 7 and

Plugging ∇ei
ei = 0 for all 1 ≤ i ≤ 7 into Eq. (13) we have

For 1 ≤ j ≤ 3 , it is clear that ⟨div T�, ej⟩� = 0.
Let us compute now the other components.

�3 = (b + a)(e257 − e246 + e347 + e356) + (d + c)(e146 − e157)

+
4

7
(b + a)(e123 + e145 + e167 + e246 − e257 − e347 − e356)

−
1

2
(d + c)(e146 − e157 − e245 − e267)

=
1

7
(b + a)(3e257 − 3e246 + 3e347 + 3e356 + 4e123 + 4e145 + 4e167)

+
1

2
(d + c)(e146 − e157 + e245 + e267)

(12)g�(div T�,Ej) =

7∑
i=1

(∇Ei
T�)(Ei,Ej),

(13)⟨div T�, ej⟩� = −

7�
i=1

T�(∇ei
ei, ej) −

7�
i=1

T�(ei,∇ei
ej),

2⟨∇ei
ej, ek⟩� = ⟨[ei, ej], ek⟩� − ⟨[ej, ek], ei⟩� + ⟨[ek, ei], ej⟩� ∀i, j, k.

∇e1
e4 = ae5, ∇e1

e5 = −ae4, ∇e1
e6 = be7, ∇e1

e7 = −be7

∇e2
e4 = ce5, ∇e2

e5 = −ce4, ∇e2
e6 = de7, ∇e2

e7 = −de6

⟨div T�, ej⟩� = −

7�
i=1

T�(ei,∇ei
ej).
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Recall that

where 𝚥(𝜏3)(ei, ej) = ⋆𝜑(𝜄ei𝜑 ∧ 𝜄ej𝜑 ∧ 𝜏3) . Since {ei}7i=1 is an orthonormal basis, the first 
term vanishes automatically. Note also from the formula for �2 of Proposition  4.7 that 
�2(e1, ej) = �2(e2, ej) = 0 for 4 ≤ j ≤ 7.

We compute ⋆𝜑(𝜏1 ∧ ⋆𝜑𝜑) and �(�3) (using the formulas from Proposition 4.7):

Therefore

Note that ⋆𝜑(𝜏1 ∧ ⋆𝜑𝜑)(e1, ej) = ⋆𝜑(𝜏1 ∧ ⋆𝜑𝜑)(e2, ej) = 0 for 4 ≤ j ≤ 7.
Now, the interior products �ej� , 1 ≤ j ≤ 7 are given by

Hence,

From this we have

In conclusion, T�(e1, ej) = T�(e2, ej) = 0 for 4 ≤ j ≤ 7 . Therefore, divT� = 0 .   ◻

Remark 4.9 The 45 flat solvmanifolds of Table  1 can be obtained choosing values of 
(a, b, c, d) such that a ≠ −b and c ≠ −d . Indeed, instead of taking A,  B we take A and 
AB, which corresponds to the values (a, b), ((a + c), (b + d)) . It can be easily deduced for 
the values of Table 1 that a ≠ −b and a + c ≠ −(b + d) . This choice will induce an iso-
morphic lattice because ⟨A,B⟩ = ⟨A,AB⟩ . In this way, the invariant G2-structure on the 

⟨div T�, e4⟩� = −T�(e1,∇e1
e4) − T�(e2,∇e2

e4) = −aT�(e1, e5) − cT�(e2, e5)

⟨div T�, e5⟩� = −T�(e1,∇e1
e5) − T�(e2,∇e2

e5) = aT�(e1, e4) + cT�(e2, e4)

⟨div T�, e6⟩� = −T�(e1,∇e1
e6) − T�(e2,∇e2

e6) = −bT�(e1, e7) − dT�(e2, e7)

⟨div T�, e7⟩� = −T�(e1,∇e1
e7) − T�(e2,∇e2

e7) = bT�(e1, e6) + dT�(e2, e6)

T𝜑 =
𝜏0

4
⟨⋅, ⋅⟩𝜑 − ⋆𝜑(𝜏1 ∧ ⋆𝜑𝜑) −

1

2
𝜏2 −

1

4
𝚥(𝜏3),

𝜏1 ∧ ⋆𝜑𝜑 = −
1

6
(d + c)e3 ∧ (−e1247 − e1256 − e1346 + e1357 + e2345 + e2367 + e4567)

=
1

6
(d + c)(e12347 + e12356 − e34567).

⋆𝜑(𝜏1 ∧ ⋆𝜑𝜑) = −
1

6
(d + c)(e12 + e47 + e56).

�e1� = e23 + e45 + e67, �e2� = −e13 + e46 − e57, �e3� = e12 − e47 − e56,

�e4� = −e15 − e26 + e37, �e5� = e14 + e27 + e36, �e6� = −e17 + e24 − e35,

�e7� = e16 − e25 − e34.

�e1� ∧ �3 =
8

7
(b + a)(e12345 + e12367 + e14567) +

1

2
(d + c)(e12346 − e12357 + 2e24567),

�e2� ∧ �3 =
1

2
(d + c)(e12345 + e12367 + 2e14567) +

1

7
(b + a)(e12346 − e12357 − 6e24567).

�(�3)(e1, ej) = �(�3)(e2, ej) = 0, for 4 ≤ j ≤ 7.
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corresponding 45 flat solvmanifolds is divergence-free and it is a generic G2-structure 
respect to Gray-Fernández classes, since none of the components of the torsion vanishes.
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