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Abstract
In this paper we present a new approach to prove effective results in Diophantine approxi-
mation. This approach involves measures of local positivity of divisors combined with Fal-
tings’s version of Siegel’s lemma instead of a zero estimate such as Dyson’s lemma. We 
then use it to prove an effective theorem on the simultaneous approximation of two alge-
braic numbers satisfying an algebraic equation with complex coefficients.
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1 Introduction

Positivity concepts for divisors play a crucial role in algebraic geometry. Among these 
concepts is ampleness, which can also be interpreted intersection theoretically via the 
Nakai–Moishezon–Kleiman criterion. A weaker form of positivity is bigness: a divisor D 
is big iff the growth of the dimension of global sections of its multiples is maximal. The 
rate of this growth is then measured by the volume of the divisor [35, Sect. 2.1] and for 
ample divisors this is simply the top self-intersection by the asymptotic Riemann–Roch 
theorem [35, Theorem 1.1.24]. In [20] Demailly introduces a measure of local positivity of 
a divisor at a point, the Seshadri constant, in order to study the Fujita conjecture.

The connection between Diophantine approximation and positivity concepts is central 
to many results on Diophantine geometry. It is a key element in Vojta’s proof of Mordell’s 
conjecture [51] and in Faltings’s proof of the Mordell–Lang conjecture [25]. In [29] it has 
been shown that the constants showing up in Diophantine approximations can be obtained 
as the expectation of certain random variables coming from filtrations on the graded ring 
of sections of a divisor. Later [18, 22, 23, 27] showed that these constants can be obtained 
via different geometric invariants. In [39] Diophantine approximation constants are shown 
to be related to volumes of divisors. This is shown to be true also in the function field 

Communicated by Daniel Greb.

 * Matthias Nickel 
 manickel@uni-mainz.de

1 Institut für Mathematik, Johannes Gutenberg-Universität, Staudingerweg 9, 55128 Mainz, 
Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s12188-022-00260-8&domain=pdf


126 M. Nickel 

1 3

case in [30] using an effective Schmidt subspace theorem over function fields [52]. Finally 
[31, 44, 45] treat the more general case where not only points but closed subschemes are 
approximated.

Most results on Diophantine approximation rely on the construction of an auxiliary pol-
ynomial having a certain order of vanishing at given points. In this paper we present a new 
approach that follows Faltings’s proof of the Mordell–Lang conjecture [25] using infor-
mation on local positivity at these points to study the vector spaces of suitable auxiliary 
polynomials.

One of the most important results in Diophantine approximation is Roth’s theorem on 
the approximation of algebraic numbers by rationals [43]. It states that for a given algebraic 
number � and a given 𝜀 > 0 there are only finitely many rational numbers p∕q ∈ ℚ such 
that

The proof of this theorem consists of two steps: 

1. First an auxiliary polynomial P ∈ ℤ[X1,… ,Xn] having a certain order of vanish-
ing at (�,… , �) is constructed, which is then shown to vanish to a suitable order at 
(p1∕q1,… , pn∕qn) where pi∕qi are solutions to (1). Here one usually uses a version of 
Siegel’s lemma [48].

2. Next, one shows that there exists an upper bound for the order of P at the point 
(p1∕q1,… , pn∕qn) obtaining a contradiction. This upper bound may be either of geo-
metric (Dyson’s lemma [21] or rather its generalization by Esnault and Viehweg [24]) 
or of arithmetic nature (Roth’s lemma [43] and Faltings’s product theorem [25]).

Note that there are closely related methods in transcendence theory employing a different 
strategy that does not require Siegel’s lemma, in particular Laurent’s interpolating determi-
nants [34] and Bost’s slope method [11], see also [16].

There are also many results on the simultaneous approximation of algebraic numbers by 
rationals. The generalization of Roth’s theorem in this context is due to Schmidt [46, Corol-
lary to Theorem 1]. Suppose that �1,… , �r are algebraic numbers such that 1, �1,… , �r are 
linearly independent over ℚ . Then for every 𝜀 > 0 there exist only finitely many r-tuples of 
rational numbers (p1∕q,… , pr∕q) such that

holds for all 1 ≤ i ≤ r.
The theorems of Roth and Schmidt are not effective in that there is no bound for q for 

the rational numbers p/q and pi∕q satisfying (1) and (2) respectively. The earliest effective 
result in the approximation of a single algebraic number is the theorem of Liouville [36], 
which is similar to Roth’s theorem with exponent the degree d of the algebraic number in 
question instead of 2. Fel’dman [26] obtained an improvement of Liouville’s theorem, in 
which the exponent is strictly smaller than d, however, the difference is extremely small. A 
different approach to this problem is Bombieri’s Thue–Siegel principle [2, 6–10, 15]. For 
improvements see for example [5, 13]. In the case of simultaneous approximation there 
are effective results where the tuple of algebraic numbers is given by rational powers of 
rational numbers [1, 4, 41, 42].

(1)
||||
� −

p

q

||||
≤ q−(2+�) .

(2)
||||
�i −

pi

q

||||
≤ q−(1+1∕r+�)
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Here we discuss a different strategy linking methods from positivity and Diophantine 
approximation that follows Faltings’s proof of the Mordell–Lang conjecture [25]. For a 
detailed discussion of the strategy of Faltings’s proof see [40]. We consider homogene-
ous polynomials in two variables having large index at the point (�1, �2) , see Definition 
8, and a priori small index at (p1∕q, p2∕q) where pi∕q is a suitably good rational approx-
imation of �i for i = 1, 2.

Using Faltings’s Siegel lemma we can then ensure that we can find such a polynomial 
with suitably bounded coefficients in ℤ . Finally we give a bound for q involving the 
index of P at (�1, �2) and (p1∕q, p2∕q).

The novelty of this approach is that it avoids providing a zero estimate: we only need 
to suitably bound the dimension of the space of polynomials with given degree and 
given index at (�1, �2) , all of its conjugates and (p1∕q, p2∕q) . Therefore we only need a 
partial understanding of the volume function on blowups of ℙ2 . The fact that we only 
consider one solution (p1∕q, p2∕q) will finally make our theorem effective.

We obtain the following theorem.

Theorem  1 Let �1, �2 be algebraic numbers and let d ∶= [ℚ(�1, �2) ∶ ℚ] . Suppose that 
(�1, �2) and all of its conjugates are nonsingular points of an irreducible curve of degree m 
defined over ℂ . Then there exists for all � ∈ ℚ with 𝛿 > max{m, d∕m} an effectively com-
putable constant C0(�1, �2, �,m) depending only on (�1, �2) , m and � such that for all pairs 
of rational numbers (p1∕q, p2∕q) satisfying

we have q ≤ C0(�1, �2, �,m).

The proof of Theorem  1 yields the following corollary on a possible choice for 
C0(�1, �2, �,m).

Corollary 2 Using the notation of the previous theorem let �0 be defined as �1 +M0�2 
where M0 is the smallest natural number that �1 +M0�2 is a primitive element of ℚ(�1, �2) 
(such a M0 always exists by the proof of the primitive element theorem [33, Theorem 
V.4.6]). Let � be defined as M1�0 where M1 is the smallest natural number such that M1�0 
is an algebraic integer. Now let N be the smallest natural number such that N�1 and N�2 
can be expressed as

where ci
h
∈ ℤ and let M be defined as max{|ci

h
| ∣ h = 1,… , d and i = 1, 2} . Let Q be 

defined as the denominator of

and let

where

(3)
||||
�i −

pi

q

||||
≤ q−� for i=1,2

N�i = ci
1
�d−1 +⋯ + ci

d−1
� + ci

d
for i = 1, 2

� ∶=
1∕� +min{1∕m,m∕d}

2

�0 ∶= min

{
min{1∕m,m∕d} − 1∕�

4
,

1

Ql(�)

}
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Then Theorem 1 holds with

1.1  Notation

In the remainder of this article we will denote by �1 and �2 algebraic numbers and let 
d ∶= [ℚ(�1, �2) ∶ ℚ].

2  Seshadri constants on blow‑ups of ℙ2

In this section we will be only concerned with varieties over ℂ.
We begin by discussing Seshadri constants. These constants measuring local positivity 

of divisors were first defined by Demailly in [20] and their name is due to the Seshadri cri-
terion for ampleness [47, Remark 7.1].

Definition 3 Let X be a smooth projective surface, let M be a nef ℝ-divisor on X, let x be a 
point in X and let �x ∶ X�

→ X be the blowup of X at x and E its exceptional divisor. Then 
the Seshadri constant of M at x is defined as

Let us recall some properties of Seshadri constants.

Lemma 4 ([35, Example 5.1.4, Example 5.1.6]) Let X,X′ and x be as above and let M be 
nef and integral. Then: 

1. The Seshadri constant is homogenous: 

 for all l ∈ ℕ.
2. If M is very ample then 

For more about Seshadri constants the reader may consult [3] and [35, Chapter 5].
We will need the following statement about ample divisors on the blowup of ℙ2 at points 

that lie on an irreducible curve of degree m.

Proposition 5 Let x1,… , xd be distinct points lying on an irreducible curve D of 
degree m in ℙ2 such that mult xiD = 1 for all i, let L be a line in ℙ2 and consider the 

l(�) ∶=

⌈
1

2

⌊
((−3 + d�)Q + 4Q2(1 − d�2) + 1)2

Q2(1 − d�2)
+ 3

⌋⌉
.

C0(�1, �2, �,m) ∶=
(
64(210(dM(|m�| + 1)d)3)1∕�

2
0 max{1, ||�1||, ||�2||}N3

) 1

�(�−�0 )−1 .

�(X,M;x) ∶= sup{t ≥ 0 ∣ �∗
x
M − tE is a nef ℝ − divisor on X�}.

�(X, lM;x) = l �(X,M;x)

�(X,M;x) ≥ 1 .



129Local positivity and effective Diophantine approximation  

1 3

blow-up � ∶ S → ℙ2 of ℙ2 at x1,… , xd with exceptional divisors E1,… ,Ed . Then for every 
0 < t < min{1∕m,m∕d} the ℝ-divisor �∗L − t(E1 +⋯ + Ed) is ample.

Proof The strict transform D′ of D is linearly equivalent to the divisor

on S. This implies that for 0 ≤ t ≤ 1∕m we have

The intersection of �∗L and the strict transform of any irreducible curve on ℙ2 is positive 
and C − D� is numerically trivial. Further, D′ intersects all irreducible curves on S except 
possibly itself nonnegatively. Using

we conclude that for 0 < t < min{1∕m,m∕d, 1∕
√
d} it holds that L2

t
> 0 and that Lt inter-

sects all irreducible curves on S positively. Furthermore, as 1∕m ≤ m∕d is equivalent to 
1∕m ≤ 1∕

√
d , we conclude that the equality min{1∕m,m∕d, 1∕

√
d} = min{1∕m,m∕d} 

holds. By the real version of the Nakai–Moishezon criterion [17] the statement of the prop-
osition holds.   ◻

In what follows we will need to have a lower bound for the Seshadri constant of 
�∗L − t(E1 +⋯ + Ed) for 0 ≤ t < min{1∕m,m∕d} at another point. In order to do this 
we will employ an effective version of Matsusaka’s big theorem [37, 38] for surfaces by 
Fernández del Busto [19]. Note that Siu has given an effective version of Matsusaka’s big 
theorem valid in higher dimensions [49, 50].

Theorem  6 [19] Let A be an ample divisor on a smooth projective algebraic surface X. 
Then lA is very ample for every

Using this we are now ready to prove the following geometric theorem, which will be 
essential in the proof of the main theorem.

Theorem 7 Let x1,… , xd be distinct points lying on an irreducible curve D of degree m in 
ℙ2 such that mult xiD = 1 for all i, let xd+1 ∈ ℙ2 , let L be a line in ℙ2 and consider the blow-
up � ∶ X → ℙ2 of ℙ2 at x1,… , xd+1 with exceptional divisors E1,… ,Ed+1 . Let us define for 
Q > 0

Then for all � ∈ ℚ with denominator Q ∈ ℕ satisfying 𝜃 < min{1∕m,m∕d} and for every 
0 ≤ � ≤

1

Ql(�)
 we have that

C ∶= m�∗L − (E1 +⋯ + Ed)

Lt ∶= �∗L − t(E1 +⋯ + Ed) = (1 − mt)�∗L + tC = (1 − mt)�∗L + t(C − D�) + tD�.

LtEi = t

LtD
� = m − dt

L2
t
= 1 − dt2

l >
1

2

⌊
(A(KX + 4A) + 1)2

A2
+ 3

⌋
.

l(�) ∶=

⌈
1

2

⌊
((−3 + d�)Q + 4Q2(1 − d�2) + 1)2

Q2(1 − d�2)
+ 3

⌋⌉
.
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Proof By Proposition 5 above we know that M ∶= (�∗L − �(E1 +⋯ + Ed)) is ample. Note 
that l(�) =

⌈
1

2

⌊
(QM(KX+4QM)+1)2

(QM)2
+ 3

⌋⌉
 . By Theorem 6 and because QM is an integral ample 

divisor, we now know that the divisor l(�)QM is very ample and therefore 
�(Blx1,…,xd

(ℙ2),M;xd+1) ≥
1

Ql(�)
 by the properties of Seshadri constants in Lemma 4 (note 

that the homogenity of Seshadri constants immediately extends to ℚ-divisors). Therefore 
�∗L − �(E1 +⋯ + Ed) − �Ed+1 is nef for 0 ≤ � ≤

1

Ql(�)
 and the statement of the theorem 

follows by the asymptotic Riemann–Roch theorem [35, Corollary 1.4.41].   ◻

3  Bounding the denominator of a good approximation

In this section we will bound the denominator q of a good approximation (p1∕q, p2∕q) of 
(�1, �2) using a polynomial P ∈ ℤ[X1,X2] with suitably bounded coefficients and suitable 
index at (�1, �2) and (p1∕q, p2∕q) . This chapter closely follows [32, §D.5]. For the conveni-
ence of the reader we give proofs as we need slightly different statements than those in [32].

Definition 8 Let

be a polynomial with coefficients in ℂ . 

1. For a multi-index j ∈ ℕ2
0
 we define a differential operator �j via 

2. If P ≠ 0 , we define the index of P at x = (x1, x2) with respect to the weights (r1, r2) ∈ ℕ2 
to be the nonnegative real number 

3. If P ∈ ℤ[X1,X2] , the naive height of P is defined as 

Let us summarize some properties of the index and the differential operators �j for later 
use.

Lemma 9 ([32, Lemmas D.3.1 and D.3.2]) Let P ∈ ℂ[X1,X2] and let j ∈ ℕ2
0
 . 

1. If �jP ≠ 0 , then ind (x1,x2;r1,r2)
(�jP) ≥ ind (x1,x2;r1,r2)

(P) − j1∕r1 − j2∕r2,

vol X(�
∗L − �(E1 +⋯ + Ed)) − vol X(�

∗L − �(E1 +⋯ + Ed) − �Ed+1) = �2 .

P =
∑

j∈ℕ2
0

aj1,j2X1
j1X2

j2

�jP ∶=
1

j1!j2!

�j1+j2

�X
j1
1
�X

j2
2

P.

ind (x1,x2;r1,r2)
(P) ∶= min{j1∕r1 + j2∕r2 ∣ j ∈ ℕ

2
0
, �jP(x) ≠ 0}.

|P| ∶= max{|aj| ∣ j ∈ ℕ
2
0
} .
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2. if P ∈ ℤ[X1,X2] , we have �jP ∈ ℤ[X1,X2],
3. if degP ≤ k , then |�jP| ≤ 4k|P|.

From now on we will make the assumption r1 = r2 = k . In particular we have that 
ind (�1,�2;k,k)

(P) = ord (�1,�2)
(P)∕k.

In the following two lemmas we will provide a bound on the denominator and absolute 
value of derivatives of a polynomial P ∈ ℤ[X1,X2] at (p1∕q, p2∕q).

Lemma 10 Let P ∈ ℤ[X1,X2] be a polynomial of degree less or equal k and let j ∈ ℕ2
0
 be a 

multi-index. Then

Proof Using Lemma 9 we obtain that the the coefficients of �jP are in ℤ . Therefore 
�jP(p1∕q, p2∕q) is a sum of terms whose denominators are divisors of qk giving us the 
desired bound.   ◻

Lemma 11 Let P ∈ ℤ[X1,X2] of degree less or equal k with k ≥ 4 and let j ∈ ℕ2
0
 be a multi-index. 

Let � be the index of P at (�1, �2) with respect to (k, k), let 0 < 𝜃0 < 𝜃 , let 𝛿 > 0 and let N ∈ ℕ.

Then it holds that for (p1∕q, p2∕q) ∈ ℚ satisfying

and for every j = (j1, j2) ∈ ℕ2
0
 such that j1+j2

k
≤ �0 we have

Proof The claim of the lemma is evident for �jP = 0 . We may therefore assume that 
�jP ≠ 0 . First note that for all i ∈ ℕ2

0
 we have that �i�jP(�1, �2) is a sum of at most 

1∕2 (k + 1)(k + 2) ≤ 2k terms because k ≥ 4 . These terms are of the form ci1,i2�
i1
1
�
i2
2
 with 

ci1,i2 ∈ ℤ by Lemma 9 and i1 + i2 ≤ k and are themselves bounded by

where we have used Lemma 9 two times. We may now expand �jP around (�1, �2) and use 
that Lemma 9 implies ind (�1,�2;k,k)

(�jP) ≥ � − �0 to obtain

and by assumption (4), the fact that the number of terms above is bounded by 2k and the 
bounds above we have

  ◻

qk�jP(p1∕q, p2∕q) ∈ ℤ .

(4)
||||
�i −

pi

q

||||
≤ Nq−� for i = 1, 2

|||�jP(p1∕q, p2∕q)
||| ≤ 64k|P|(max{1, ||�1||, ||�2||})kN2kq−k�(�−�0).

|||ci1,i2�
i1
1
�
i2
2

||| ≤
|||�i�jP

|||(max{1, ||�1||, ||�2||})k ≤ 16k|P|(max{1, ||�1||, ||�2||})k

�jP(p1∕q, p2∕q) =
∑

0 ≤ i1, i2 ≤ k

� − �0 ≤ (i1 + i2)∕k ≤ 1

(�i�jP)(�1, �2)(p1∕q − �1)
i1 (p2∕q − �2)

i2

|||�jP(p1∕q, p2∕q)
||| ≤ 64k|P|(max{1, ||�1||, ||�2||})kN2kq−k�(�−�0) .
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Using the results above we obtain a bound for the denominator of a good approximation as 
follows.

Lemma 12 Let k ≥ 4 be a positive integer. Let 0 < 𝜃0 < 𝜃 be given and suppose that 
(p1∕q, p2∕q) ∈ ℚ2 is a solution of inequality (4) for given 𝛿 > 1∕(𝜃 − 𝜃0) , N ∈ ℕ . Now 
assume that P ∈ ℤ[X1,X2] satisfies the following properties: 

1. the degree of P is at most k,
2. the index of P at (�1, �2) with respect to the weights (k, k) satisfies 

3. |P| ≤ Bk , where B depends only on (�1, �2) , k and �.

Let

Then it holds that if

we have q ≤ C(�1, �2, �,N).

Proof Assume ind (p1∕q,p2∕q;k,k)
(P) < 𝜃0 and let j ∈ ℕ2

0
 with j1+j2

k
< 𝜃0 be such that 

�jP(p1∕q, p2∕q) ≠ 0 , say �jP(p1∕q, p2∕q) = s∕m with s ∈ ℤ ⧵ {0},m ∈ ℕ and s and m 
coprime. Now Lemma 11 and the bound on |P| give us that

We use the principle that there is no integer strictly between 0 and 1 to obtain

Finally Lemma 10 gives

and after taking k-th roots and simplifying we obtain

and the claimed inequality follows.   ◻

ind (�1,�2;k,k)
(P) ≥ �,

C(�1, �2, �,N) ∶=
(
64Bmax{1, ||�1||, ||�2||}N2

) 1

�(�−�0 )−1 .

ind (p1∕q,p2∕q;k,k)
(P) < 𝜃0 ,

|�jP(p1∕q, p2∕q)| ≤
(
64Bmax{1, ||�1||, ||�2||}N2q−�(�−�0)

)k
.

1∕m ≤
(
64Bmax{1, ||�1||, ||�2||}N2q−�(�−�0)

)k
.

q−k ≤
(
64Bmax{1, ||�1||, ||�2||}N2q−�(�−�0)

)k

q�(�−�0)−1 ≤ 64Bmax{1, ||�1||, ||�2||}N2
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4  Finding a suitable global section

For this section we fix an embedding 𝔸2
↪ ℙ2 and consider the line L = ℙ2 ⧵𝔸2 such 

that the global sections of Oℙ2 (kL) restricted to �2 are the polynomials of degree less 
or equal k, and view (�1, �2) , all of its conjugates and (p1∕q, p2∕q) as elements of ℙ2 via 
this embedding. In this chapter we will always indicate which base field we are working 
over.

We now state Faltings’s version of Siegel’s lemma.

Lemma 13 ([25, Proposition 2.18]) Let V, W be two finite dimensional normed ℝ-vector 
spaces and let M ⊂ V  and N ⊂ W be ℤ-lattices of maximal rank. Let further � ∶ V → W 
be a linear map such that 𝜙(M) ⊂ N . Let b ∶= dim(V) and a ∶= dim( Ker (�)) and assume 
that there exists a constant C ≥ 2 such that 

1. M is generated by elements of norm at most C,
2. the norm of � is bounded by C,
3. all non-trivial elements of M and N have norm at least 1/C.

For 1 ≤ i ≤ b set

Then it holds that

We will need the following number theoretical lemma.

Lemma 14 ([32, Lemma D.3.4]) Let � ∈ ℚ be an algebraic integer of degree 
d� ∶= [ℚ(�) ∶ ℚ] over ℚ and let m� ∈ ℚ[X] be the minimal polynomial of � over ℚ . Then 
we have �l = a

(l)

1
�d�−1 +⋯ + a

(l)

d�
 with a(l)

i
∈ ℤ satisfying |||a

(l)

i

||| ≤ (|m�| + 1)l.

The following Lemma now clarifies how we intend to use Faltings’s version of 
Siegel’s lemma. In it we will make an assumption that implies that �1, �2 are algebraic 
integers. Note that we can always satisfy this assumption by considering N�i instead of 
�i for a suitable N ∈ ℕ.

Lemma 15 Let k ≥ 4 be a positive integer, let Bk ∶= H0(Oℙ2
ℚ

(kL)) , which we will identify 
with the polynomials of degree less or equal k in ℚ[X1,X2] , and let Ak be the subspace of 
sections whose index at (�1, �2) with respect to the weights (k, k) is at least � . Choose an 
algebraic integer � which is a primitive element for ℚ(�1, �2) and assume that �1 and �2 can 
be expressed as

𝜆i ∶= inf{𝜆 > 0 ∣ ∃ilinearly independent vectors of norm ≤ 𝜆 in Ker (𝜙) ∩M} .

�i+1 ≤ (C3bb!)1∕(a−i) .

�i = ci
1
�d−1 +⋯ + ci

d−1
� + ci

d
for i = 1, 2
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where ci
h
∈ ℤ and let M be defined as max{|ci

h
| ∣ h = 1,… , d and i = 1, 2} . Then there 

exists a linear map 𝜙k ∶ Bk ⊗ℝ → ℚ(𝛼1, 𝛼2)
lk ⊗ℝ where

such that 

1. Ker (𝜙k) = Ak ⊗ℝ,
2. �k , the lattice inside Bk ⊗ℝ generated by monomials and the lattice in ℚ(𝛼1, 𝛼2)

lk ⊗ℝ 
generated by �i for i = 0,… , d − 1 in every component satisfy the conditions in Lemma 
13 with C = Bk where B > 0 is the following constant 

Proof Define the linear map

where j ranges over all pairs of non-negative integers satisfying (j1 + j2)∕k < 𝜃 . Consider 
the basis of V ∶= Bk ⊗ℝ which consists of monomials, the basis of W ∶= ℚ(𝛼1, 𝛼2)

lk ⊗ℝ 
consisting of �i for i = 0,… , d − 1 in every component and the lattices LV and LW gener-
ated by these bases.

By Lemma 9 and the assumptions on � we have that 𝜙k(LV ) ⊂ LW . We now identify 
V ≅ ℝdimℚ Bk and W ≅ ℝdlk using the above bases and equip these ℝ-vector spaces with the 
maximum norm | ⋅ |∞ . It is then clear that LV is generated by elements of norm 1 and all 
non-trivial elements of LV and LW have norm greater or equal 1. Therefore we only need to 
give a bound on the norm of �k.

To achieve this, we consider a polynomial P ∈ V  , note that P is a sum of at most 
1∕2 (k + 1)(k + 2) ≤ 2k terms and use Lemma 9 to obtain that the coefficients of P are 
bounded by |�jP| ≤ 4k|P| . Then by using the assumptions of Lemma 15 to expand �u

1
�v
2
 

where u + v ≤ k into a ℤ-linear combination of powers of � we obtain a sum of du+v ≤ dk 
terms R�l with l ≤ (u + v)d ≤ kd and R ≤ Mu+v ≤ Mk . By Lemma 14 we have that �l is 
then a ℤ-linear combination of 1, �,… , �d−1 with coefficients bounded by (|m�| + 1)kd . 
Therefore it holds that

and this implies the statement of the lemma.   ◻

Lemma 16 Let us keep the notation and assumptions of the previous lemma and let 
� ∶ Xℂ → ℙ2 be the blowup of ℙ2

ℂ
 in (�1, �2) and all of its conjugates with corresponding 

exceptional divisors E1,… ,Ed and in (p1∕q, p2∕q) with corresponding exceptional divi-
sor Ed+1 . Letting bk ∶= dimℚ Bk , ak ∶= dimℚ Ak , ik ∶= dimℚ Uk where Uk is the linear sub-
space of Ak of sections s ∈ Ak with ind (p1∕q,p2∕q;k,k)

s ≥ �0 we have that

lk = #{j ∈ ℕ
2
0
∣
j1 + j2

k
< 𝜃}

B ∶= 8dM(|m�| + 1)d .

𝜙k ∶ Bk ⊗ℝ → ℚ(𝛼1, 𝛼2)
lk ⊗ℝ

P⊗ 1 ↦ (𝜕jP)(𝛼1, 𝛼2)⊗ 1

|�k(P)|∞ ≤ |P|(8dM(|m�| + 1)d)k
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Proof For the first statement note that bk = 1∕2 (k + 1)(k + 2).
Regarding the second and third statement note that � and �0 are real numbers and that 

the volume function for real divisors is defined by extending the volume function on ℚ
-divisors [35, Corollary 2.2.45]. However by [28, Theorem 3.5] it holds that for a ℝ-Cartier 
ℝ-divisor D on a projective variety V we have

The vector space H0(OXℂ
(⌊k�∗L − k� (E1 +⋯ + Ed)⌋)) is the space of complex polyno-

mials of degree k vanishing at (�1, �2) and all of its conjugates with multiplicity at least 
⌊k�⌋ . We may view this space as the linear subspace of ℂbk ≅ H0(OXℂ

(k�∗L)) given as 
the solution set of the equations �jP(�1, �2) = 0 where P ∈ H0(OXℂ

(k�∗L)) and j ranges 
over all pairs of non-negative integers satisfying (j1 + j2)∕k < 𝜃 . The coefficients of these 
equations are algebraic and therefore there exists a basis consisting of algebraic ele-
ments of ℂbk and the dimension is equal to the dimension of the solution set of the same 
equations in ℚ

bk . The absolute Galois group Gℚ of ℚ acts on the coefficient vectors by 
permutating them and therefore the solution space in ℚ

bk is stable under Gℚ . By [12, 
Corollary on page V.63] the dimension of this space equals the dimension of the solu-
tion set intersected with ℚbk and this number is equal to ak . The same argument yields 
dimℂ H

0(OXℂ
(⌊k�∗L − k� (E1 +⋯ + Ed) − k�0 Ed+1⌋)) = ik and the statement of the 

lemma follows.   ◻

5  Proof of the main theorem

We are now ready to conclude the proof of the main theorem. In this section we will use 
the notation of Theorem 1 and Corollary 2.

Proof of the main theorem Let us consider the asymptotics obtained in the Lemma 16 above 
and use Faltings’s version of Siegel’s lemma. In order to use Lemma 15 we replace �i by 
N�i . After this replacement we have that

We have by Lemma 15 that Bk satisfies the assumptions on C in Lemma 13 and therefore

By the choice of � and �0 , Lemma 16 and Theorem 7 the exponent on the right hand side of 
(5) satisfies

lim
k→∞

bk

k2∕2
= vol ℙ2

ℂ

(�∗L) = 1

lim
k→∞

ak

k2∕2
= vol Xℂ

(�∗L − � (E1 +⋯ + Ed))

lim
k→∞

ik

k2∕2
= vol Xℂ

(�∗L − � (E1 +⋯ + Ed) − �0Ed+1).

vol V (D) = lim
k→∞

h0(⌊kD⌋)
kdim(V)∕ dim(V)!

.

||||
N�i −

Npi

q

||||
≤ Nq−� for i=1,2 .

(5)�ik+1 ≤ ((8dM(|m�| + 1)d)3kbkbk!)
1∕(ak−ik) ≤ ((8dM(|m�| + 1)d)3kbk)

bk∕(ak−ik) .
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Now Lemma 13 shows the existence of ik + 1 linearly independent elements of Ak such that 
their norm is bounded by

where we have used that bk = 1∕2 (k + 1)(k + 2) ≤ 2k . In particular, for k ≫ 0 at least one 
of those elements P is not an element of Uk . Noting that

we conclude that P satisfies all of the conditions for Lemma 12 and we obtain that

Finally we take the limit for k → ∞ and obtain

which finishes the proof.   ◻

Remark 17 The effective constant of Corollary 2 is likely not close to being optimal. On 
the one hand there exist versions of Siegel’s lemma like [14] that are not directly applica-
ble in the situation of Lemma 15, but have a better dependence on the involved quantities. 
This suggests that an improvement of Lemma 15 might be possible. On the other hand one 
might hope that there exist better lower bounds on Seshadri constants than the ones used in 
the proof of Theorem 7. Both improvements would yield a better estimate for the effective 
constant of Corollary 2.
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