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Abstract
Carmesin has extended Robertson and Seymour’s tree-of-tangles theorem to the infinite
tangles of locally finite infinite graphs. We extend it further to the infinite tangles of all
infinite graphs. Our result has a number of applications for the topology of infinite graphs,
such as their end spaces and their compactifications.
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1 Introduction

The tree-of-tangles theorem, one of the cornerstones of Robertson and Seymour’s proof of
their graph-minor theorem, says (in the terminology of [1, Sect. 12.5]):

Theorem Every finite graph G has a nested set of separations which efficiently distin-
guishes all the finite tangles in G that can be distinguished.

This is Theorem 12.5.4 in [1], the original article is [2].
Recently, Carmesin [3] has extended the tree-of-tangles theorem to the infinite tangles of

infinite graphs that are locally finite. The precise statement of Carmesin’s result reads:

Theorem Every infinite connected graph G has a nested set of separations which efficiently
distinguishes all the ends of G.
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Note that, in the wording of his theorem, Carmesin does not require the graph to be locally
finite, and he speaks of ends where one expects infinite tangles. This is because his result is
more general than an extension of the tree-of-tangles theorem to the infinite tangles of
locally finite infinite graphs. To understand the difference, let us look at how the ends of a
graph are related to its infinite tangles.

An end x of a graph G (see [1]) orients every finite-order separation fA;Bg of G towards
the side that contains a tail from every ray in x. Since these orientations are, for distinct
separations, consistent in a number of ways, they form an infinite tangle of G. Conversely,
every infinite tangle of a locally finite and connected graph G is defined by an end in this
way [4, 5]. Thus, if G is locally finite and connected, there is a canonical bijection between
its infinite tangles and its ends. In this way, Carmesin’s result extends the tree-of-tangles
theorem to the infinite tangles of locally finite graphs.

When G is not locally finite, however, there can be infinite tangles that are not defined by
an end. Then Carmesin’s result no longer extends the tree-of-tangles theorem to the infinite
tangles of G.

The infinite tangles that do not come from ends of the graph are fundamentally different
from ends. They are closely related to free ultrafilters, and are called ultrafilter tangles [4].
More explicitly, by a recent result from [6], there is a canonical bijection between the
ultrafilter tangles and the ultrafilter tangle blueprints: pairs (X, U) of a critical vertex set X

and a free ultrafilter U on the collection �CX of the components C of G� X for which the

neighbourhood of C equals X, where a subset X of V(G) is critical if X is finite and �CX is
infinite. Therefore, every ultrafilter tangle s ¼ ðX ;UÞ has two aspects: Its combinatorial
aspect is captured by its blueprint’s critical vertex set X, and its ultrafilter aspect is encoded
by the free ultrafilter U (see Sect. 2.7 for details). Since every vertex in a critical vertex set
has infinite degree, it follows that locally finite connected graphs have no ultrafilter tangles,
so all their infinite tangles are ends.

Ultrafilter tangles are interesting also for topological reasons. Every locally finite con-
nected graph can be naturally compactified by its ends to form its well known end com-
pactification [1] introduced by Freudenthal [7]. But for a non-locally finite graph, adding its
ends no longer suffices to compactify it. Adding its ends plus its ultrafilter tangles, however,
(i.e. adding all its infinite tangles) does again compactify the graph. This is Diestel’s tangle
compactification [4]. The tangle compactification generalises the end compactification
twofold. On the one hand, it defaults to the end compactification when the graph is locally
finite and connected. And on the other hand, the relation between the end compactification
of locally finite connected graphs and their Stone-Čech compactification extends to all
graphs when ends are generalised to tangles [8].

As our main result, we extend Robertson and Seymour’s tree-of-tangles theorem to the
infinite tangles of infinite graphs (and thus, we extend Carmesin’s result from ends to all
infinite tangles):

Theorem 1 Every infinite connected graph G has a nested set of finite-order separations
that efficiently distinguishes all the combinatorially distinguishable infinite tangles of G.

Here, two infinite tangles are combinatorially distinguishable if not both are ultrafilter
tangles or if both are ultrafilter tangles such that their critical vertex sets are distinct. So two
infinite tangles are combinatorially indistinguishable if they are ultrafilter tangles with the
same critical vertex. The proof will show that, conversely, the nested set of separations we
find does not distinguish any two infinite tangles that are combinatorially indistinguishable.
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As we will show, our result is best possible in the following sense. If a graph G has an
ultrafilter tangle s, then no nested set of finite-order separations of G efficiently distinguishes
all the ultrafilter tangles of G that are not combinatorially distinguishable from s.

1.1 Applications

Our work has four applications.
Elbracht, Kneip and Teegen use our Corollary 6.1 in their paper [9] to give a relatively

short proof of Carmesin’s tree-of-tangles theorem.
Call a set U of vertices in a graph G tough in G if only finitely many components of

G� X meet U for every finite vertex set X � V ðGÞ. Bürger and the second author use our
concept of ‘corridors’ in combination with our results from Sect. 5 to characterise the
connected graphs G in which a given vertex set U � V ðGÞ is tough [10].

Our third application is the following structural connectivity result for infinite graphs,
which generalises the way in which the cutvertices of a graph decompose it into its blocks in
a tree-like fashion. Call a graph G tough if its vertex set is tough in G, i.e., if deleting finitely
many vertices from G never leaves more than finitely many components. By the pigeonhole
principle a graph is tough if and only if it has no critical vertex set.

Theorem 2 Every connected graph G has a nested set of separations whose separators are
precisely the critical vertex sets of G and all whose torsos are tough.

(See Section 2.6 for definitions.)
Theorem 2 is interesting also from the perspective of topological infinite graph theory, in

view of the following two results. Diestel and Kühn [11] showed that a graph is com-
pactified by its ends if and only if it is tough (i.e., if and only if it has no critical vertex sets),
and in [6] it was shown that every graph is compactified by its ends plus critical vertex sets.
So a graph is compactified by points that come in two types, ends and critical vertex sets,
and the second type decomposes the graph into a nested set of separations all whose torsos
are compactified by the points of the first type.

Our fourth application answers a question that arises from thework of Polat and of Sprüssel.
End spaces of graphs, in general, are not compact. However, Polat [12] and Sprüssel [13]
independently showed that end spaces of graphs are normal. Polat even showed that end spaces
of graphs are collectionwise normal, which is stronger than normal but weaker than compact
Hausdorff. (In a collectionwise normal space one can at once pairwise separate any collection
of closed disjoint sets with disjoint open neighbourhoods, cf. Definition 6.2.)

The infinite tangle space, endowed with the subspace topology of the tangle compacti-
fication, contains the end space as a subspace. As Diestel [4] showed, the infinite tangle
space is compact Hausdorff, which implies collectionwise normality by general topology.

The ultrafilter tangle space, endowed with the subspace topology of the infinite tangle
space, is not usually compact. Since the infinite tangle space is the disjoint union of the end
space and the ultrafilter tangle space, the question arises whether the ultrafilter tangle space
is collectionwise normal as well. We answer this question in the affirmative:

Theorem 3 The ultrafilter tangle space of a graph is collectionwise normal.

Our paper is organised as follows. Background knowledge is supplied in Sect. 2. In Sect. 3
we study examples and show that our main result is best possible. In Sect. 4 we give an
overview on our overall proof strategy. Our main technical results are stated and proved in
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Sect. 5. In Sect. 6 we provide the applications of our main technical results. In Sect. 7 we
introduce an equivalence relation on a tree set given a consistent orientation of that tree set.
This is the foundation for the definition of the modified torsos and proxies as well as for a
‘lifting’ process that we need in Sect. 8. In Sect. 8, finally, we introduce the modified torsos
and prove our main result. Section 9 is our appendix.

Throughout this paper, G ¼ ðV ;EÞ is a connected graph of arbitrary cardinality.

2 Tools and terminology

We use the notation of Diestel’s book [1]. For a short reminder on compactifications and
inverse limits see the appendix Sect. 9.

2.1 Ends of graphs, and inverse limits

We write X ¼ XðGÞ for the collection of all finite subsets of the vertex set V of G, partially
ordered by inclusion. An end of G, as defined by Halin [14], is an equivalence class of rays
of G, where a ray is a one-way infinite path. Here, two rays are said to be equivalent if for
every X 2 X both have a subray (also called tail) in the same component of G� X . So in
particular every end x of G chooses, for every X 2 X, a unique component CðX ;xÞ of
G� X in which every ray of x has a tail. In this situation, the end x is said to live in
CðX ;xÞ. The set of ends of a graph G is denoted by X ¼ XðGÞ. If C is any collection of
components of G� X for some X 2 X , we write XðX ;CÞ for the set of ends x of G with
CðX ;xÞ 2 C. The sets XðX ;CÞ form a basis for a topology on X.

Recall that a comb is the union of a ray R (the comb’s spine) with infinitely many disjoint
finite paths, possibly trivial, that have precisely their first vertex onR. The last vertices of those
paths are the teeth of this comb. Let us say that an endx ofG is contained in the closure ofM,
whereM is either a subgraph of G or a set of vertices of G, if for every X 2 X the component
CðX ;xÞmeetsM. Equivalently,x lies in the closure ofM if and only ifG contains a combwith
all its teeth in M and with its spine in x. See [10, 15–17] for more on combs.

Now we describe an inverse system giving the end space: We note that X is directed by
inclusion, and for every X 2 X we let CX be the set of components of G� X . Then letting
cX 0;X : CX 0 ! CX for X 0 � X send each component of G� X 0 to the unique component of
G� X including it turns the sets CX into an inverse system fCX ; cX 0;X ;Xg. Clearly, its
inverse limit consists precisely of the directions of the graph: choice maps f assigning to
every X 2 X a component of G� X such that f ðX 0Þ � f ðX Þ whenever X 0 � X . Every end
x of G defines a unique direction fx by mapping every X 2 X to CðX ;xÞ. In 2010, Diestel
and Kühn [5] showed that, conversely, every direction in fact comes from a unique end in
this way:

Theorem 2.1 ([5, Theorem 2.2]) Let G be any graph. Then the map x 7!fx is a homeo-
morphism between the ends of G and its directions, i.e. X ffi lim �CX .

2.2 Separations of sets and abstract separation systems

Separation systems are a fundamental notion in graph minor theory. In this section, we
briefly recall the definitions from [1, 18, 19] that we need, without detailed explanations: for
these we refer to the citations.
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A separation of a set V is an unordered pair fA;Bg such that A [ B ¼ V . The ordered
pairs (A, B) and (B, A) are its orientations. Then the oriented separations of V are the
orientations of its separations. The map that sends every oriented separation (A, B) to its
inverse (B, A) is an involution that reverses the partial ordering

ðA;BÞ� ðC;DÞ :, A � C and B � D

since ðA;BÞ� ðC;DÞ is equivalent to ðD;CÞ� ðB;AÞ.
More generally, a separation system is a triple ðS

!
; � ; �Þ where ðS

!
; �Þ is a partially

ordered set and � : S
!
! S
!
is an order-reversing involution. We refer to the elements of S

!
as

oriented separations. If an oriented separation is denoted by S
!
, then we denote its inverse

S
!�

as s
 
, and vice versa. That � is order-reversing means r

!� S
!
$ r
 � s

 
for all r

!
; S
!
2 S
!
.

A separation is an unordered pair of the form fS
!
; s
 g, and then denoted by s. Its elements

S
!

and s
 

are the orientations of s. The set of all separations fS
!
; s
 g � S

!
is denoted by S.

When a separation is introduced as s without specifying its elements first, we use S
!

and s
 

(arbitrarily) to refer to these elements. Every subset S0 � S defines a separation system

S0
!

:¼ S
S0 � S

!
with the ordering and involution induced by S

!
.

Separations of sets, and their orientations, are an instance of this abstract setup if we

identify fA;Bg with f ðA;BÞ ; ðB;AÞ g. Here is another example: The set E
!ðTÞ :¼ f ðx; yÞ j

xy 2 EðTÞ g of all orientations (x, y) of the edges xy ¼ fx; yg of a tree T forms a separation

system with the involution ðx; yÞ7!ðy; xÞ and the natural partial ordering on E
!ðTÞ in which

ðx; yÞ\ðu; vÞ if and only if xy 6¼ uv and the unique fx; yg–fu; vg path in T links y to u.

In the context of a given separation system ðS
!
; � ; �Þ, a star (of separations) is a subset

r � S
!
such that r

!� s
 
for all distinct r

!
; S
!
2 r; see Fig. 1 for an illustration.1 If t is a node

of a tree T, then the set

Fig. 1 The separations (A, B),
(C, D), (E, F) form a star [1]

1 Officially, in [18] a star r is additionally required to consist only of oriented separations S
!

satisfying

S
!
6¼ s
 
. In this paper, however, all separations considered will satisfy this condition, which is why we will

hide it for the convenience of the reader.
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F
!
t :¼ f ðx; tÞ j xt 2 EðTÞ g

is a star in E
!ðTÞ.

2.3 Orientations

An orientation of a separation system S
!
, or of a set S of separations, is a subset O � S

!
such

that jO \ fS
!
; s
 g j ¼ 1 for all s 2 S. A partial orientation of S is an orientation of a subset

of S. A subset O � S
!

is consistent if there are no two distinct separations r; s 2 S with

orientations r
!
\S
!
and r

 
; S
!
2 O. For example, the down-closure of any star F

!
t in E

!ðTÞ is a
consistent orientation.

2.4 Nested sets of separations and tree sets

Two separations are nested if they have comparable orientations. Two oriented separations

r
!
; S
!
are nested if r and s are nested. A set, either of separations or of oriented separations, is

nested if every two of its elements are nested. For example, if T is a tree, then both E(T) and

E
!ðTÞ are nested.

To state the definition of a tree set, we need the following definitions. An oriented

separation r
! 2 S

!
is

(i) degenerate if r
! ¼ r

 
,

(ii) trivial if there is a separation s 2 S such that both r
!
\S
!

and r
!
\ s
 
, and

(iii) small if r
!� r

 
.

In this paper, we will not have to worry about trivial separations. The only degenerate
separation of a set V is (V, V); the small separations are precisely the ones of the form (A, V)
with A � V . All degenerate and trivial separations are small.

A separation system is

(i) essential if it contains neither degenerate nor trivial elements, and
(ii) regular if it contains no small elements.

If ðS
!
; � ; �Þ is essential or regular, then we also call S

!
and S essential or regular, respec-

tively. Regular implies essential.

A tree set is a nested essential separation system. If ðS
!
; � ; �Þ is a tree set, then we also

call S
!

and S tree sets. If T is a tree, then E
!ðTÞ is a tree set, the edge tree set of T.

In this paper, separations usually will not be small, and hence separation systems usually
will be regular. This means that when we define a candidate for a tree set and have to verify
that it really is a tree set, it will suffice to verify nestedness unless stated otherwise.

A consistent orientation O of a tree set S
!

is equal to the down-closure

dre
S
! :¼ f r! 2 S

!
j 9S
!
2 r : r

!� S
!
g

123

144 A.-K. Elm, J. Kurkofka



in S
!

of the star r formed by the maximal elements of O if and only if every element of O
lies below some maximal element of O. We call these orientation defining stars r the

splitting stars of S
!
. For example, the splitting stars of the edge tree set E

!ðTÞ of a finite tree
are precisely the stars F

!
t. But if T is a ray v0v1. . ., then f ðvn; vnþ1Þ j n 2 N g is a consistent

orientation of E
!ðTÞ that has no maximal element.

Gollin and Kneip [20] characterised the tree sets that are isomorphic to the edge tree set
of a tree. An isomorphism between two separation systems is a bijection between their
underlying sets that respects both their partial orderings and their involutions. A chain C in a
given poset is said to have order-type a for an ordinal a if C with the induced linear order is
order-isomorphic to a. The chain C is then said to be an a-chain.

Theorem 2.2 ([20, Theorem 1]) A tree set is isomorphic to the edge tree set of a tree if and
only if it is regular and contains no ðxþ 1Þ-chain.

2.5 Separations of graphs

A separation of a graph G is a separation fA;Bg of the set V(G) (meaning A [ B ¼ V ðGÞ)
such that G has no edge ‘jumping’ the separator A \ B, meaning that G contains no edge
between A n B and B n A. Thus, (oriented) separations of graphs are an instance of (oriented)
separations of sets. The order of fA;Bg is the cardinal jA \ Bj. The set of all finite-order
separations of a graph G is denoted by S@0 ¼ S@0ðGÞ. A tree set of G is a tree set of
separations of G with the usual partial ordering and involution.

If (A, B) and (C, D) are two separations of G, then

(i) ðA;BÞ _ ðC;DÞ :¼ ðA [ C;B \ DÞ is their supremum, and
(ii) ðA;BÞ ^ ðC;DÞ :¼ ðA \ C;B [ DÞ is their infimum.

Supremum and infimum satisfy De Morgan’s law: ð r! _ S
!
Þ� ¼ r

 ^ s
 
.

The following non-standard notation often will be useful as an alternative perspective on
separations of graphs. Recall that for a vertex set X � V ðGÞ we denote the collection of the
components of G� X by CX . If any X � V ðGÞ and C � CX are given, then these give rise
to a separation of G which we denote by

fX ;Cg :¼ �
V n V ½C	 ; X [ V ½C	 �

where V ½C	 ¼ S fV ðCÞ j C 2 C g. Note that every separation fA;Bg of G with A;B �
V ðGÞ can be written in this way. For the orientations of fX ;Cg we write

ðX ;CÞ :¼ �
V n V ½C	 ; X [ V ½C	 � and ðC;X Þ :¼ �

V ½C	 [ X ; V n V ½C	 �:
If C is a component of G� X we write fX ;Cg instead of fX ; fCgg. Similarly, we write
ðC;X Þ and ðX ;CÞ instead of ðfCg;X Þ and ðX ; fCgÞ, respectively.

2.6 Parts and torsos

If T is a tree set of separations of G and O is a consistent orientation of T, then the
intersection P ¼ T fB j ðA;BÞ 2 Og is called the part of O. And the graph that is obtained
from G½P	 by adding an edge xy whenever x 6¼ y 2 P lie together in the separator of some
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separation of O is called the torso of O (or of P if O is clear from context). We denote the
torso of O by torsoðG;OÞ.

We will need the following lemma and its corollaries (the lemma is folklore and has been
proved, e.g., in [3]; we present an alternative proof for convenience):

Lemma 2.3 If P is a part of a tree set of G, then for every G½P	-path P there is some
separation of the tree set whose separator contains both endvertices of P.

Proof Let O be any consistent orientation of a tree set of G, writeP for its part and suppose
that P ¼ xv1. . .vny is a G½P	-path (so n� 1). For every k 2 ½n	 pick an oriented separation
ðAk ;BkÞ 2 O with vk 2 Ak n Bk (so that ðAk ;BkÞ witnesses vk 62 P). Let N consist of the � -
maximal separations from the collection f ðAk ;BkÞ j k 2 ½n	g. Then for every vk there is a
separation ðA;BÞ 2 N with vk 2 A n B. Our aim is to show that N is a singleton, since then
the separator of the sole separation in N must contain both x and y, so we would be done. By
the choice of N, every two oriented separations in N are � -incomparable. As O is a
consistent orientation of a tree set, this means that N must be a star. Then jN j ¼ 1 is evident,
since otherwise the sides G½A n B	 for ðA;BÞ 2 N altogether induce a disconnection of the
subpath v1. . .vn of P contradicting its connectedness. h

Corollary 2.4 IfP is a part of a tree set of G and x is an end of G in the closure of P while
G½P	 coincides with the torso of P, then x has a ray in G½P	.

Proof If x lies in the closure of P, we find a comb in G with its spine R in x and all of its
teeth inP. Without loss of generality the comb meetsP precisely in its teeth. Then, as G½P	
coincides with the torso of P, it has an edge between every two consecutive teeth by
Lemma 2.3, and so contains a ray equivalent to R. h

Corollary 2.5 IfP is a part of a tree set of G and two rays of G½P	 are equivalent in G, then
they are equivalent in the torso of P as well.

Proof Given two rays of G½P	 that are equivalent in G, we inductively construct infinitely
many pairwise vertex-disjoint paths in G between them, and then employ Lemma 2.3 to turn
these into paths of the torso. h

The next corollary has already been known to Carmesin [3]:

Corollary 2.6 The intersection of a connected set of vertices of G with a part of a tree set of
separations of G induces a connected subgraph of the part’s torso. h

2.7 Infinite tangles

The interior of a star f ðAi;BiÞ j i 2 I g � S
!
@0 is the intersection

T
i2I Bi. An @0-tangle (of

G), or infinite tangle, is a consistent orientation of S@0 that contains no finite star of finite
interior as a subset. We write H ¼ HðGÞ for the set of all @0-tangles of G. This particular
definition is due to Diestel who showed in his paper [4] that it is equivalent to the original
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definition by Robertson and Seymour [2]. Infinite tangles are resilient in the following
sense:

Lemma 2.7 ([4, Lemma 1.10]) Let s be an @0-tangle of G and ðA;BÞ 2 s. Let ðA0;B0Þ be a
separation of G with AMA0 and BMB0 finite. Then ðA0;B0Þ 2 s.

In the remainder of this section, we give a summary of the results in Diestel’s paper [4] on
infinite tangles. If x is an end of G, then letting

sx :¼ � ðX ;CÞ 2 S
!
@0

�� CðX ;xÞ 2 C
�

defines an injection X,!H, x 7!sx. The @0-tangles of the form sx are called end tangles. By
abuse of notation we write X for the collection of all end tangles of G, so we have X � H.

In order to understand the @0-tangles that are not ends, Diestel studied an inverse limit
description of H. In this paper, partition classes are required to be non-empty as usual, with
the exception that whenever we speak of a bipartition we allow for at most one empty class.
Now if s is an @0-tangle, then for every X 2 X it chooses one big side from each bipartition
fC;C0g of CX , namely the D 2 fC;C0g with ðX ;DÞ 2 s. Since it chooses theses sides
consistently, it induces an ultrafilter Uðs;X Þ on CX , one for every X 2 X, which is given by

Uðs;X Þ ¼ fC � CX j ðX ;CÞ 2 s g;
and these ultrafilters are compatible in that they form a limit of the inverse system
fbðCX Þ ; bðcX 0;X Þ ; X g. Here, each set CX is endowed with the discrete topology and
bðCX Þ denotes its Stone-Čech compactification. Every bonding map bðcX 0;X Þ is the unique
continuous extension of cX 0;X that is provided by the Stone-Čech property. More explicitly,
the map bðcX 0;X Þ sends each ultrafilter U 0 2 bðCX 0 Þ to its restriction

U 0�X ¼ fC � CX j 9C0 2 U 0 : C � C0�X g 2 bðCX Þ
where C0�X ¼ cX 0;X ½C0	. As one of his main results, Diestel showed that the map

s 7!ðUðs;X Þ j X 2 X Þ
defines a bijection between the tangle spaceH and the inverse limit lim �bðCX Þ. Moreover, he

showed that the ends of G are precisely those @0-tangles whose induced ultrafilters are all
principal.

For every @0-tangle s we write X s for the collection of all X 2 X for which the induced
ultrafilter Uðs;X Þ is free. Equivalently, X s is the collection of those X 2 X for which the
star f ðC;X Þ j C 2 CX g is included in s. The set X s is empty if and only if s is an end
tangle. An @0-tangle s with X s non-empty is called an ultrafilter tangle, and we write ! for
the collection of all ultrafilter tangles, i.e. ! ¼ H n X.

Theorem 2.8 ([4, Theorem 3.5]) For every ultrafilter tangle s and each X 2 X s the free
ultrafilter Uðs;X Þ determines s in that

s ¼ � ðA;BÞ 2 S
!
@0

�� 9C 2 Uðs;X Þ : V ½C	 � B n A�
:
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For every ultrafilter tangle s the set X s � X has a least element Xs of which it is the up-
closure X s ¼ bXscX :¼ fX 2 X j X � Xs g. These elements have been characterised
combinatorially in [6] as follows. Given X � V ðGÞ and a subset Y � X we write CX ðY Þ for
the set fC 2 CX j NðCÞ ¼ Y g of components of G� X that have their neighbourhood

precisely equal to Y. In the special case of X ¼ Y we abbreviate CX ðX Þ to �CX . A finite

vertex set X 2 X is critical if �CX is infinite. The collection of all the critical vertex sets of a
graph G is denoted by critðGÞ. A vertex set X � V ðGÞ is of the form Xs for an ultrafilter
tangle s of G if and only if X is critical. But more is true: The critical vertex sets allow us to
describe the ultrafilter tangles explicitly, like the ends allow us to describe the end tangles
explicitly. An ultrafilter tangle blueprint is an ordered pair (X, U) of a critical vertex set X

and a free ultrafilter U on �CX .

Theorem 2.9 ([6, Theorem 4.10]) Let G be any graph. Then the map

s 7!ðXs ; Uðs;XsÞ \ 2 �CXs Þ
is a bijection between the ultrafilter tangles and the ultrafilter tangle blueprints. In particular,

ðXs; �CXsÞ 2 s for every ultrafilter tangle s of G.

We will resume the following notation from [6] for critical vertex sets. For every X 2 X and
all critical Y that are not entirely contained in X we write CX ðY Þ for the unique component
of G� X meeting Y (equivalently: including

S
CX[Y ðY Þ).

Lemma 2.10 ([6, Lemma 4.8]) For every ultrafilter tangle s and each X 2 X n X s we do
have Xs � X [ CX ðXsÞ and the ultrafilter Uðs;X Þ is generated by fCX ðXsÞg.

Next, we describe Diestel’s tangle compactification. For this, we recall the notion of the 1-
complex of a graph G. In the 1-complex of G which we denote also by G, every edge e ¼ xy
is a homeomorphic copy ½x; y	 :¼ fxg t�e t fyg of [0, 1] with�e corresponding to (0, 1). The
point set of G is V tFe2E�e. Points in�e are called inner edge points, and they inherit their

basic open neighbourhoods from (0, 1). For each subcollection F � E we write�F for the setF
e2F�e of inner edge points of edges in F. The basic open neighbourhoods of a vertex v of G

are given by unions
S

e2EðvÞ½v; ieÞ of half open intervals with each ie some inner edge point

of e where E(v) denotes the set of edges of G at v.
To obtain the tangle compactification jGjH of a graph G we extend the 1-complex of G to

a topological space G tH ¼ G t lim �bðCX Þ by declaring as open in addition to the open

sets of G, for all X 2 X and all C � CX , the sets

OjGjHðX ;CÞ :¼
[

C [�EðX ;
[

CÞ [ � ðUY : Y 2 X Þ 2 lim �bðCX Þ
�� C 2 UX

�

and taking the topology this generates.

Theorem 2.11 ([4, Theorem 1]) Let G be any graph.

(i) jGjH is a compactification of G with totally disconnected remainder.
(ii) If G is locally finite and connected, then jGjH coincides with the Freudenthal

compactification of G.
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Theorem 2.12 ([8]) The tangle compactification of any graph G is obtained from its Stone-
Čech compactification bG by first declaring G to be open2 in bG and then collapsing each
connected component of the Stone-Čech remainder to a single point.

2.8 Trees-of-tangles

A separation fA;Bg of G and its orientations distinguish two infinite tangles s1 and s2 of G
if s1 and s2 orient fA;Bg differently, i.e., if ðA;BÞ 2 s1 and ðB;AÞ 2 s2 or vice versa. The
separation fA;Bg distinguishes s1 and s2 efficiently if it has minimal order jA \ Bj among all
the separations of G that distinguish s1 and s2. The result by Carmesin that implies the tree-
of-tangles theorem for the infinite tangles of locally finite infinite graphs states:

Theorem 2.13 ([3, Corollary 5.17]) Every connected graph G has a tree set of finite-order
separations of G that efficiently distinguishes all the ends of G.

Here, we view the ends as end tangles.
Very recently, Carmesin, Hamann and Miraftab showed a canonical version of this

theorem; see their paper [21]. We should also mention the work by Dunwoody and
Krön [22] and the work by Elbracht, Kneip and Teegen [9].

2.9 Combinatorial indistinguishability and tame separations

We say that two infinite tangles s1 and s2 are combinatorially distinguishable if at least one
of them is an end tangle or they are both ultrafilter tangles but such that their critical vertex
sets Xs1 and Xs2 are distinct. Thus, when s1 and s2 are combinatorially indistinguishable,
they are ultrafilter tangles with Xs1 ¼ Xs2 . Then we also call them equivalent for short and
write s1
 s2. There exist separations of G that do not distinguish any two equivalent
tangles:

Definition 2.14 A finite-order separation fX ;Cg of G and its orientations are tame if for no
Y � X both CX ðY Þ \ C and CX ðY Þ \ ðCX n CÞ are infinite. We write St ¼ StðGÞ for the set
of all tame finite-order separations of G.

Lemma 2.15 ([6, §5]) If s1 and s2 are two equivalent infinite tangles of a graph G, then

s1 \ S
!

t ¼ s2 \ S
!

t.

The tree set that we construct in the proof of Theorem 1 will consist of tame separations.
Identifying all equivalent @0-tangles yields the quotient H=
 ¼ X t critðGÞ which is

yet again a tangle space. An @0-tangle of St is a consistent orientation of St that contains no
finite star of finite interior as a subset. We write Ht ¼ HtðGÞ for the set of all @0-tangles
of StðGÞ.

Theorem 2.16 ([6, Theorem 5.10]) Let G be any graph. The @0-tangles of St are precisely
the ends and critical vertex sets of G, i.e. HtðGÞ ¼ XðGÞ t critðGÞ.

2 When G is locally compact, it is automatically open in bG, and so this step is redundant for locally finite
graphs.
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As a consequence, every graph is compactified by its ends and critical vertex sets in the
tangle-type compactification jGjH=
 ¼ G t XðGÞ t critðGÞ ¼ G tHtðGÞ.

Since the tree set that we construct in the proof of Theorem 1 will efficiently distinguish
all the combinatorially distinguishable @0-tangles of G and consist of tame separations, it
will efficiently distinguish all the @0-tangles of St (i.e. all the ends and critical vertex sets
of G).

3 Example section

The aim of this section is twofold. First, we verify that our main result, Theorem 1, is indeed
best possible as claimed in the introduction. More precisely, in Sect. 3.1 we show that tree
sets of finite-order separations cannot distinguish all the ultrafilter tangles from the same
equivalence class at once—for any G.

Second, we study the candidate for a starting tree set that is formed by the separations

fX ; �CX g with X critical in G (recall that these are precisely the separations which naturally
accompany the ultrafilter tangles). More precisely, in Sect. 3.2 we will see two example
graphs showing that it is necessary to modify the tree set candidate: For the first example

graph, the separations fX ; �CX g form a tree set but do not distinguish any two ultrafilter

tangles at all. For the second example graph, the separations fX ; �CX g are not even nested.

3.1 Ultrafilters and tree sets

In this subsection we show that, as soon as a graph G has some ultrafilter tangle s, it already
cannot admit a tree set of finite-order separations that distinguishes all the ultrafilter tangles
that are equivalent to s. As our first step, we translate the problem from graphs to bipar-
titions of sets.

For this, we need to make some things formal first. Suppose that K is a non-empty set.

We let B
!
ðKÞ :¼ 2K . Thus, every subset of K is an oriented ‘separation’. The partial ordering

� of B
!
ðKÞ will be �, the involution � on B

!
ðKÞ will be complementation in the set K. If

desired, we can think of a separation Z � K as the oriented bipartition ðZ�; ZÞ of K, and then
BðKÞ is the set of bipartitions of K. Note that two separations Z1; Z2 2 B

!
ðKÞ are nested if

Z1 � Z2 or Z1 � Z2 or Z1 [ Z2 ¼ K or Z1 \ Z2 ¼ ;. A tree set of bipartitions of K is a tree

set contained in B
!
ðKÞ with the induced partial ordering and involution. Note that ; is the

sole small separation in B
!
ðKÞ for Z � K n Z implies Z ¼ ;. Since an ultrafilter on K

happens to be an orientation of BðKÞ, a tree set T
!

of bipartitions of K distinguishes two

distinct ultrafilters U 6¼ U 0 on K if there is some Z 2 T
!

with Z 2 U and Z� 2 U 0. We are
almost ready for the translation, we only need one more lemma:

Lemma 3.1 Let s be any ultrafilter tangle of G with blueprint (X, U) and let any separation

ðY ;DÞ 2 s be given. Write C for the set of those components in �CX that avoid Y.

(i) If Y includes X, then ðY ;DÞ� ðX ;D \ �CX Þ 2 s.
(ii) Otherwise ðY ;DÞ� ðX ;CÞ 2 s.

In particular, the set
� ðX ;CÞ �� C 2 U

�
is cofinal in s.
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Proof Since Y is finite, C is a cofinite subset of �CX , giving C 2 U .

(i) The intersection D \ �CX can be written in a more complicated way as ðD�X Þ \ C
where C 2 U as noted above and

D�X ¼ fC 2 CX j 9D 2 D : D � C g 2 U :

Hence ðX ;D \ �CX Þ 2 s. It is straightforward to check ðY ;DÞ� ðX ;D \ �CX Þ.
(ii) From C 2 U we get ðX ;CÞ 2 s. Lemma 2.10 deduces from ðY ;DÞ 2 s that

CY ðX Þ 2 D. Finally, we calculate ðY ;DÞ� ðY ;CY ðX ÞÞ� ðX ;CÞ where for the
second inequality we use that every component in C sends an edge to the non-empty
X n Y � CY ðX Þ to deduce

S
C � CY ðX Þ. h

Now we are ready for the translation:

Lemma 3.2 Let X be a critical vertex set of G. Then every tree set of finite-order sepa-
rations of G that distinguishes all the ultrafilter tangles s of G with Xs ¼ X does induce a

tree set of bipartitions of �CX that distinguishes all the free ultrafilters on �CX .

Proof Let T
!
be a tree set of finite order separations of G that distinguishes all the ultrafilter

tangles of G with Xs ¼ X . Without loss of generality every separation ðY ;DÞ 2 T
!

distin-

guishes some two such ultrafilter tangles, and so X � Y follows for all ðY ;DÞ 2 T
!
.

The candidate for a tree set of bipartitions of �CX is f �D j ðY ;DÞ 2 T
!g where

�D ¼ D \ �CX . But when ðY ;D0Þ is the inverse of ðY ;DÞ it can happen that �D0 is not the

inverse of �D in B
!
ð �CX Þ. For example, this happens when a finite component C 2 �CX is

contained in Y, for then both �D0 and �D are missing C.

We overcome this obstacle as follows. First, we choose any consistent orientation O of T
!

(such an orientation exists, e.g., by [18, Lemma 4.1] which essentially applies Zorn’s lemma

to achieve this). Then, we define NO :¼ f �D j ðD; Y Þ 2 O g. Finally, we claim that N
!

:¼
NO [ N�O is a tree set of bipartitions of �CX that distinguishes all the free ultrafilters on �CX .

To verify that N
!

is a tree set we show that N
!

is nested. For this, consider any two
separations ðD1; Y1Þ; ðD2; Y2Þ 2 O. Then, say, either ðD1; Y1Þ� ðD2; Y2Þ implies �D1 � �D2

or ðD1; Y1Þ� ðY2;D2Þ implies D1 � ð �D2Þ�. So N
!

is a tree set.

Now let U 6¼ U 0 be any distinct two free ultrafilters on �CX . Then there is a separation
ðD; Y Þ 2 O that distinguishes the ultrafilter tangles sU and sU 0 corresponding to (X, U) and
ðX ;U 0Þ, say with ðD; Y Þ 2 sU and ðY ;DÞ 2 sU 0 . By Lemma 3.1 we have �D 2 U 0. Similarly

DY nD 2 U , which then via the inclusion DY nD � ð �DÞ� implies ð �DÞ� 2 U . h

As a consequence of this lemma, it suffices to show

Theorem 3.3 If K is an infinite set, then no tree set of bipartitions of K distinguishes all the
free ultrafilters on K.

in order to obtain our desired result:
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Corollary 3.4 If s is an ultrafilter tangle of G, then no tree set of finite-order separations of
G distinguishes all the ultrafilter tangles that are equivalent to s. h

Theorem 3.3 above has been proved independently from us by Bowler [23] in 2014 who did
not publish his findings. The proof presented below is ours. For the proof we need the
following lemma which is a tree set version of the fact that every connected infinite graph
contains either a ray or a vertex of infinite degree, [1, Proposition 8.2.1]:

Lemma 3.5 Every regular infinite tree set contains either an x-chain or an infinite splitting
star.

Proof If a tree set contains no x-chain, then it is isomorphic to the edge tree set of a rayless
tree by Theorem 2.2. This tree, then, must have an infinite degree vertex if the tree set is
infinite. h

If U is an ultrafilter on a set K and K is a partition of K, then we write U :K for the induced
ultrafilter on K given by fA � K j SA 2 U g. Notably, if U is principal, then so is U :K.
Conversely, every ultrafilter U on K gives a filter

b f
[

A j A 2 U g cK :¼ fA � K j 9A 2 U : A �
[

A g
on K, and every ultrafilter U on K that extends this filter induces U in that U ¼ U :K.
Phrased differently, the map U 7!U :K is a surjection from the set of ultrafilters on K onto
the set of ultrafilters on K. Notably, free ultrafilters on K are induced only by free ultrafilters
on K.

Proof of Theorem 3.3 Let any infinite set K be given and assume for a contradiction that T
!

is a tree set of bipartitions of K that distinguishes all the free ultrafilters on K. If T
!
is finite,

then there are only finitely many orientations of T
!
. But there are infinitely many free

ultrafilters on K, so a finite tree set cannot possibly distinguish all of them. Therefore, T
!

must be infinite. Since the empty set does not distinguish any two ultrafilters on K we may

assume without loss of generality that T
!

is regular. Then by Lemma 3.5 we know that T
!

contains either an x-chain or an infinite splitting star.

Suppose first that T
!
contains an x-chain; that is to say that we find a sequence ðZnÞn\x in

T
!

with Zn )Znþ1 for all n. As T
!

is a tree-set, K n Z0 is non-empty. Put Zx :¼ T
n\x Zn.

Then Zx is nested with every separation in T
!
. More precisely, every separation in T has an

orientation Z such that either Z � Zn for some n\x or Zx � Z. We turn the transfinite
sequence ðZaÞa�x into a partition of K, as follows. For every n\x set Kn ¼ Zn n Znþ1; and
put Kx :¼ ðK n Z0Þ [ Zx. Then K :¼ fKa j a�xg is an infinite partition of K. Let U be
any free ultrafilter on K, and pick some free ultrafilter U on K with U ¼ U :K. The free
ultrafilter U contains all cofinite subsets fKm j n�m\xg � K with n\x, and so U
contains all Zn n Zx with n\x. Recall that every separation in T has an orientation Z such
that either Z � Zn for some n\x or Zx � Z. Hence for every separation fZ�; Zg 2 T we
have that either Z � Zn with Zn n Zx 2 U implies Z 2 U , or Zx � Z with Z0 n Zx 2 U
implies Z� 2 U . Therefore, if U 0 is any free ultrafilter on K other than U , and U 0 is a free
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ultrafilter on K inducing U 0, then U 0 orients every separation in T the same way as U. But

then T
!

does not distinguish U and U 0 from each other, a contradiction.
Finally suppose that T contains an infinite splitting star r ¼ fKi j i 2 Ig. If K :¼ fK�i j

i 2 Ig is not yet a partition of K, then we add the non-empty interior
T

i2I Ki of r to K to
turn K into one. Let U be any free ultrafilter on K, and pick some free ultrafilter U on K
inducing U . The free ultrafilter U contains all collections K� K�i , and hence U contains all
Ki. Now every separation in T has an orientation Z with Z � Ki for some i 2 I as r is
splitting, and then Ki 2 U implies Z 2 U . Therefore, if U 0 is any free ultrafilter on K other
than U , and U 0 is a free ultrafilter on K inducing U 0, then U 0 orients every separation in T the

same way as U . But then T
!

does not distinguish U and U 0, a contradiction. h

We remark that the proof above even shows the following stronger version of Theorem 3.3:
If K is an infinite set, then for every tree set of bipartitions of K there is a collection of at

least 22
@0 ¼ 2c many free ultrafilters on K all of which induce the same orientation of the

tree set.3 So if G has precisely one critical vertex set X with �CX countable, then for every
tree set of finite order separations of G there is a collection O of ultrafilter tangles of G such
that all ultrafilter tangles in O induce the same orientation of the tree set and the cardinal jOj
is equal to the total number 2c of ultrafilter tangles of G.

3.2 The problem case

This subsection is dedicated to examples of graphs whose critical vertex sets give a very bad
starting set

� fX ; �CX g
�� X 2 critðGÞ�:

In both cases, all the critical vertex sets interact with each other in a particular way, made
precise as follows. Let us say that two critical vertex sets X and Y of G form a problem case

if X and Y are incomparable as sets and additionally both CX ðY Þ 2 �CX and CY ðX Þ 2 �CY

hold.

Example 3.6 Let G be the subtree of the infinitely branching tree T@0 that consists of the
first three levels (for an arbitrarily chosen root). Note that the critical vertex sets of any tree
are precisely the singletons formed by its infinite degree nodes. Then the collection

� ðX ; �CX Þ
�� X 2 critðGÞ�

is an infinite star of small separations. As every @0-tangle contains all the small separations
(A, V) with A finite (because these can be written as ðA;CAÞ and CA 2 Uðs;AÞ for every @0-
tangle s), it follows that every ultrafilter tangle contains this star as a subset, and so no two
ultrafilter tangles are distinguished by this star’s underlying tree set. Notably, every two
distinct critical vertex sets of G form a problem case. h

3 By improving Lemma 3.5 it might be possible to replace 22
@0 with 22

jKj
.

123

A tree-of-tangles theorem for infinite tangles 153



Example 3.7 If G is the graph shown in Fig. 2, then the collection
� fX ; �CX g

�� X 2 critðGÞ�

is not even nested. Indeed, X and Y are the only two critical vertex sets of G. Write V 0 for
V � u. Then fX ; �CX g ¼ fX þ u;V 0g and fY ; �CYg ¼ fY þ u;V 0g. Now these two separa-
tions cannot be nested: as X and Y are incomparable as sets, we have neither ðX þ
u;V 0Þ � ðY þ u;V 0Þ nor ðV 0;X þ uÞ� ðV 0; Y þ uÞ. But ðX þ u;V 0Þ � ðV 0; Y þ uÞ and
ðV 0;X þ uÞ� ðY þ u;V 0Þ are impossible as well since X þ u and Y þ u are both incom-
parable with V 0 as sets. As in the previous example we note that X and Y form a problem
case h.

4 The overall proof strategy

Our overall strategy to achieve our main result, Theorem 1, roughly goes as follows. Let G
be any infinite connected graph. Recall that every ultrafilter tangle s ¼ ðX ;UÞ of G natu-

rally comes with a finite-order separation ðX ; �CX Þ 2 s. As our first step, we carefully extend
and refine the set of these separations into a starting tree set T that already distinguishes all
the inequivalent ultrafilter tangles of G, but does not necessarily do so efficiently.

Next, we modify the torsos of T so that every @0-tangle of G is represented in every
modified torso by some end of that modified torso. We then show the following assertion
(also see Fig. 3): Let s1 and s2 be any two inequivalent @0-tangles of G which are not
efficiently distinguished by the starting tree set T. For every separator Z efficiently sepa-
rating the si in G there is a modified torso H of T in which the ends gi representing the
tangles si are efficiently separated by Z. Now we apply Carmesin’s theorem as a black box
in all the modified torsos H of T. That is, for every modified torso H of Twe obtain a tree set
TH of finite-order separations of H that efficiently distinguishes all the ends of H. Finally, we
lift all of Carmesin’s tree sets compatibly with each other and with T to obtain a tree set T 0 of
finite-order separations of G that extends T. In the end, every separation in TH which

Fig. 2 This graph’s critical vertex
sets do not give nested
separations

Fig. 3 The separator Z of a separation efficiently distinguishing two inequivalent tangles s1 and s2; and a
modified torso H with ends g1 and g2 representing the two tangles
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efficiently distinguishes two ends gi in H, with the gi as in the assertion above, gets lifted to
a separation in T 0 that efficiently distinguishes the si in G.

Phrased differently, we reflect the problem of efficiently distinguishing two inequivalent
@0-tangles down to the modified torsos of T. There, the problem reduces to efficiently
distinguishing two proxy ends, a problem that has already been solved by Carmesin. Finally,
we lift the solutions for the modified torsos of T up to the original graph G to solve the
original problem.

5 From principal collections of separators to tree sets

In this section, we show how the separations fX ; �CX g can be slightly modified to give rise to
a tree set that comes with quite a list of useful properties. Even though our initial intention is
to consider these separations for critical vertex sets X of G, we can prove a much stronger
result by more generally considering what we call principal collections of vertex sets:

Definition 5.1 Given a collection Y of vertex sets of G we say that a vertex set X of G is Y-
principal if X meets for every Y 2 Y at most one component of G� Y . And we say that Y is
principal if all its elements are Y-principal.

Notation If X � V ðGÞ meets precisely one component of G� Y for some Y � V ðGÞ, then
we denote this component by CY ðX Þ.

Definition 5.2 A set X 2 X is principal if it is X -principal.

Example 5.3 An X 2 X is principal, e.g., if it induces a clique G[X] or is included in a
critical vertex set of G.

Since principal vertex sets behave like cliques it is possible to alter the graph G so that all
principal vertex sets actually induce cliques while the finite-order separations stay the same:

Lemma 5.4 Suppose that Y is a collection of principal vertex sets of G and let GY be
obtained from G by turning each G[X] with X 2 Y into a clique. Then the finite-order
separations of G are precisely the finite-order separations of GY . In particular,
HðGÞ ¼ HðGYÞ.

Proof If fA;Bg is a finite-order separation of G, then each principal X 2 Y meets at most
one component of G� ðA \ BÞ. Therefore, no X adds an ðA n BÞ–ðB n AÞ edge in GY , so
fA;Bg is also a finite-order separation of GY . The converse holds due to EðGYÞ � EðGÞ. h

We will use this lemma in Sect. 8 to assume without loss of generality that, for a certain tree
set, the torsos coincide with the parts. Our next definition extends ‘forming a problem case’
from critical vertex sets to arbitrary vertex sets:

Definition 5.5 Two vertex sets X and Y of G with fX ; Yg principal are said to form a

problem case if X and Y are incomparable as sets and additionally CX ðY Þ 2 �CX and

CY ðX Þ 2 �CY hold.
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The following lemma will keep proofs short:

Lemma 5.6 If fX ;Cg and fY ;Dg are separations of G satisfying X [ V ½C	 � Y [ V ½D	
and that each component in D avoids X, then ðX ;CÞ� ðY ;DÞ.

Proof It remains to show V n V ½C	 � V n V ½D	 which is tantamount to V ½D	 � V ½C	,
which in turn is evident from the assumptions. h

In the previous section, we have seen that for two distinct critical (in particular principal)

vertex sets X 6¼ Y their separations fX ; �CX g and fY ; �CYg need not be nested. This may
happen, for example, if X and Y form a problem case. The following two lemmas show that
actually this may happen only if X and Y form a problem case.

Lemma 5.7 Let X(Y be two vertex sets of G such that fX ; Yg is principal. Then all of the

components in �CY are properly contained in the component CX ðY Þ. Notably, CX ðY Þ 2 �CX if
�CY is non-empty. Moreover, if we are given subsets C � �CX and D � �CY , then

S
!
�ðX ;CX ðY ÞÞ� ðY ; �CY Þ� ðY ;DÞ where S

!
¼ ðX ;CÞ if CX ðY Þ 2 C

S
!
¼ ðC;X Þ otherwise

8<
:

so in particular fX ;Cg and fY ;Dg are nested with each other. If additionally the inclusion
C � CX is proper, i.e., if ðX ;CÞ is not small, then ðX ;CÞ 6� ðD; Y Þ.

Proof Since every component C 2 �CY has neighbourhood precisely equal to Y, it follows

from X ( Y that
S ð �CY �X Þ ( CX ðY Þ. Hence Lemma 5.6 yields ðX ;CX ðY ÞÞ� ðY ; �CY Þ.

It remains to show ðX ;CÞ 6� ðD; Y Þ given that C ( CX . Assume for a contradiction that

the inequality ðX ;CÞ� ðD; Y Þ holds. If CX ðY Þ is contained in C, then S
!
¼ ðX ;CÞ� ðY ;DÞ

is equivalent to ðD; Y Þ� ðC;X Þ which yields ðX ;CÞ� ðD; Y Þ� ðC;X Þ. Hence ðX ;CÞ is
small which implies C ¼ CX , a contradiction. Otherwise CX ðY Þ is not contained in C, and

then S
!
¼ ðC;X Þ� ðY ;DÞ is equivalent to ðD; Y Þ� ðX ;CÞ which yields

ðX ;CÞ� ðD; Y Þ� ðX ;CÞ. In particular, ðX ;CÞ ¼ ðD; Y Þ implies X ¼ Y , contradicting the
fact that X(Y . h

Our next lemma is also illustrated in Fig. 4.

Lemma 5.8 Let X and Y be two incomparable vertex sets of G such that fX ; Yg is

principal. If we are given subsets C � �CX and D � �CY with CY ðX Þ 62 D, then

S
!
� ðX ;CX ðY ÞÞ� ðY ;DÞ where S

!
¼ ðX ;CÞ if CX ðY Þ 2 C

S
!
¼ ðC;X Þ otherwise

8<
:

so in particular fX ;Cg and fY ;Dg are nested with each other and we have
ðX ;CÞ 6� ðD; Y Þ (Fig. 4).
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Proof The assumption CY ðX Þ 62 D ensures that every component in D avoids X. Let y be
any vertex in Y n X . As every component inD avoids X and sends an edge to y 2 Y n X , we
deduce that ðY n X Þ [S

D � CX ðY Þ. Hence Lemma 5.6 yields ðX ;CX ðY ÞÞ� ðY ;DÞ. From
this, the rest is evident. h

We are now ready to prove our main technical result, Theorem 5.12. To allow for more
flexibility in its applications, we have extracted the following definition and second main
technical result from Theorem 5.12:

Definition 5.9 Suppose that Y is a principal collection of vertex sets of G. A function that

assigns to every X 2 Y a subset KðX Þ � �CX is called admissable for Y if for every two
X ; Y 2 Y that are incomparable as sets we have either CX ðY Þ 62KðX Þ or CY ðX Þ 62KðY Þ.
If additionally j �CX nKðX Þj � 1 for all X 2 Y, then K is strongly admissable for Y.

Theorem 5.10 For every principal collection of vertex sets of a connected graph there is a
strongly admissable function.

Proof LetY be a principal collection of vertex sets of a connected graphG.WewriteP for the
collection of those principal vertex sets inY that form a problem casewith some other principal
vertex set inY. Let us fix any well-ordering ofP and viewP as well-ordered set from now on.

For each X 2 P we put KðX Þ :¼ CX ðY Þ for the first Y 2 P which forms a problem case

with X. Let us put KðX Þ :¼ �CX n fKðX Þg for every X 2 P, and KðX Þ :¼ �CX for all other
vertex sets X 2 Y. We claim that K is strongly admissable for Y.

For this, let X 6¼ Y be any two distinct vertex sets in Y that form a problem case. We show
that at least one ofKðX Þ ¼ CX ðY Þ andKðY Þ ¼ CY ðX Þ holds. Let Z 2 P be the first vertex set
that forms a problem case with one ofX and Y.Without loss of generality wemay assume that Z
forms a problem case with X, so we haveKðX Þ ¼ CX ðZÞ by the minimal choice of Z. Since we
are done if Yand Zmeet the same component ofG� X , wemay assume thatCX ðY Þ 6¼ CX ðZÞ.
This means that the three sets X, Y, Z are pairwise incomparable. Our plan is to show that Y
forms a problem case with Z, and that this gives KðY Þ ¼ CY ðZÞ ¼ CY ðX Þ as desired.

We already know that Y and Z are incomparable. Next, let us verify that CY ðZÞ 2 �CY . For

this, pick any vertex x 2 X n Y . As X and Z form a problem case we have CX ðZÞ 2 �CX , so the
vertex x sends some edge e to the component CX ðZÞ. Now x is not in Y and the component

Fig. 4 Two incomparable sets X and Y such that fX ;Yg is principal. Note that every component of G� X
which is neither CX ðY Þ nor contained in CY ðX Þ has its neighbourhood in X \ Y and is thus also a component
of G� Y (black circles). Also, not every component of G� Y which is contained in CX ðY Þ has to be
contained in �CY , as is depicted by the blue circle on the right. If CY ðX Þ 62 D � �CY , then D is a subset of
�CY n fCY ðX Þg and thus ðX ;CX ðY ÞÞ� ðY ;DÞ
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CX ðZÞ avoids Yas Yand Z live in distinct components ofG� X by assumption, soCX ðZÞ þ e
is a connected subgraph ofG� Y that meets both X and Z, yielding CY ðZÞ ¼ CY ðX Þ. Since Y
andX form a problem case, givingCY ðX Þ 2 �CY , we getCY ðZÞ 2 �CY as required. By symmetry

we have CZðY Þ 2 �CZ , so Y and Z form a problem case as desired and KðY Þ ¼ CY ðZÞ follows
from theminimal choice ofZ. To see thatKðY Þ ¼ CY ðX Þ holds, recall thatwe provedCY ðZÞ ¼
CY ðX Þ three sentences earlier. h

Remark 5.11 Admissable functions are monotone in the following sense. If K is an
admissable function for a principal collection Y of vertex sets of a graph, then every
function K0 that assigns to each X 2 Y a subset K0ðX Þ �KðX Þ is also admissable. For
instance, if Y is a collection of critical vertex sets, then Theorem 5.10 yields a strongly
admissable function K for Y, and by discarding arbitrarily chosen components from some

component collections KðX Þ we may see to it that j �CX nKðX Þj ¼ 1 for all X 2 Y. We
will do this in later proofs to ensure that the separations of the form fX ;KðX Þg have no
small orientations, which we will need to obtain tree sets from them.

Finally, we go for Theorem 5.12, which considers tree sets of the following form:

Notation Given a principal collection Y of vertex sets of G and an admissable function K
for Y we write

TðY;KÞ :¼ � fX ;KðX Þg ; fX ;Kg �� X 2 Y and K 2KðX Þ�:
For every vertex set X 2 Y we write rKX for the star that consists of the separation
ðX ;KðX ÞÞ and all the separations ðK;X Þ with K 2KðX Þ. Notably, each star rKX has
interior X.

For an illustration of the following theorem, see Fig. 5.

Theorem 5.12 Let G be any connected graph, let Y be a principal collection of vertex sets
of G and let K be an admissable function for Y. Abbreviate TðY;KÞ ¼ T and rKX ¼ rX .
Then the following assertions hold:

X

K (X)

Y

K (Y )

Z

K (Z)

WK (W )

Fig. 5 A principal set Y ¼
fW ;X ; Y ;Zg of pairwise disjoint
sets and the separations of the
form ðKðX 0Þ;X 0Þ for X 0 2 Y
where K is some admissable
function for Y. Note that in
accordance with part (i) of
Theorem 5.12 the depicted
separations form a partial
consistent orientation
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(i) For every distinct two X ; Y 2 Y, after possibly swapping X and Y, either

ðKðX Þ;X Þ� ðY ;KðY ÞÞ or ðX ;KðX ÞÞ� ðX ;CX ðY ÞÞ� ðY ;KðY ÞÞ:
The collection of all separations ðKðX Þ;X Þ with KðX Þ(CX forms a consistent
partial orientation of T.

(ii) The collection T of separations is nested. It is a regular tree set if ;(KðX Þ(CX

holds for all X 2 Y.

(iii) Every star rX with X 2 Y is a splitting star of T
!
.

Moreover, if all the vertex sets in Y are finite, then we may add:

(iv) If s is an ultrafilter tangle of G with Xs 2 Y and KðXsÞ 2 Uðs;XsÞ, then s induces

via s 7!s \ T
!

on T the consistent orientation which is given by the infinite splitting

star rXs in that s \ T
! ¼ drXse.

(v) If critðGÞ � Y and �CX nKðX Þ is finite for all X 2 critðGÞ, then T distinguishes
every two inequivalent ultrafilter tangles s1 and s2 of G via separations in rXs1

and

rXs2
, and it distinguishes every end from every ultrafilter tangle s via a separation in

rXs .

Proof

(i) We start with the inequalities. If X and Y are comparable with X (Y , say, then we
are done by Lemma 5.7. Otherwise X and Y are incomparable, and then we are
done by Lemma 5.8 since K is admissable. The two lemmas also prevent
ðX ;KðX ÞÞ� ðKðY Þ; Y Þ for all distinct two elements X ; Y 2 Y with KðX Þ(CX

and KðY Þ(CY , ensuring that the partial orientation of T formed by the
separations ðKðX Þ;X Þ with KðX Þ(CX is consistent.

(ii) That T is nested follows from (i). For the ‘moreover’ part note that requiring
;(KðX Þ(CX ensures that fX ;KðX Þg has no small orientation.

(iii) It suffices to show that every separation in T with separator Y 6¼ X has an
orientation that lies below some element of rX . So consider any Y 2 Y other than
X. Since rY is a star, it suffices to show that some separation in ðrY Þ� lies below
some element of rX . By (i) it suffices to consider the following cases. If
ðKðY Þ; Y Þ� ðX ;KðX ÞÞ we are done. Otherwise either

ðX ;KðX ÞÞ� ðX ;CX ðY ÞÞ� ðY ;KðY ÞÞ or ðY ;KðY ÞÞ� ðY ;CY ðX ÞÞ� ðX ;KðX ÞÞ:

In the first case we are fine since ðKðY Þ; Y Þ� ðCX ðY Þ;X Þ 2 rX . And in the
second case we are done by the second inequality.

(iv) Let s be any ultrafilter tangle of G with Xs 2 Y and write X ¼ Xs. First, we show

that rX is included in O :¼ s \ T
!
. The assumption KðX Þ 2 Uðs;X Þ means

ðX ;KðX ÞÞ 2 O. Moreover, we have ðK;X Þ 2 s for every K 2KðXsÞ as Uðs;X Þ
is a free ultrafilter. Thus rX � O, and so drX e � O by consistency. Conversely,

O � drX e since rX � O is a splitting star of T
!

by (iii).
(v) If s1 and s2 are two ultrafilter tangles of G with Xs1 6¼ Xs2 , then the induced

orientations si \ T
!
come from distinct splitting stars rXsi

of T
!
by (iii). Now if x is
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an end of G and s is an ultrafilter tangle, then x avoids the star rXs since it has
finite interior (cf. [4, Corollary 1.7]) while s contains it by (iii).

h

We close this section by showing that in general it is not possible to find an admissable

function K for which T
!ðcritðGÞ;KÞ is a tree set that is even isomorphic to the edge tree set

of a tree.

Example 5.13 If G is the graph shown in Fig. 6, then there is no function assigning to each

critical vertex set X of G a cofinite subset KðX Þ � �CX such that

N :¼ � fX ;KðX Þg �� X 2 critðGÞ�

gives rise to a tree set N
!

that is isomorphic to the edge tree set of a tree (so in particular it
cannot be induced by an S@0 -tree or tree-decomposition of G). First, however, we describe G
more precisely. The graph G is obtained from the @0-regular tree T ¼ T@0 by fixing any root
r and then proceeding as follows. For every ray R � T starting at the root r we add a new
copy of K2;@0 with 2-class fxR; yRg, say, and join xR to every vertex of the ray R. Readers
familiar with the ‘binary tree with tops’ will note that G extends a ‘T@0 with tops’.

Let us check that there really is no suitable function X 7!KðX Þ as claimed. Assume for a

contradiction that there is. Then N
!
is a tree set that, by Theorem 2.2, has no ðxþ 1Þ-chains.

Hence to yield a contradiction, it suffices to find an ðxþ 1Þ-chain. If t is a node of T � G,

then its down-closure dte in T is a critical vertex set of G, and the components in �Cdte are of
the following form. If t0 is an upward neighbour of t in T, then the vertex set of the
component of G� dte containing t0 is given by the union of bt0c � T with all the copies of
K2;@0 whose corresponding ray has a tail in bt0c. This gives a bijection between the upward

neighbours of t in T and the components in �Cdte. Next, we claim that there is a ray R� ¼
t0t1t2. . . � T starting at the root r such that for all n[ 0 the node tn corresponds to a

component in Kðdtn�1eÞ for its predecessor tn�1. Indeed, since KðdteÞ � �Cdte is infinite for
all t 2 T , such a ray can be constructed inductively. But then we get a strictly ascending
sequence

ðdt0e;Kðdt0eÞÞ\ðdt1e;Kðdt1eÞÞ\ðdt2e;Kðdt2eÞÞ\ � � �

i.e. we get an x-chain in N
!
. And this x-chain extends to an ðxþ 1Þ-chain as the separation

Fig. 6 A T@0 (black) with 2@0
many copies of K2;@0 as ‘tops’
(visualised in red for the right-
most ray)
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ðZ;KðZÞÞ with Z ¼ fxR� ; yR�g that comes from the K2;@0 for R� is greater than all sepa-
rations ðdtne;KðdtneÞÞ.

6 Applications

This section is dedicated to the applications of our work mentioned in the introduction. All
of the four applications are, in fact, applications of Theorems 5.10 and 5.12. Elbracht, Kneip
and Teegen [9] use the following corollary of our two theorems:

Corollary 6.1 Suppose that Y is a principal4 collection of vertex sets of G. Then there is a

function K assigning to each X 2 Y a subset KðX Þ � �CX (the set �CX consists of the
components of G� X whose neighbourhoods are precisely equal to X) that misses at most

one component from �CX , such that the collection
� fV n K ; X [ K g �� X 2 Y and K 2KðX Þ�

is nested.

Bürger and the second author [10] use Theorems 5.10 and 5.12 directly. In the remainder of
this section, we present applications three and four: a structural connectivity result for
infinite graphs, and the collectionwise normality of ultrafilter tangle spaces.

6.1 A structural connectivity result for infinite graphs

We have already explained this application in detail in our introduction, now we prove it:

Theorem 2 Every connected graph G has a tree set whose separators are precisely the
critical vertex sets of G and all whose torsos are tough.

Proof By Theorems 5.10 and 5.12 it suffices to show that for Y :¼ critðGÞ and a strongly
admissable function K the torsos of the tree set TðY;KÞ are tough. For this, let O be any
consistent orientation of TðY;KÞ, let P be its part and H its torso. In order to show that H
is tough, let N be a finite subset of V(H). Let C � CN consist of those components of G� N
that meet P. Then C must be finite: otherwise N contains a critical vertex set N0 of G with

C0 :¼ �CN0 \ C infinite; and then ðN0;CÞ 2 O for all C 2 C0 \KðN0Þ as these C meet P,
contradicting the consistency of O. Thus G� N has only finitely many components meeting
P. By Corollary 2.6 each of these components induces a component of H � N, and so
H � N has only finitely many components. h

6.2 Collectionwise normality of the ultrafilter tangle space

For this subsection, we recall the following definitions from general topology (cf. [24]):

4 cf. Definition 5.1
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Definition 6.2 (Normality and collectionwise normality) Let X be a topological space in
which all singletons are closed.

The space X is said to be normal if for every two disjoint closed subsets A1 and A2 of X
there are disjoint open subsets O1 and O2 of X with A1 � O1 and A2 � O2.

A collection fAi j i 2 I g of subsets Ai � X is discrete if every point x 2 X has an open
neighbourhood that meets at most one of the Ai.

The space X is said to be collectionwise normal if for every discrete collection fAi j
i 2 I g of pairwise disjoint closed subsets Ai � X there exists a collection fOi j i 2 I g of
pairwise disjoint open subsets Oi � X with Ai � Oi for all i 2 I .

The following implications are true for every topological space (the first implication is [24,
Theorems 5.1.1 and 5.1.18] whereas the second is clear):

compact Hausdorff ) collectionwise normal ) normal.

In general, the end space XðGÞ of a graph is not compact, e.g., if G is a union of infinitely
many rays sharing precisely their first vertex. Polat [12] and Sprüssel [13] independently
showed that the end space of every graph G is normal, and Polat even showed that the end
space is collectionwise normal (this is Lemma 4.14 in [12], see [25] for a modern proof):

Theorem Every graph G has a collectionwise normal end space XðGÞ.

The @0-tangle space HðGÞ, with the subspace topology imposed by Diestel’s tangle com-
pactification, is compact Hausdorff and contains the end space as a subspace. Since every
compact Hausdorff space is collectionwise normal, the @0-tangle space is collectionwise
normal as well:

Theorem Every graph G has a collectionwise normal @0-tangle space HðGÞ.

This result, however, does not imply that the end space is collectionwise normal, for usually
the end space is not closed in the @0-tangle space.

As the @0-tangle space is the disjoint union HðGÞ ¼ XðGÞ t !ðGÞ of the end space
XðGÞ and the ultrafilter tangle space !ðGÞ, the question arises whether the ultrafilter tangle
space is collectionwise normal as well. Like the end space, the ultrafilter tangle space
usually is not closed in the @0-tangle space, so the ultrafilter tangle space does not obviously
inherit the collectionwise normality from the @0-tangle space.

In this section, we show that the ultrafilter tangle space is collectionwise normal, The-
orem 3. We remark that our proof also shows that the critical vertex set space (with the
subspace topology from the compactification jGjC ¼ G t critðGÞ t XðGÞ introduced in [6])
is collectionwise normal as well.

Theorem 3 Let G be any connected graph. Then for every discrete collection fAi j i 2 I g
of pairwise disjoint closed subsets Ai � !ðGÞ there exists a collection fOi j i 2 I g of
pairwise disjoint open subsets Oi � jGjH such that Ai � Oi for all i 2 I . In particular, the
ultrafilter tangle space of G is collectionwise normal.

Our proof of Theorem 3 will employ the following short lemma:
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Lemma 6.3 For every two finite-order separations ðX ;CÞ� ðY ;DÞ of G we have
OjGjHðX ;CÞ � OjGjHðY ;DÞ.

Proof Clearly, G \OjGjHðX ;CÞ � G \OjGjHðY ;DÞ. And from the consistency of @0-tan-
gles we deduce H \OjGjHðX ;CÞ � H \OjGjHðY ;DÞ. h

Proof of Theorem 3 For this, let fAi j i 2 I g by any discrete collection of closed subsets
Ai � !ðGÞ. We are going to find a suitable collection fOi j i 2 I g. To get started, we view
the @0-tangle space as inverse limit H ¼ lim �ð bðCX Þ j X 2 X Þ where each CX is endowed

with the discrete topology. Since H is compact and all bðCX Þ are Hausdorff, it follows from
general topology that all of the (continuous) projections prY : H ¼ lim �bðCX Þ ! bðCY Þ are
closed. Now consider any critical vertex set X of G. The Stone-Čech remainder ð �CX Þ� ¼
bð �CX Þ n �CX is a closed subspace of bð �CX Þ ¼ cl bðCX Þ ð �CX Þ � bðCX Þ. (This follows from
general topology, but it can also be seen more directly by considering the standard basis for

the Stone-Čech compactification of discrete spaces.) Since prX and ð �CX Þ� are closed, for
every i 2 I the set

Ai;X :¼ prX ðAiÞ \ ð �CX Þ� ¼ prX
�
Ai

H � \ ð �CX Þ�

is closed inbð �CX Þ. Note that the setsAi;X maybeempty.Weclaim thatfAi;X j i 2 I g is a discrete
collection of pairwise disjoint closed subsets of bð �CX Þ. For this, consider any U 2 ð �CX Þ�. The
preimagepr�1X ðUÞ is a singleton that consists precisely of the ultrafilter tangle s ofwhich (X,U) is
the blueprint. Since the setsAi are pairwise disjoint, thismeans that the setsAi;X must be pairwise
disjoint as well. If s is contained in a set Ai, then s has an open neighourhood in !ðGÞ which
avoids all sets Aj with j 6¼ i, because fAi j i 2 I g is discrete. In particular, s has an open
neighbourhoodOjGjHðY ;DÞ in jGjH which avoids all Aj with j 6¼ i. By the ‘in particular’ part of

Lemma 3.1 and by Lemma 6.3, we may assume that Y ¼ X andD 2 U . Hence the set fU 0 2
bð �CX Þ j D 2 U 0 g induced by OjGjHðX ;DÞ is an open neighbourhood of U in bð �CX Þ which
avoids all Aj;X with j 6¼ i. Therefore, fAi;X j i 2 I g is a discrete collection of pairwise disjoint
closed subsets of bð �CX Þ. Now the Stone-Čech compactification bð �CX Þ is collectionwise normal
since it is compact Hausdorff, and so we find a collection fOi;X j i 2 I g of pairwise disjoint
open subsets Oi;X � bð �CX Þ satisfying the inclusion Ai;X � Oi;X for all i 2 I .

Next, we use Theorem 5.10 and Remark 5.11 to find a strongly admissable functionK for

the principal collection critðGÞ with j �CX nKðX Þ j ¼ 1 for all X 2 critðGÞ. For every index
i 2 I and every ultrafilter tangle s 2 Ai we choose a component collection CðsÞ 2 Uðs;XsÞ
such that

● CðsÞ �KðXsÞ;
● CðsÞ � Oi;Xs ;

● Oi;s :¼ OjGjHðXs;CðsÞÞ avoids all Aj with j 6¼ i.

We find CðsÞ as follows. First, we recall that KðXsÞ is contained in the free ultrafilter

Uðs;XsÞ. Second, we note that Oi;Xs \ �CXs is contained in Uðs;XsÞ as well, for Oi;Xs is an

open neighbourhood of U ¼ prXs
ðsÞ 2 Ai;Xs in bð �CXsÞ and U is contained in Uðs;XsÞ as a

subset. Therefore, if we find a component collection C � �CXs with C 2 Uðs;XsÞ such that
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OjGjHðXs;CÞ avoids all Aj with j 6¼ i, then CðsÞ :¼KðXsÞ \ Oi;Xs \ C will satisfy all three
requirements (for the third requirement we apply Lemma 6.3 to ðXs;CÞ� ðXs;CðsÞÞ). To
find a suitable component collection C, we proceed as follows. The union of all sets Aj with
j 2 I and j 6¼ i is closed in !ðGÞ since fAi j i 2 I g is a discrete collection of closed sets.
Hence there exists an open neighbourhood OjGjHðY ;DÞ of s in jGjH which avoids this

union. Applying Lemma 3.1 to ðY ;DÞ 2 s then yields a component collection C � �CXs

satisfying ðY ;DÞ� ðXs;CÞ 2 s. In particular, OjGjHðXs;CÞ � OjGjHðY ;DÞ (Lemma 6.3
again) avoids all Aj with j 6¼ i.

Letting Oi :¼
S fOi;s j s 2 Ai g for every i 2 I, we claim that the collection fOi j i 2 I g

is as desired. For this, it suffices to show that for all indices i 6¼ j and ultrafilter tangles
s 2 Ai and s0 2 Aj the open neighbourhoods Oi;s and Oj;s0 are disjoint. By Theorem 5.12 (i)
and by symmetry, only the following three cases can possibly occur.

In the first case we have Xs ¼ Xs0 and write X ¼ Xs. Then Oi;X and Oj;X are disjoint,
ensuring that CðsÞ and Cðs0Þ are disjoint. (If we had not involved the open sets Oi;X and
Oj;X , then the component collections CðsÞ and Cðs0Þ might possibly have a non-empty finite
intersection.) In particular, Oi;s and Oj;s0 are disjoint as well.

In the second case we have Xs 6¼ Xs0 and ðKðXsÞ;XsÞ� ðXs0 ;KðXs0 ÞÞ, which implies
that Oi;s and Oj;s0 are disjoint.

In the third case we have Xs 6¼ Xs0 and ðXs;KðXsÞÞ� ðXs;CÞ� ðXs0 ;KðXs0 ÞÞ where C is
the component CXsðXs0 Þ. Since Oi;s avoids Aj 3 s0 we deduce that the component C is not
contained in CðsÞ. Hence ðCðsÞ;XsÞ� ðXs0 ;Cðs0ÞÞ which implies that Oi;s and Oj;s0 are
disjoint. h

7 Consistent orientation and lifting from torsos

For this section, fix a graph G, a regular tree set N of finite-order separations of G, and a
consistent orientation O of N. Also define P ¼ T

ðC;DÞ2O D.

This section deals with the problem of translating separations of torsoðG;OÞ to sepa-
rations of G, as described in Sect. 4. More precisely, given a separation (A, B) of
torsoðG;OÞ, we want to find an extension of it in G, a separation (U, W) of G towards which
all elements of O point such that U \W � P and ðU \P;W \PÞ ¼ ðA;BÞ. Note that
every extension (U, W) of (A, B) satisfies U \W ¼ A \ B. In general, extensions are not
unique. However, the information contained in O already puts strong restrictions on the
structure of extensions.

On the one hand, if x and y are vertices of G and (C, D) is a separation in O with
fx; yg � C then every extension (U, W) of a separation of torsoðG;OÞ has to satisfy
ðC;DÞ� ðU ;W Þ or ðC;DÞ� ðW ;UÞ and thus fx; yg � U or fx; yg � W. So here we have a
relation on

S
ðC;DÞ2O C and related vertices cannot be separated by extensions of separations

of torsoðG;OÞ.
On the other hand, if (C, D) and ðC0;D0Þ are separations in O such that O also contains

some ðC00;D00Þ with ðC;DÞ� ðC00;D00Þ and ðC0;D0Þ � ðC00;D00Þ, then (C, D) and ðC0;D0Þ
cannot lie on different sides of (U, W) because ðC00;D00Þ points towards every extension
(U, W) of (A, B). So here we have a relation on O and no extension of a separation of
torsoðG;OÞ can separate two related separations in O.

It turns out that the two relations describe two points of view on the same idea: In this
paper we define 
 as a relation on the set of separations of O, as that fits better in our
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framework of tree sets. But it is possible just as well to work with the relation on vertices, as
is done e.g. in [3], and several lemmas in this section are inspired by similar lemmas in that
paper. Indeed, we will associate with every equivalence class c of 
 a set of vertices Ac,
thereby associating an equivalence class of 
 of separations with an equivalence class of
vertices, and we will work with both c and Ac.

Lemma 7.1 Define a relation 
 on O where ðC;DÞ
 ðC0;D0Þ if and only if there is a
separation in O above both (C, D) and ðC0;D0Þ. Then 
 is an equivalence relation.

Proof By definition the relation is reflexive and symmetric. In order to show transitivity,
assume that (C, D) and ðC0;D0Þ are related, as witnessed by ðU ;W Þ 2 O, and that ðC0;D0Þ
and ðC00;D00Þ are related, as witnessed by ðU 0;W 0Þ 2 O. As O is a consistent orientation, we
have ðU ;W Þ� ðU 0;W 0Þ or ðW 0;U 0Þ � ðW ;UÞ or ðU ;W Þ� ðW 0;U 0Þ. But
ðU ;W Þ� ðW 0;U 0Þ implies ðC0;D0Þ � ðU ;W Þ� ðW 0;U 0Þ � ðD0;C0Þ and thus that
ðC0;D0Þ � ðD0;C0Þ which contradicts the fact that N is regular. So either ðU ;W Þ� ðU 0;W 0Þ
or ðU 0;W 0Þ � ðU ;W Þ and in both cases the bigger one of these separations shows that
(C, D) and ðC00;D00Þ are related. h

Definition 7.2 An equivalence class of the relation from Lemma 7.1 is a corridor of O. For
a corridor c let Ac be the union of all sets C where ðC;DÞ 2 c.

Remark 7.3 Let c be a corridor and (A, B) the supremum of all elements of c. Then A ¼ Ac

and A \ B ¼ Ac \P.

Remark 7.4 Lemma 7.1 also holds in abstract separation systems with the same proof. In
particular, corridors are well-defined for abstract separation systems.

Lemma 7.5 If (C, D) and ðC0;D0Þ are elements of O and C n D0 is non-empty then (C, D)
and ðC0;D0Þ are comparable.

Proof Because O is consistent and nested, any two separations in O either point towards
each other or are comparable. Let w be a vertex contained in C n D0. Then w witnesses that
ðC;DÞ£ðD0;C0Þ, hence (C, D) and ðC0;D0Þ do not point towards each other. h

Lemma 7.6 Let c be a corridor of O and U a finite subset of Ac. Then there is a separation
(C, D) in c such that C contains U and C n D contains U nP.

Proof First we consider the special case that U contains only one vertex v 62 P. As v is a
vertex of Ac there is a separation (C, D) in c such that v 2 C. Furthermore because v is not
contained in P there is a separation ðC0;D0Þ in O such that v is contained in C0 n D0. By
Lemma 7.5 the separations (C, D) and ðC0;D0Þ are comparable and thus contained in the
same corridor, so ðC0;D0Þ is contained in c.

Now consider an arbitrary finite subset U of Ac. For every vertex v of U there is a
separation ðCv;DvÞ in c such that v 2 Cv. We just showed that if v is not contained inP then
ðCv;DvÞ can be chosen such that Dv does not contain v. As c is a corridor and U is finite,
there is a separation (C, D) in c which is bigger than or equal to all separations ðCv;DvÞ. In
particular v 2 Cv � C for all v 2 U and v 2 Cv n Dv � C n D for all v 2 U nP. h
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Lemma 7.7 The sets Ac nP partition V ðGÞ nP.

Proof By definition ofP every vertex v 2 V ðGÞ nP is contained in Ac for some corridor c,
so the sets Ac nP cover V ðGÞ nP. To prove their disjointness, assume that some vertex is
contained in Ac and Ac0 for two corridors c and c0. By Lemma 7.6 there are separations
(C, D) in c and ðC0;D0Þ in c0 respectively such that both C n D and C0 n D0 contain v. Thus
by Lemma 7.5 the separations (C, D) and ðC0;D0Þ are contained in the same corridor and
hence c ¼ c0. h

Corollary 7.8 A separation (C, D) of N is contained in a given corridor c if and only if
C n D � Ac.

Lemma 7.9 Let U be a connected set of vertices avoidingP. Then there is a corridor c with
U � Ac.

Proof By Lemma 7.7 it is sufficient to show the statement for U with exactly two elements.
Let v and w be two neighbours not in P, and let (C, D) be a separation in O such that
v 2 C n D. Because w is a neighbour of v and (C, D) is a separation, w is contained in C and
thus for the corridor c containing (C, D) we have that Ac contains both v and w. h

Corollary 7.10 Let F be a finite connected set of vertices not meeting P. Then there is a
separation ðC;DÞ 2 O such that F � C n D.

Proof By Lemma 7.9 we may apply Lemma 7.6. h

Lemma 7.11 Let c be a corridor and assume that all separators of separations in N are
cliques. Then Ac \P is a clique, too.

Proof Let v and w be two distinct vertices of Ac \P. Then by Lemma 7.6 there is a
separation ðC;DÞ 2 c such that C contains both v and w. Because v and w are contained in
P which in turn is a subset of D, both v and w are contained in C \ D. Because C \ D is a
clique by assumption, v is a neighbour of w. h

8 Extending the tree set of the principal vertex sets

In this section we prove our main result, Theorem 1. To obtain a starting tree set T as
described in our overall proof strategy in Sect. 4, we apply our technical main result
Theorem 5.12 (combined with Theorem 5.10) to a carefully chosen collection Y of principal
vertex sets of G. For choosing Y we need the following definition:

Definition 8.1 A separation fX ;Cg is generous if both C and the complement CX n C
contain components whose neighbourhoods are precisely equal to X, i.e. if �CX meets both C
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and CX n C. A set X of vertices of G is generous if it is the separator of some generous

separation, i.e. if j �CX j � 2.

Now we are ready to set up our starting tree set T and more, as follows. Throughout this
section we fix the following notation. We let Y be the collection of all generous subsets of
the critical vertex sets of G, in formula:

Y ¼ �
X 2 X

�� X is generous and 9 Y 2 critðGÞ : X � Y
�
:

Notably, critðGÞ � Y. The elements of Y are principal (cf. Example 5.3). We assume,
without loss of generality by Lemma 5.4, that each X 2 Y induces a clique G[X]. Using
Theorem 5.10, Remark 5.11 and Theorem 5.12 we obtain a strongly admissable function K

for Y that deviates from all �CX with X 2 Y by precisely one component, in formula

j �CX nKðX Þj ¼ 1 for all X 2 Y. This way we ensure that T :¼ TðY;KÞ is a regular tree
set of generous finite-order separations of G. For X 2 Y we abbreviate rX ¼ rKX . Moreover,
O always denotes a consistent orientation of T, and thenP � V ðGÞ denotes the part of O. At
some point in this section the concept of a ‘modified torso’ of O will be defined. From that
point onward, H will always denote the modified torso of O. Whenever we speak of P or H
we tacitly assume that they stem from some O. This completes the list of fixed notation for
this section.

Next, we consider two inequivalent @0-tangles s1 and s2 of G, we pick a finite-order
separation fA1;A2g of G that efficiently distinguishes s1 and s2, and we write Z ¼ A1 \ A2

for its separator. If Z is included entirely in a critical vertex set of G, then T efficiently
distinguishes s1 and s2:

Lemma 8.2 Let fZ;Dg efficiently distinguish two @0-tangles s1 and s2 of G. Then fZ;Dg
is generous. If additionally s1 and s2 are inequivalent and Z is included in some critical
vertex set of G, then T efficiently distinguishes s1 and s2.

Proof Let fD1;D2g :¼ fD;CY nDg such that ðZ;DiÞ 2 si for both i ¼ 1; 2. Our proof
starts with a more general analysis of the situation, as follows. Consider any i 2 f1; 2g and
put j ¼ 3� i.

If si lives in a component C of G� Z in that ðZ;CÞ 2 si, then by the consistency of sj we
deduce from ðC; ZÞ� ðZ;DjÞ 2 sj that ðC; ZÞ 2 sj, so fZ;Cg distinguishes s1 and s2. But
then so does fNðCÞ;Cg by Lemma 2.7, and hence NðCÞ ¼ Z follows by the efficiency of Z.

Otherwise si is an ultrafilter tangle and Xi :¼ Xsi is contained in Z. Then, as Uðsi; ZÞ is a
free ultrafilter, we have ðZ;D0iÞ 2 si for D0i :¼ Di \ CZðXiÞ. Hence ðXi;D

0
iÞ 2 si by

Lemma 2.7. And ðD0i;XiÞ� ðZ;DjÞ 2 sj implies ðD0i;XiÞ 2 sj by the consistency of sj.
Therefore, fXi;D

0
ig distinguishes s1 and s2, so Xi ¼ Z follows by the efficiency of Z.

From the two cases above we deduce that fZ;Dg is generous. It remains to show that if
additionally s1 and s2 are inequivalent and Z is contained in a critical vertex set of G, then T
efficiently distinguishes s1 and s2. First, we have Z 2 Y as Z is generous. Next, we note that
not both s1 and s2 can be ultrafilter tangles with X1;X2 � Z for otherwise X1 ¼ Z ¼ X2

follows from our considerations above, contradicting that s1 and s2 are inequivalent. So at

least one of s1 and s2 lives in a component C of G� Z, say ðZ;CÞ 2 s1, and then C 2 �CZ

follows from our considerations above. If C 2KðZÞ then fZ;Cg 2 T efficiently distin-

guishes s1 and s2. Otherwise fCg ¼ �CZ nKðZÞ, and we claim that fZ;KðZÞg 2 T effi-
ciently distinguishes s1 and s2. On the one hand, ðKðZÞ; ZÞ� ðZ;CÞ 2 s1 implies
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ðKðZÞ; ZÞ 2 s1 by the consistency of s1. On the other hand, s2 either lives in a component
in KðZÞ or s2 is an ultrafilter tangle with X2 ¼ Z, and in both cases we deduce
ðZ;KðZÞÞ 2 s2. h

Therefore, we may assume that Z is not contained entirely in any critical vertex set of G.
Then Z is contained in a part of T, as follows.

Lemma 8.3 Let Z 2 X be generous. If X is a principal vertex set of G that does not contain
Z entirely, then there is a unique component of G� X that Z meets.

Proof As Z is not contained in X as a subset, there is a component C of G� X which Z
meets. Assume for a contradiction that there is another component D of G� X meeting Z.

Pick vertices c 2 Z \ C and d 2 Z \ D. Now note that every component K 2 �CZ must meet
X, for K plus its K–c and K–d edges admits a c–d path connecting the distinct components C
and D of G� X . But since X is principal it meets at most one component of G� Z, namely

CZðX Þ, contradicting that j �CZ j � 2. h

By Lemma 8.3 above the separator Z meets precisely one side from every separation in T,
and then orienting each separation in T towards that side results in a consistent orientation O
of T whose part P contains Z. The remainder of this section is dedicated to modifying the
torso H of O so that

● s1 and s2 are ‘represented’ by ‘proxy’ ends g1 and g2 in H; and

● applying Carmesin’s theorem in H yields a tree set that lifts compatibly with T to a tree
set of tame finite-order separations of G that efficiently distinguishes s1 and s2.

8.1 Modified torsos, proxies of corridors and lifting from modified torsos

In this subsection we introduce modified torsos and show that there is an elegant way to lift
tree sets from modified torsos to the graph G itself. Proxies of corridors are introduced as a
technical tool whose purpose is twofold: first, they are key to the elegant lifting of tree sets.
And second, they will be employed in the next subsection to define proxies for @0-tangles.

Definition 8.4 (Modified torso) Whenever P is non-empty we define the modified torso H
of O, as follows. Consider the set Z of all finite subsets of P that are separators of suprema
of corridors of O. Then we obtain H from G½P	 by disjointly adding for each X 2 Z a copy
of K@0 that we join completely to X.

We remark that P being non-empty ensures that the empty set is not an element of Z, so
modified torsos are connected. Since the copies of K@0 are joined to finite cliques of G½P	 by
Lemma 7.11, no two ends of G½P	 are merged when we move on to the modified torso H:

Lemma 8.5 Every finite-order separation of G½P	 extends to a finite-order separation of H.
Thus sending each end g of G½P	 to the end iðgÞ of H � G½P	 with g � iðgÞ defines an
injection i : XðG½P	Þ,!XðHÞ. Moreover, the ends of H that do not lie in the image of i
correspond bijectively to the copies of K@0 that were added to G½P	 in order to obtain H.h
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Now we tend to the lifting of separations from H to G. It is desirable to have the separator of
a separation remain unchanged when lifting it. But H usually will contain many vertices that
are not vertices of the original graph G. We solve this as follows. When we consider finite-
order separations of H, we are only interested in ones that efficiently distinguish some two
ends of H. And these H-relevant separations have their separators consist of vertices of the
original graph G:

Definition 8.6 (H-relevant) If a separation of H has finite order and efficiently distinguishes
some two ends of H, then we call it and its orientations H-relevant.

Lemma 8.7 If fA;Bg is H-relevant, then A \ B � P.

Proof Assume for a contradiction that A \ B meets an added copy K of a K@0 in a vertex v
and write X ¼ NHðKÞ. Notably H[X] is a clique, and hence so is H ½X [ K	. Without loss of
generality we may assume that H ½X [ K	 � H ½A	, so K meets A n B while H ½X [ K	 avoids
B n A. Now v 2 A \ B \ K sends its edges only to K and X, and in particular v sends no
edges to B n A. So fA;B� vg is again a separation of H, but of order jA \ Bj � 1, and this
separation still distinguishes all the ends of H that were distinguished by fA;Bg, contra-
dicting that fA;Bg is H-relevant. h

Now we are almost ready to define lifts of separations of H, all we are missing is

Definition 8.8 (Proxy of a corridor) Suppose that P is non-empty and c is a corridor of O.
The proxy of c in the modified torso H is the end g of H that is defined as follows. Consider
the separator X of the supremum of c. If X is finite, then g is the end of H containing the rays
of the K@0 that was added for X. Otherwise G½X 	 � H is an infinite clique by Lemma 7.11,
and then g is the end of H that contains the rays of G[X].

Finally, we can lift separations from H to G:

Definition 8.9 (Lift from a modified torso) Let (A, B) be an H-relevant separation of a
modified torso H. By Lemma 8.7 the separator A \ B is included in P entirely. The lift
ð‘ðAÞ; ‘ðBÞÞ of (A, B) is defined as follows. The set ‘ðAÞ � V ðGÞ agrees with A on P, and a
vertex of G�P is contained in ‘ðAÞ whenever its corridor’s proxy in H lives on the A-side.
The set ‘ðBÞ is defined analogously.

We remark that f‘ðAÞ; ‘ðBÞg does not depend on the orientation of fA;Bg. In order to verify
that the lifts work as intended we need the following lemma:

Lemma 8.10 If fA;Bg is H-relevant and c is a corridor of O whose proxy lives on the A-
side, then Ac � ‘ðAÞ.

Proof We have Ac nP � ‘ðAÞ by the definition of ‘ðAÞ. It remains to show N � A for the
separator N ¼ Ac \P of the supremum of c. If N is infinite, then the proxy g of c living on
the A-side means G½N	 � H ½A	. Otherwise N is finite. Then g stems from a copy K � H of
K@0 that is joined completely to the clique G½N	, and so g living on the A-side means
K � H ½A	. Consequently, the infinite clique H ½K [ N	 is contained in H[A] as well, giving
N � A as desired. h
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Now we can check for ourselves that lifts work:

Lemma 8.11 The lift of an H-relevant separation is a separation of G with the same
separator.

Proof Let fA;Bg be any H-relevant separation, and recall that A \ B � P by Lemma 8.7.
Every vertex of G�P lies in Ac for a unique corridor c of O, and hence is contained in
precisely one of ‘ðAÞ and ‘ðBÞ. Thus ‘ðAÞ \ ‘ðBÞ ¼ A \ B. It remains to verify that G has no
edge between ‘ðAÞ n ‘ðBÞ and ‘ðBÞ n ‘ðAÞ. For this, let e ¼ xy be any edge of G. If both x
and y are contained in P, then e � A say, and hence e � ‘ðAÞ. Otherwise one of x and y lies
outside ofP, say x 2 ‘ðAÞ nP. Let c be the corridor of O with x 2 Ac nP, so the proxy g of
c lives on the A-side. From x 2 Ac nP we infer y 2 Ac. Then e � Ac � ‘ðAÞ by
Lemma 8.10. h

Starting with an intuitive lemma we verify that our lifts are compatible with T and lifts of
other modified torsos:

Lemma 8.12 Let c be a corridor of O and let g be the proxy of c in H. If fA;Bg is H-

relevant with g living on the A-side, then S
!
�ð‘ðAÞ; ‘ðBÞÞ for all S

!
2 c. In particular, the

lift of an H-relevant separation is nested with T.

Proof Consider any ðC;DÞ 2 c. We have to show ðC;DÞ� ð‘ðAÞ; ‘ðBÞÞ. For the inclusion
C � ‘ðAÞ we start with C � Ac and employ Lemma 8.10 for Ac � ‘ðAÞ. Now the inclusion
‘ðBÞ � D is tantamount to C n D � ‘ðAÞ n ‘ðBÞ which is immediate from C � ‘ðAÞ as
C n D avoids P � ‘ðAÞ \ ‘ðBÞ (cf. Lemma 8.11). h

Corollary 8.13 If H 0 is the modified torso of a consistent orientation O0 of T other than O,
then all lifts of H-relevant separations are nested with all lifts of H 0-relevant separations.

Lemma 8.14 If (A, B) and (C, D) are two H-relevant with ðA;BÞ� ðC;DÞ, then their lifts
satisfy ð‘ðAÞ; ‘ðBÞÞ� ð‘ðCÞ; ‘ðDÞÞ. In particular, the lifts of two nested H-relevant sepa-
rations are again nested.

We close this subsection with the lemma that ensures that when we construct the tree set for
our main result, we are able to ensure the ‘moreover’ part stating equivalent @0-tangles
orient the tree set the same way.

Lemma 8.15 Every H-relevant separation lifts to a tame separation of G.

Proof If H stems from a consistent orientation O of T that contains some star rX with

X 2 Y, then O ¼ drX e (with the down-closure taken in T
!
) by Theorem 5.12. Consequently,

H was obtained from the finite clique G[X] by disjointly adding precisely one copy of a K@0
and joining it completely to X, so the one-ended H has no H-relevant separations. Therefore,
we may assume that O avoids all of the stars rX with X 2 Y.

Let fA;Bg be an H-relevant separation and recall that A \ B � P by Lemma 8.7. And let
X � A \ B be a critical vertex set of G.
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If there is a component K 2KðX Þ with ðX ;KÞ 2 O, then the proxy of the corridor of O
that contains ðX ;KÞ ensures that all the components in KðX Þ n fKg are contained in the
same side of f‘ðAÞ; ‘ðBÞg.

Otherwise, since O avoids the star rX , we have ðKðX Þ;X Þ 2 O. Then the proxy of the
corridor of O that contains ðKðX Þ;X Þ ensures that all the components in KðX Þ are
contained in the same side of f‘ðAÞ; ‘ðBÞg.

In either case, all but finitely many of the components in �CX lie on the same side of

f‘ðAÞ; ‘ðBÞg. Since A \ B � X meets at most finitely many components in �CX , the col-

lection CA\BðX Þ forms a cofinite subset of �CX , and therefore all but finitely many com-
ponents in CA\BðX Þ lie on the same side of f‘ðAÞ; ‘ðBÞg as desired. h

8.2 Proxies of @0-tangles

We start this subsection by introducing the technical notion of ‘walking a corridor’ and
prove two technical lemmas about ends. This framework, together with proxies of corridors,
then enables us to give a comprehensible definition of proxies of @0-tangles. We emphasise
that this technical layering is highly important to save the key segments of our overall proof
from being swamped with terrible amounts of case distinctions.

Definition 8.16 (Walking) We say that an end x of G walks a corridor c of O if for the
supremum (A, B) of c the endx has a ray contained inG½A n B	. And we say that an ultrafilter
tangle s of G walks a corridor c of O if s contains the inverse of some separation in c.

Lemma 8.17 Suppose that N is a tree set of generous finite-order separations of G all
whose separators induce cliques. Let x be an end of G, let P be the part of the orientation

O ¼ x \ N
!

that x induces on N, and suppose that x walks a corridor c of O. If the
separator Ac \P of the supremum of c is infinite, then G½P	 contains a ray from x.

Proof Pick R 2 x arbitrarily. By Lemma 7.11 it is sufficient to show that there are infinitely
many pairwise disjoint paths from R to Ac \P. We will recursively construct such paths Pn

(n 2 N) of which only the last vertex vn is contained in P. Assume that P0; . . .;Pn�1 have
already been defined. Then there is a finite non-empty initial segment R0 of R such that
R0 [ P0�v0 [ � � � [ Pn�1�vn�1 is connected. Let ðA;BÞ 2 O be a separation such that all ver-
tices of R0 [ P0�v0 [ � � � [ Pn�1�vn�1 are contained in A n B (such a separation exists by
Corollary 7.10). Then (A, B) is contained in c. Every vertex vk with k\n is a neighbour of a
vertex in A n B and thus contained in A.

As Ac \P is infinite, it contains a vertex v which is not contained in A \ B and thus not
contained in A. In particular, v is not contained in any path Pk with k\n. Because v 2 Ac,
there is a separation ðA0;B0Þ in c such that v 2 A0 and thus v 2 A0 \ B0. Let (C, D) be a
separation in c which is bigger than both (A, B) and ðA0;B0Þ. Then all vertices contained in
some Pk with k\n are contained in ðC n DÞ [P. Furthermore v 2 C \ D and R contains a
vertex of C n D. Because ðC;DÞ 2 O, some tail of R is contained in D n C and thus R also
contains vertices of D n C. As (C, D) is a separation and R connected this implies that some
vertex w of R is contained in C \ D. Because w is not a vertex of P it is also not a vertex of
some Pk with k\n.
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As (D, C) is generous, there is a component of G� ðC \ DÞ which is contained in D n C
and whose neighbourhood is precisely equal to C \ D. Thus there is a path P from w to v
whose inner vertices are contained in D n C. We already established that v and w are not
vertices of any Pk with k\n. Hence P is disjoint from all Pk with k\n. Let vn be the first
vertex of P inP and let Pn :¼ wPvn. By Corollary 7.10 there is a separation ðI ; JÞ 2 O such
that the vertices of Pn�vn are contained in I n J . Then ðI ; JÞ 2 c and vn 2 I , so vn 2 Ac. As
also vn 2 P we have vn 2 Ac \P as required. h

Lemma 8.18 If an end x of G does not lie in the closure of P, then x walks a unique
corridor of O.

Proof Since x does not lie in the closure ofP, we in particular find a ray R 2 x that avoids
P. As R is connected, it defines a corridor c of O with R � Ac nP. Then x walks the
corridor c, and so it remains to show that c is unique.

If O 6� x, then x contains the inverse s
 

of some separation S
!
2 O, and then c is

determined as the corridor of O containing S
!
. Otherwise O � x. Then we assume for a

contradiction that there is another ray R0 2 x that walks a corridor c0 of O other than c. Since
the suprema of c and c0 both separate R and R0, their separators cannot be finite, and so they
are infinite. But then applying Lemma 8.17 to either c or c0 yields a ray of x in G½P	,
contradicting the assumption that x does not lie in the closure of P. h

Finally, we are ready for the definition of proxies of @0-tangles. We split the definition and
consider ends and ultrafilter tangles separately.

Definition 8.19 (Proxy of an end) If x is an end of G, then the proxy of x in H is the end g
of H that is defined as follows.

● If x lies in the closure of P, then x has a ray in G½P	 by Corollary 2.4, and g is the end
of such a ray in H (this is well-defined by Corollary 2.5).

● Otherwise x does not lie in the closure ofP and by Lemma 8.18 walks a unique corridor
c of O; then g is the proxy of c in H.

Definition 8.20 (Proxy of an ultrafilter tangle) If s is an ultrafilter tangle of G and O avoids
the star rXs , then s walks a unique corridor c of O and the proxy of s in H is the end g of H
that is the proxy of c in H.

We close this subsection with a lemma on the interaction of lifts with proxies:

Lemma 8.21 Let s be an @0-tangle of G and suppose that the proxy g of s in H is defined. If
fA;Bg is H-relevant and ðA;BÞ 2 g, then ð‘ðAÞ; ‘ðBÞÞ 2 s.

Proof If s is an end of G that lies in the closure of P, then this follows from the fact that
some ray of G½P	 is contained in both s and g. Otherwise s is an @0-tangle of G that walks a
unique corridor c of O. If additionally s is an end, then every ray in s that avoids P is
contained in ‘ðBÞ, ensuring ð‘ðAÞ; ‘ðBÞÞ 2 s. So we may assume that s is an ultrafilter
tangle. As the proxy g of s is defined, we know that O avoids the star rXs so that s walks a
unique corridor c of O. By definition, this means that s contains the inverse of some oriented
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separation from c. Then ð‘ðAÞ; ‘ðBÞÞ 2 s follows from Lemma 8.12 and the consistency of
the tangle s. h

8.3 Efficiently distinguishing the proxies

In this subsection we provide the final key segments of our overall proof. We start with an
overview of the situation that is of interest.

Throughout this subsection we fix the following notation in addition to the notation
fixed throughout the ambient section. (See also Fig. 7.) We are given two inequivalent @0-
tangles s1 and s2 ofG that are efficiently distinguished by a finite-order separation fA1;A2g of
G with separator Z ¼ A1 \ A2. The separator Z is not contained in a critical vertex set of G.
Hence, by Lemma 8.3 the separator Zmeets precisely one side from every separation in T, and
then orienting each separation in T towards that side results in a consistent orientation O of T
whose part P contains Z. For this special orientation we write O(Z), and we write PðZÞ and
H(Z) for its part and modified torso. Moreover, g1 and g2 are the proxies of s1 and s2 in H(Z)
(note that these are defined as O(Z) avoids all stars rX with X 2 Y). Whenever we write i we
mean an arbitrary i 2 f1; 2g, and we write j ¼ 3� i. If si happens to be an ultrafilter tangle,
then we write Xi instead of Xsi . This completes the list of fixed notation for this subsection.

The final key segments are Lemma 8.22 and Proposition 8.24 below. We start with the
lemma:

Lemma 8.22 Every relevant finite-order separation of H that distinguishes g1 and g2 does
lift to a separation of G that distinguishes s1 and s2.

Proof Let fA;Bg be any relevant finite-order separation of H that distinguishes g1 and g2,
say with ðB;AÞ 2 g1 and ðA;BÞ 2 g2. Then Lemma 8.21 gives both ð‘ðBÞ; ‘ðAÞÞ 2 s1 and
ð‘ðAÞ; ‘ðBÞÞ 2 s2, so f‘ðAÞ; ‘ðBÞg distinguishes s1 and s2. h

For the key proposition, we need the following proposition whose proof we postpone to
after the proof of the key proposition.

Proposition 8.23 If si walks a corridor ci of O(Z) where Ni denotes the separator of the
supremum of ci, then G½Ni n Z	 is a non-empty clique that is entirely contained in G½Ai n Aj	.

The final key segment is

Fig. 7 A graph G, a vertex set Z efficiently separating two inequivalent @0-tangles s1 and s2 of G, and a
modified torso H(Z) which contains Z. The @0-tangles si walk corridors ci and H(Z) has proxies g1 and g2 for
s1 and s2
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Proposition 8.24 The proxies g1 and g2 are efficiently distinguished by Z.

Proof If Z distinguishes the proxies g1 and g2 in H(Z), then it does so efficiently, for
otherwise the separation of order\jZj doing so lifts to one distinguishing s1 and s2 in G by
Lemma 8.22, contradicting the efficiency of Z. Therefore, it remains to show that g1 and g2
are distinguished by Z. For this, we check three cases.

In the first case, both s1 and s2 lie in the closure ofPðZÞ. Then s1 and s2 are distinct ends
of G that lie in the closure of PðZÞ, and so their proxies stem from rays of s1 and s2
respectively. Now Z witnesses that these rays are inequivalent in G and, in particular, that
they are inequivalent in G½P	. Thus Z distinguishes g1 and g2 in H(Z) by Lemma 8.5.

In the second case, neither s1 nor s2 lies in the closure ofPðZÞ, and both walk corridors c1
and c2 of O(Z). We let N1 and N2 be the separators of the suprema of c1 and c2. Then, by
Proposition 8.23, for both i ¼ 1; 2 the induced subgraphG½Ni n Z	 is a non-empty clique that is
entirely contained in G½Ai n Aj	. Consequently, Z distinguishes g1 and g2 in H(Z) by
Lemma 8.5.

In the third case, s1 does not lie in the closure ofPðZÞ andwalks a corridor c1 ofO(Z) while
s2 lies in the closure ofPðZÞ. Then s2 must be an end of G. We let N1 be the separator of the
supremum of c1.

By Proposition 8.23 the induced subgraph G½N1 n Z	 is a non-empty clique that is entirely
contained in G½A1 n A2	. Since g1 stems from the copy of K@0 that is attached to the clique
G½N1	 � G½P	while g2 stems from a ray ofG½P	 in s2, we deduce that Z distinguishes g1 and
g2 in H(Z) by Lemma 8.5. h

In the remainder of this subsection we prove Proposition 8.23. For this, we introduce the
concept of a pointer. Basically, the idea is to have a connected subgraph of G that can be
employed as an oracle—like we employ rays as oracles for their ends.

Definition 8.25 (Pointer) If si walks a corridor ci of O(Z), then a pointer of si is a connected
subgraphKi ofG½Aci nPðZÞ	 \ G½Ai n Aj	 that is of the following form. If si is an end ofG, then

Ki is a ray in si. Otherwise si is an ultrafilter tangle of G, and then Ki is a component in �CXi .

Lemma 8.26 If si walks a corridor of O(Z), then si has a pointer.

Proof If si is an end, then si has a ray avoiding PðZÞ for si walks a corridor of O(Z), and as
Z � PðZÞ every such ray is a pointer of si. Otherwise si is an ultrafilter tangle. Then we let
ci be the corridor of O(Z) walked by si. Let ðC;DÞ 2 si witness that si walks ci, so
D n C � Aci nPðZÞ. Using Theorem 2.8 we pick C 2 Uðsi;XiÞ with V ½C	 � Ai n Aj and

C0 2 Uðsi;XiÞ with V ½C0	 � D n C. As Uðsi;XiÞ is a free ultrafilter, the intersection C \
C0 \ �CXi 2 Uðsi;XiÞ is infinite, and every component in this intersection is a pointer of si.h

Lemma 8.27 If the neighbourhood NðCiÞ of the component Ci of G�PðZÞ containing a
pointer Ki of si is finite, then NðCiÞ is the separator of some finite-order separation of G that
distinguishes s1 and s2.

Proof By the consistency of sj it suffices to find a separation ðA;BÞ 2 si with
ðB;AÞ� ðAi;AjÞ and A \ B ¼ Y where we write Y ¼ NðCiÞ. As Ki is a pointer we have
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Ki � G½Ai n Aj	. Since the separator Z ¼ A1 \ A2 is included in PðZÞ we have Ci �
G½Ai n Aj	 as well. If si is an end then ðY ;CiÞ 2 si is as desired. Otherwise si is an ultrafilter
tangle. If Ci ¼ Ki then NðCiÞ ¼ NðKiÞ ¼ Xi, and employing Theorem 2.8 we may pick
C 2 Uðsi;XiÞ with V ½C	 � Ai, so ðXi;CÞ 2 si is as desired. Hence we may assume that
Ci )Ki must meet Xi. Then Ci ¼ CY ðXiÞ, and by Lemma 2.10 we have ðY ;CY ðXiÞÞ 2 si as
desired. h

Proof of Proposition 8.23 By Lemma 8.26 we find a pointer Ki of si, and we let Ci be the
component of G�PðZÞ containing Ki. Then Ki � G½Aci nPðZÞ	 implies
Ci � G½Aci nPðZÞ	, so we have NðCiÞ � Ni. First, we show that Ci has a neighbour in
Ni n Z. Otherwise NðCiÞ � Ni \ Z, and then NðCiÞ ¼ Z by Lemma 8.27 and the efficiency
of Z. Now Z � Ni with Z being finite allows us to find a separation ðX ;CÞ 2 ci with Z � X
contradicting this subsection’s assumption on Z. Therefore, Ci has a neighbour in Ni n Z.
Next, since G½Ni	 is a clique, there is a unique component Di of G� Z containing G½Ni n Z	.
Then Ci � Di as Ci has a neighbour in Ni n Z, and so G½Ni n Z	 � G½Ai n Aj	 follows from
the pointer Ki being included in G½Ai n Aj	. h

8.4 Proof of the main result

At last, we prove our main result:

Theorem 1 Every connected graph G has a tree set of tame finite-order separations that
efficiently distinguishes all its inequivalent @0-tangles. In particular, equivalent @0-tangles
induce the same orientations on the tree set.

Proof For every modified torso H of T we employ Carmesin’s Theorem 2.13 to obtain a
tree set TH of H-relevant separations that efficiently distinguishes all the ends of H. Then we
lift all the separations in all the tree sets TH and add these to T to obtain an extension T 0 of T.
Then T 0 is again a tree set by Lemma 8.12, Corollary 8.13 and Lemma 8.14.

First, we show that T 0 efficiently distinguishes every two inequivalent @0-tangles of G.
For this, let s1 and s2 be two inequivalent @0-tangles of G. We have to find a separation in T 0

that efficiently distinguishes s1 and s2. Pick some finite-order separation of G with separator
Z say that efficiently distinguishes s1 and s2. If Z is contained in some critical vertex set of
G, then by Lemma 8.2 we find a separation in T � T 0 that efficiently distinguishes s1
and s2. Otherwise Z is not contained in any critical vertex set of G. However, Z is generous
by Lemma 8.2, and so by Lemma 8.3 induces a consistent orientation of T whose part
contains Z. Then by Proposition 8.24 the @0-tangles s1 and s2 have distinct proxies g1
and g2 in the modified torso H of that orientation, and Z efficiently distinguishes g1 and g2
in H. Thus there is a separation in TH of order jZj that distinguishes g1 and g2. By
Lemma 8.22 this separation lifts to a separation of G that distinguishes s1 and s2. This lift
still has order jZj and lies in T 0.
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Second we show that all separations in T 0 are tame. Every separation in T is tame. And by
Lemma 8.15 the lifts of all TH are tame as well. h

Appendix

Compactifications

A compactification of a topological space X is an ordered pair (K, h) where K is a compact
topological space and h : X ,!K is an embedding of X as a dense subset of K. Sometimes we
also refer to K as a compactification of X if the embedding h is clearly understood (e.g. if h
is the identity on X). The space K n h½X 	 is called the remainder of the compactification.

Suppose now that X is a discrete topological space. Since X is locally compact5, X is open
in all of its Hausdorff compactifications (cf. [24, Theorem 3.6.6]). If we pair the space bX of
all ultrafilters on X carrying the topology whose basic open sets are of the form
fU 2 bX j A 2 Ug, one for each A � X , with the embedding that sends every x 2 X to the
principal ultrafilter on X generated by fxg, then this yields the Stone-Čech compactification
of X. By the Stone-Čech property, every continuous function f : X ! T into a compact
Hausdorff space T has a unique continuous extension bf : bX ! T with bf �X ¼ f (cf. [24,
Theorem 3.5.1]).

Theorem 9.1 ([26, Corollary 7.4]) If X is an infinite set, then jbX j ¼ 22
jX j
.

Inverse limits of inverse systems

A partially ordered set ðI ; �Þ is said to be directed if for every two i; j 2 I there is some
k 2 I with k� i; j. Let ðXi j i 2 I Þ be a family of topological spaces indexed by some
directed poset ðI ; �Þ. Furthermore, suppose that we have a family ðuji : Xj ! Xi Þi� j2I of
continuous mappings which are the identity on Xi in case of i ¼ j and which are compatible
in that uki ¼ uji � ukj for all i� j� k. Then both families together are said to form an
inverse system, and the maps uji are called its bonding maps. We denote such an inverse
system by fXi;uji; Ig or fXi;ujig for short if I is clear from context. Its inverse limit
lim �Xi ¼ lim �ðXi j i 2 I Þ is the topological space

lim �Xi ¼ f ðxiÞi2I j ujiðxjÞ ¼ xi for all i� j g �
Y
i2I

Xi:

Whenever we define an inverse system without specifying a topology for the spaces Xi first,
we tacitly assume them to carry the discrete topology. If each Xi is (non-empty) compact
Hausdorff, then so is the inverse limit lim �Xi.

5 A topological space X is locally compact if for each of its points there is some compact subspace of X which
includes an open neighbourhood of that point.
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