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Abstract
It is proved that decomposable graphs are set recognizable and that the index graph of the 
canonical decomposition as well as the graphs induced on the maximal autonomous sets 
of vertices are set reconstructible. From these results, we obtain set reconstructibility for 
many decomposable graphs as well as a concise description of the decomposable graphs 
for which set reconstruction remains an open problem.
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1 Introduction

The (deck) reconstruction problem is a classical open problem in graph theory. Hundreds 
of publications and multiple surveys are dedicated to its investigation. We refer the reader 
to [6] as the most recent expository work on this subject, which provides a comprehen-
sive overview and a thorough list of references, and to [1] and [13] for recent works on 
variations of this problem. A natural generalization of the (deck) reconstruction problem 
is the set reconstruction problem. In set reconstruction, we ask whether every graph with 
at least 4 vertices is uniquely reconstructible from its set of isomorphism types of one-
vertex-deleted subgraphs. More precisely, we have the following. (Throughout this paper, 
all graphs are assumed to be finite.)

Definition 1.1 Let G = (V ,E) be a graph and let x ∈ V  . We call the induced subgraph 
G − x ∶= G[V ⧵ {x}] a card of G.
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Definition 1.2 For any finite graph H = (W,F) , let [H] denote the set of all graphs H′ 
on the vertex set {1,… , |W|} such that H is isomorphic to H′ . For any graph G, we call 
{[G − x] ∶ x ∈ V} the set of unlabelled cards of G.

Open Question 1.3 The Set Reconstruction Problem. Let G and H be two finite graphs 
with at least 4 vertices and equal sets of unlabelled cards. Must G be isomorphic to H?

Similar to the premise in [6], which states that symmetry properties hold a key to recon-
struction, it was suggested in Sect. 8.5 of [10] that set reconstruction should be tackled by 
first proving structural results about graphs and to subsequently obtain set reconstruction 
results as a consequence. We take this approach here, as we use a structural result by Sch-
merl and Trotter, see [11] or Theorem 2.2 here, to prove set recognizability of decompos-
able graphs.

Definition 1.4 A class C of graphs is called set recognizable iff, for all G = (V ,E) in C and 
all graphs H = (W,F) , we have that {[G − x] ∶ x ∈ V} = {[H − y] ∶ y ∈ W} implies that 
H is in C , too.

Recognition of a class of graphs is a natural step towards the eventual reconstruction 
of its members. Set reconstruction of decomposable graphs, the focus of this paper, is a 
natural target, because many of the graphs that distinguish set reconstruction from (deck) 
reconstruction are decomposable (also see Sect. 2 of [12], which discusses this question for 
ordered sets).

Definition 1.5 Let G = (V ,E) be a graph, let v ∈ V  and let A ⊆ V  . We write v ∼ A iff, for 
all a ∈ A , we have that v ∼ a.

Definition 1.6 Let G = (V ,E) be a graph. The set of vertices A ⊆ V  is called autonomous 
(see, for example, [5]) iff, for all v ∈ V ⧵ A , we have that, if there is an a ∈ A such that 
v ∼ a , then v ∼ A . An autonomous set of vertices A is called trivial iff |A| ∈ {0, 1, |V|}.

Definition 1.7 A graph is called decomposable iff it contains a nontrivial autonomous set 
of vertices. Otherwise, it is called indecomposable.

We first prove the following theorem, which generalizes the main result of [4] to the 
set recognition of decomposable undirected simple graphs without any restrictions on the 
number of vertices. We note that our results hold for all classes of relations that have a 
Schmerl-Trotter type theorem (see Theorem 2.2) and a Gallai-type canonical decomposi-
tion (see Theorem 4.1 here). In particular, all results given here have natural analogues for 
the set recognition and set reconstruction of ordered sets.

Theorem 1.8 Decomposable graphs with at least 4 vertices are set recognizable.

By Theorem 4.12 in [7] or Theorem 7 in [9], disconnected graphs are set reconstructi-
ble. Therefore, for the remainder of this paper, we can concentrate on connected graphs G 
with connected complements Gc.

Let G be connected, decomposable and so that Gc is connected. If at least 3 vertices 
of G are contained in nontrivial autonomous sets of vertices, then all cards of G are 
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decomposable. Hence, the only indecomposable graphs that could have the same set of 
unlabelled cards are the critically indecomposable graphs defined below.

Definition 1.9 An indecomposable graph G = (V ,E) is called critically indecomposable 
(see [11]) iff, for every x ∈ V  , the card G − x is decomposable.

Let G be connected, decomposable, let Gc be connected and assume that fewer than 
3 vertices of G are contained in nontrivial autonomous sets of vertices. Then G has 
exactly one autonomous set of vertices, and this set contains exactly 2 vertices. It is easy 
to see that, in this case, the only indecomposable graphs that could have the same set of 
unlabelled cards are the pseudo-autonomous-doubleton indecomposable graphs defined 
below.

Definition 1.10 An indecomposable graph G = (V ,E) is called pseudo-autonomous-dou-
bleton indecomposable iff G has a decomposable card, G has an indecomposable card, the 
indecomposable cards of G are pairwise isomorphic, and one of the following holds. 

1. Every decomposable card of G contains an autonomous set of vertices A that consists of 
2 independent vertices. In this case, G is called an independent pseudo-autonomous-
doubleton indecomposable graph. Each such set A is called a preferred nonedge.

2. Every decomposable card of G contains an edge A that is an autonomous set of vertices. 
In this case, G is called an edge pseudo-autonomous-doubleton indecomposable 
graph. Each such set A is called a preferred edge.

Clearly, (not necessarily indecomposable) graphs with decks as stated in Definitions 1.9 
and 1.10 are set recognizable. Hence the proof of Theorem 1.8 (see Sect. 4) consists of the 
set recognition of critically indecomposable graphs among graphs whose decks are as in 
Definition 1.9 (the main structural results are given in Sect. 2) and of the set recognition of 
pseudo-autonomous-doubleton indecomposable graphs among graphs whose decks are as 
in Definition 1.10 (the main structural results are given in Sect. 3).

With set recognizability established, we proceed in Sects. 5-7 with the reconstruction 
of the isomorphism types of the index graph in the canonical decomposition and with the 
set reconstruction of the graphs induced on the maximal autonomous sets of vertices of 
a decomposable graph. The set reconstruction of these parameters relies on the structure 
of critically indecomposable graphs. Availability of these parameters allows the set recon-
struction of many decomposable graphs, described in Sect.  8, which, in the conclusion, 
allows us to give a description of the decomposable graphs whose (set) reconstruction 
remains as yet to be established.

Because the property of being an autonomous set of vertices is invariant under comple-
mentation, so are the properties of being decomposable, indecomposable, critically inde-
composable, or pseudo-autonomous-doubleton indecomposable. Hence, throughout this 
paper, we will be free to work with complements of graphs when needed or desired.

2  Critically indecomposable graphs

In [11], Schmerl and Trotter characterized the critically indecomposable graphs.
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Definition 2.1 For k ∈ ℕ , let Gk = (Vk,Ek) be the bipartite graph with the vertex set Vk that 
is the disjoint union of the independent vertex sets {�1,… ,�k} and {u1,… , uk} such that, 
for i, j ∈ {1,… , k} , we have that �i ∼ uj iff i ≥ j . See Fig. 1 for a visualization.

Theorem 2.2 (See [11], Corollary 5.8 (1).) The graphs Gk and their complements Gc
k
 , where 

k ≥ 2 , are the only critically indecomposable finite graphs.

As is often the case with families of graphs with very specific structure, we can prove 
the set reconstructibility of graphs Gk and Gc

k
 , see Lemma 2.4 below. Recall that a cut-

vertex in a graph G = (V ,E) is a vertex c ∈ V  such that G − c is disconnected.

Lemma 2.3 Let G = (V ,E) be a connected graph, let c ∈ V  be a cutvertex of G, and let 
A′ ⊂ V  be a nontrivial autonomous set of vertices in G. Then the following hold. 

1. c ∉ A�.
2. A′ is contained in a component of G − c or A′ is a union of components of G − c.

Proof Note that, if A and B are distinct components of G − c , then no vertex of A is adja-
cent to any vertex of B. Because A′ is nontrivial, at least one component of G − c intersects 
A′.

Claim If A′ intersects more than one component of G − c , then A′ contains every compo-
nent of G − c that intersects A′.

To prove the Claim, let A′ intersect more than one component of G − c and let A be 
a component of G − c such that A� ∩ A ≠ � . By assumption, there is another component 
B ≠ A of G − c such that A� ∩ B ≠ � . If there was an a1 ∈ A ⧵ A� , then there would be 
an a2 ∈ A ⧵ A� that is adjacent to an a� ∈ A� ∩ A . Because A′ is an autonomous set of 
vertices, a2 would be adjacent to all elements of A� ∩ B , which is not possible. Thus 
A ⧵ A� = � , that is, A ⊂ A′ . Hence, if A′ intersects more than one component of G − c , 
then A′ contains every component of G − c that intersects A′ . The Claim is therefore 
established.

To prove part 1, suppose, for a contradiction, that c ∈ A� . Let A be a component of 
G − c that intersects A′ . Let B ≠ A be another component of G − c and let b ∈ B be adja-
cent to c ∈ A� . Because b is not adjacent to any vertex in A ∩ A� ≠ � , because c ∈ A� 
and because A′ is an autonomous set of vertices in G, we must have that b ∈ A� . We 
conclude that B intersects A′ . Hence, if c ∈ A� , then every component of G − c intersects 
A′ . By the Claim above, this means that all components of G − c are contained in A′ . By 
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Fig. 1  The bipartite graphs G
k
 from Definition 2.1
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assumption, we have c ∈ A� , which means A� = V  , contradicting that A′ is a nontrivial 
autonomous set of vertices in G. Hence c ∉ A�.

To prove part 2, let A′ be not contained in any single component of G − c . By the Claim 
above, A′ contains every component of G − c that intersects A′ and, by part 1, c ∉ A� . 
Hence A′ is a union of components of G − c .   ◻

Lemma 2.4 For k ≥ 2 , the graphs Gk and Gc
k
 are set-reconstructible.

Proof Because we are free to work with the complement, we only need to prove set-recon-
structibility of Gk . Set reconstructibility of G2 can be proved by direct inspection, so we can 
assume k ≥ 3.

Suppose, for a contradiction, that there is a decomposable graph G = (V ,E) with the 
same set of unlabelled cards as Gk . By Theorem 4.12 in [7] or Theorem 7 in [9], discon-
nected graphs are set reconstructible. Thus, G and Gc are connected. Because G has the 
same set of unlabelled cards as Gk , there is a c ∈ V  such that G − c is disconnected with 
two connected components, a singleton {s} and a component C such that G[C] is isomor-
phic to a graph Gk−1 . In particular, both components are indecomposable.

Let A′ ⊆ V  be a nontrivial autonomous set of vertices in G. By part 1 of Lemma 2.3, we 
have c ∉ A� . Because |A′| ≥ 2 , we have A� ∩ C ≠ � . Because G[C] is indecomposable and 
because A� ∩ C is an autonomous set of vertices in G[C], we have A� = C or |A� ∩ C| = 1 . 
Because k ≥ 3 , there is a v ∈ C such that c ≁ v . If v ∉ A� , then trivially C ≠ A′ , whereas, 
if v ∈ A� , then no vertex in C that is adjacent to c is in A′ , and in this case, too, we have 
C ≠ A′ . Thus |A� ∩ C| = 1 . However, by part 2 of Lemma 2.3, we obtain A′ ⊆ C , a 
contradiction.

Hence, there is no decomposable graph G = (V ,E) with the same set of unlabelled cards 
as Gk . By Theorem 2.2, any indecomposable graph G = (V ,E) with the same set of unla-
belled cards as Gk must be isomorphic to Gk . Thus Gk is set reconstructible.   ◻

3  Pseudo‑autonomous‑doubleton indecomposable graphs

It would be quite satisfying to either show that there are no pseudo-autonomous-doubleton 
indecomposable graphs or to classify them in a similar way to that in Theorem 2.2. How-
ever, Example 3.1 and Remark 3.2 below indicate that the characterization or reconstruc-
tion of this rather technical class of graphs is probably quite technical itself.

Example 3.1 Pseudo-autonomous-doubleton indecomposable graphs exist.
Consider the graphs G and H in Fig. 2. It is easy to check that both G and H are inde-

composable. Because both graphs are rotationally symmetric, for the decks, we only need 
to consider the vertices w1, z1,w2, z2 in G and the vertices w1, z1,w2, z2, z̃1, z̃2 in H. We first 
consider G, then H.

For the card G − z1 , note that {z2,w2} is the unique nontrivial autonomous set of verti-
ces in G − z1 . Then note that G − z1 and G − z2 are isomorphic and decomposable and that 
G − w1 and G − w2 are isomorphic and indecomposable. This proves that G is a pseudo-
autonomous-doubleton indecomposable graph.

For the card H − z1 , note that {z2,w2} is the unique nontrivial autonomous set of ver-
tices in H − z1 . Similarly, {z̃3,w3} is the unique nontrivial autonomous set of vertices in 
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H − z̃1 . Then note that H − z1 and H − z2 are isomorphic and decomposable, that H − z̃1 
and H − z̃2 are isomorphic and decomposable, and that H − w1 and H − w2 are isomorphic 
and indecomposable. This proves that H is a pseudo-autonomous-doubleton indecompos-
able graph, too.   ◻

Remark 3.2 The construction of the graph G in Example 3.1 can be executed with any 
directed even cycle with more than 4 vertices as follows: Replace every vertex v with a 4-path 
{v1, v2, v3, v4} and, for every arc (v, w), introduce the adjacencies {v2, v4} ∼ {w1,w3}.

The author is quite certain that the construction of G can be executed for a significant 
subclass of the class of vertex-transitive directed graphs. However, the author is also quite 
certain that the description of this class will be rather technical: The hypotheses would 
need to ascertain that symmetries can be used as in Example 3.1, and, for G − z1 being 
isomorphic to G − z2 , this becomes unwieldy. Similarly, the construction of H should be 
expandable, but even for directed even cycles spelling out the details looks to be quite tech-
nical.   ◻

Hence, the author believes that the class of pseudo-autonomous-doubleton indecom-
posable graphs is rather large and that the (set) reconstruction of all its members would 
be cumbersome.

In this section, we will derive enough properties of these graphs to allow the set rec-
ognition of decomposable graphs. It is easily checked directly that every pseudo-auton-
omous-doubleton indecomposable graph must have more than 4 vertices, so we will feel 
free to assume that there are at least 5 vertices throughout. We start by analyzing in 
detail the mechanism by which a set of vertices can be not autonomous in a pseudo-
autonomous-doubleton indecomposable graph G, but autonomous on a card of G.

Definition 3.3 Let G = (V ,E) be a graph, let z ∈ V  be so that G − z is decomposable and 
let A ⊂ V  be a nontrivial autonomous set of vertices of G − z that is not autonomous in G. 
Then we say that z binds A.

Lemma 3.4 Let G = (V ,E) be a graph such that z ∈ V  binds A ⊆ V  . Then z is adjacent to 
some, but not all, vertices of A.

w1 w1z1 z1 z1

z2 z2w2 w2 z2

G H

z3 w3

Fig. 2  Some pseudo-autonomous-doubleton indecomposable graphs
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Proof Because A is an autonomous set of vertices in G − z , for all v ∈ V ⧵ (A ∪ {z}) , we 
have that, if there is an a ∈ A such that v ∼ a , then v ∼ A . Suppose, for a contradiction, 
that z ∼ A or that z is not adjacent to any vertex in A. Then, in either case, A would be an 
autonomous set of vertices in G, which is a contradiction to A not being autonomous in G. 
Thus, z is adjacent to some, but not all, vertices of A.   ◻

Clearly, by Lemma 3.4, no two distinct vertices z1 and z2 can bind the same set A.
Note that any pseudo-autonomous-doubleton indecomposable graph can be edge 

pseudo-autonomous-doubleton indecomposable, independent pseudo-autonomous-double-
ton indecomposable, or both. Because we are free to work with the complement, we will 
focus on independent pseudo-autonomous-doubleton indecomposable graphs.

Lemma 3.5 Let G = (V ,E) be an independent pseudo-autonomous-doubleton indecompos-
able graph and let A be a preferred nonedge that is bound by the vertex z. Then there is a 
z� ∈ A which binds a preferred nonedge A′.

Proof Let A = {z�, a} and suppose, for a contradiction, that neither vertex in A binds any 
subset of V. Then both G − z� and G − a are indecomposable. However, because, by Lemma 
3.4, the degrees of z′ and a are not equal, we obtain that G − z� and G − a are not isomor-
phic, a contradiction to the fact that the indecomposable cards of pseudo-autonomous-dou-
bleton indecomposable graphs are pairwise isomorphic.

Thus, we can assume, without loss of generality, that G − z� is decomposable, and, 
because G is independent pseudo-autonomous-doubleton indecomposable, we can further 
assume that z′ binds a preferred nonedge A′ .   ◻

Lemma 3.6 Let G = (V ,E) be an indecomposable graph. Let z ∈ V  bind A ⊆ V  , let z� ∈ V  
bind A′ ⊆ V  , and assume that z� ∈ A and z ∉ A� . Then A ∩ A� ≠ �.

Proof Suppose, for a contradiction, that A� ∩ A = � . By Lemma 3.4, z� ∈ A is adjacent 
to some, but not all, vertices in A′ . Because A is a nontrivial autonomous set of vertices 
in G − z , we infer that A ⧵ {z�} ≠ � . Let a ∈ A ⧵ {z�} . Because A� ∩ A = � , we have that 
a ∈ V ⧵ (A� ∪ {z�}) . Because A is an autonomous set of vertices in G − z , because z� ∈ A 
and because z ∉ A� , we conclude that a is adjacent to some, but not all, vertices in A′ . 
Therefore, A′ is not an autonomous set of vertices in G − z� , a contradiction. Thus we must 
have A� ∩ A ≠ � .   ◻

Lemma 3.7 Let G = (V ,E) be an independent pseudo-autonomous-doubleton indecompos-
able graph. Let z ∈ V  bind the preferred nonedge A ⊆ V  , and let z� ∈ A bind the preferred 
nonedge A′ ⊆ V  . Then z ∈ A� and A ∩ A� = �.

Proof Let A = {z�, a}.
Suppose, for a contradiction that z ∉ A� . By Lemma 3.6, we have that A ∩ A� ≠ � . 

Because A = {z�, a} and z� ∉ A� , we obtain A ∩ A� = {a} . Because |A�| = 2 , we infer 
|A� ⧵ A| = 1 . Let a′ be the unique vertex in A′ ⧵ A . Because A = {z�, a} is an independ-
ent set of vertices, we have z� ≁ a . Because z′ binds A� = {a, a�} , by Lemma 3.4, we infer 
that z� ∼ a� . Because a� ∈ V ⧵ (A ∪ {z}) and because A is an autonomous set of vertices in 
G − z , the adjacency a� ∼ z� implies a� ∼ a . This is a contradiction to A′ being a preferred 
nonedge. Hence we must have z ∈ A�.
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Now suppose, for a contradiction, that A ∩ A� ≠ � . We claim that A� ∪ A is an auton-
omous set of vertices in G. Let v ∈ V ⧵ (A� ∪ A) be so that there is an x ∈ A� ∪ A with 
v ∼ x . Without loss of generality, let x ∈ A . Then, because v ∈ V ⧵ (A ∪ {z}) , we have 
v ∼ A and, in particular, because A ∩ A� ≠ � , v is adjacent to a vertex in A′ . Now, because 
v ∈ V ⧵ (A� ∪ {z�}) , we have v ∼ A� . Thus v ∼ A� ∪ A and A� ∪ A is an autonomous set of 
vertices in G, a contradiction. Hence A ∩ A� = � .   ◻

Lemma 3.8 Let G = (V ,E) be an independent pseudo-autonomous-doubleton indecompos-
able graph. Let z ∈ V  bind the distinct preferred nonedges A1,A2 ⊆ V  . Then A1 ∩ A2 = � . 
Moreover, z is contained in at least 2 preferred nonedges.

Proof Suppose, for a contradiction, that A1 ∩ A2 ≠ � , say, A1 = {a1,m} and A2 = {a2,m}.
Because A1 and A2 are nonedges, we have that m ≁ a1 and m ≁ a2 . Let 

v ∈ V ⧵ {a1, a2,m, z} be such that v is adjacent to one of a1 and a2 . Without loss of general-
ity, say v ∼ a1 . Because {a1,m} is an autonomous set of vertices in G − z , we obtain v ∼ m 
and then, because {a2,m} is an autonomous set of vertices in G − z , we obtain v ∼ a2.

In case z ∼ a1 , by Lemma 3.4, we have z ≁ m and then z ∼ a2 . In case z ∼ m , by Lemma 
3.4, we have z ≁ a1 and z ≁ a2.

We conclude that {a1, a2} is an autonomous set of vertices in G, a contradiction. Hence 
A1 ∩ A2 = �.

Now, by Lemma 3.5, each Ai contains a z′
i
 that binds a preferred nonedge A′

i
 . Because 

z′
1
≠ z′

2
 , we have A′

1
≠ A′

2
 . By Lemma 3.7, z must be in A�

1
∩ A�

2
 , which completes the 

proof.   ◻

Lemma 3.9 Let G = (V ,E) be an independent pseudo-autonomous-doubleton indecompos-
able graph. Let z1 ∈ V  bind the preferred nonedge A1 = {a1,m} ⊆ V  , let z2 ∈ V ⧵ {z1} 
bind the preferred nonedge A2 = {a2,m} ⊆ V  , and assume that m binds a preferred 
nonedge. Then {z1, z2} is the only preferred nonedge bound by m.

Proof By Lemma 3.7 applied to z� ∶= m and z ∶= zi , i = 1, 2 , any preferred nonedge A′ 
bound by m must contain z1 and z2 . Hence, every preferred nonedge bound by m is equal to 
{z1, z2} .   ◻

Lemma 3.10 Let G = (V ,E) be an independent pseudo-autonomous-doubleton indecom-
posable graph. Then every vertex of G that binds a preferred nonedge binds exactly one 
preferred nonedge.

Proof Suppose, for a contradiction, that z ∈ V  binds 2 preferred nonedges. Then, by 
Lemma 3.8, z is contained in 2 preferred nonedges. However, by Lemma 3.9, this means 
that z binds exactly one preferred nonedge, a contradiction.   ◻

Although we will not delve deeper into the structure of pseudo-autonomous-doubleton 
indecomposable graphs, we have determined some key facts about their structure. By Lem-
mas 3.5 and 3.7, for every preferred nonedge A, there is a preferred nonedge A′ ≠ A such 
that (A,A�) is a matched pair of preferred nonedges as defined below.

Definition 3.11 Let G = (V ,E) be an independent pseudo-autonomous-doubleton inde-
composable graph and let A,A′ be preferred nonedges. Then (A,A�) are called a matched 



9Set recognition of decomposable graphs and steps towards their…

1 3

pair of preferred nonedges iff the vertex z that binds A is in A′ , the vertex z′ that binds A′ 
is in A, and A ∩ A� = �.

Lemma 3.12 Let G = (V ,E) be an independent pseudo-autonomous-doubleton indecom-
posable graph. Then there is a w ∈ V  such that G − w is indecomposable and such that 
there are two distinct vertices z and z′ that bind preferred nonedges that do not contain w.

Proof Let w ∈ V  be such that G − w is indecomposable. If w is contained in 2 distinct pre-
ferred nonedges A1 =∶ {z�

1
,w} and A2 =∶ {z�

2
,w} , then, by Lemma 3.7, w is not contained 

in the preferred nonedges A′
1
 and A′

2
 that are bound by z′

1
 and z′

2
 , respectively.

If w is contained in no preferred nonedge, note that there must be at least one matched 
pair of preferred nonedges.

If w is contained in exactly one preferred nonedge {w, z} , we are done if there is a 
matched pair of preferred nonedges, such that neither of the matched nonedges contains w.

This leaves the case that w is in exactly one preferred nonedge {w, z} and, for any 
matched pair of preferred nonedges, w is in one of the nonedges. Because, by Lemma 3.10, 
z can only bind one preferred nonedge, G contains exactly one matched pair of preferred 
nonedges. Because G has at least 5 vertices, there is a vertex w′ outside these nonedges, 
and the card G − w� must be indecomposable.   ◻

We are now ready to prove Theorem 1.8.

4  Proof of Theorem 1.8

For the remaining sections, we need the concept of the canonical decomposition of a con-
nected graph with connected complement. This result is originally due to Gallai (see [3], 
Satz 1.2 or [5], Theorem 1.2). Recall that an autonomous set of vertices A is called maxi-
mal iff A ≠ V  and there is no other autonomous set of vertices B such that A ⊊ B ⊊ V .

Theorem 4.1 (Canonical Decomposition.) Let G = (V ,E) be a connected graph with con-
nected complement. Then every v ∈ V  is contained in a unique maximal autonomous set of 
vertices. That is, V can be partitioned into a union of maximal autonomous sets of vertices.  
 ◻

Theorem 4.1 means that connected graphs with connected complement can be repre-
sented in the following form.

Definition 4.2 Let T = (W,F) be a graph and, for every w ∈ W , let Pw = (Aw,Ew) be a 
graph. Assume that the vertex sets Aw are pairwise disjoint. The lexicographic sum 
G = (V ,E) = L{Pw ∣ w ∈ W = V(T)} of the pieces Pw over the index graph T is the union 
of the graphs Pw with the following additional edges: If u,w ∈ W are two distinct indices 
such that u ∼T w , then, for all vu ∈ Au and vw ∈ Aw , we have that vu ∼ vw.

In case Aw has exactly one vertex, we let v(w) be the unique vertex of Aw . Moreover, for 
every v ∈ V =

⋃
w∈W Aw , we let I(v) be the unique index w ∈ W such that v ∈ Aw.

The easiest way to connect Theorem 4.1 with Definition 4.2 is to let W be the set of 
all maximal autonomous sets of vertices in G and, for distinct maximal autonomous sets 
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of vertices A, B, to let {A,B} ∈ F iff there are a ∈ A and b ∈ B such that a ∼ b . It is easy 
to see that the index graph of the canonical decomposition of G is indecomposable.

To prove Theorem 1.8, we need to prove that there is no indecomposable graph that 
has the same set of unlabelled cards as a decomposable graph. Let G = (V ,E) be an 
indecomposable graph.

If G is neither critically indecomposable, nor pseudo-autonomous-doubleton inde-
composable, then, because the deck of every decomposable graph either consists 
entirely of decomposable cards (indecomposable graphs with this property are by Defi-
nition 1.9 critically indecomposable) or of pairwise isomorphic indecomposable cards 
plus decomposable cards with an autonomous edge or an autonomous independent dou-
bleton (indecomposable graphs with this property are by Definition 1.10 pseudo-auton-
omous-doubleton indecomposable), there is no decomposable graph with the same set 
of unlabelled cards as G.

If G is critically indecomposable, then, by Theorem  2.2 and Lemma 2.4, G is set-
reconstructible and hence there is no graph, and, in particular, no decomposable graph, 
with the same set of unlabelled cards as G.

This leaves the case that G is a pseudo-autonomous-doubleton indecomposable 
graph. Without loss of generality, assume that G is an independent pseudo-autonomous-
doubleton indecomposable graph. By Lemma 3.10, every vertex of G binds at most one 
preferred nonedge. Thus, for every decomposable card G − x of G, among the autono-
mous sets of vertices of G − x , there is exactly one autonomous set of vertices that is an 
independent set of 2 vertices.

By Lemma 3.12, there is a w ∈ V  that does not bind any subset of V and such that 
there are distinct z, z� ∈ V ⧵ {w} such that each of z, z′ binds a preferred nonedge in G 
that does not contain w. In particular, each of z, z� ∈ V ⧵ {w} binds a preferred nonedge 
in G − w.

Suppose for a contradiction that there is a decomposable graph H with the same set 
of unlabelled cards as G. Let T = (W,F) be the index graph of the canonical decom-
position of H. Then T is isomorphic to G − w . By the preceding paragraph, there are 
zT , z

�
T
∈ W  such that the isomorphic image of  each binds a doubleton of independent 

vertices in G and neither doubleton contains w. Hence, each of zT , z�T ∈ W  binds a dou-
bleton of independent vertices in T. Without loss of generality, let zT not be the index 
of the autonomous nonedge of H and let v(zT ) be the vertex of H that is indexed by zT . 
Then H − v(zT ) contains at least two autonomous doubletons of independent vertices. 
Because every decomposable card of G contains, by Lemma 3.10, exactly one autono-
mous doubleton of independent vertices, this means that G and H cannot have the same 
set of unlabelled cards.   ◻

5  NTMA‑cards

A typical progression in (set) reconstruction is that the (set) recognition of a class pre-
cedes its (set) reconstruction. Although (set) reconstruction of decomposable graphs 
remains an open problem, it is relatively simple to prove that many decomposable 
graphs are set reconstructible. We first set reconstruct the isomorphism type of the 
index graph of the canonical decomposition (see Theorem  5.4 below) and then the 
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isomorphism types of the graphs induced on the nontrivial maximal autonomous sub-
sets and their multiplicities (see Theorem 7.1 below).

Definition 5.1 Let G = (V ,E) be a connected decomposable graph with connected com-
plement. We call x ∈ V  an NTMA-vertex iff x is contained in a nontrivial maximal 
autonomous set of vertices. A card G − x such that x is an NTMA-vertex will be called an 
NTMA-card.

Note that, clearly, the index graph of the canonical decomposition of an NTMA-card 
of a graph G is isomorphic to the index graph of the canonical decomposition of G.

Definition 5.2 Let G = (V ,E) be a connected decomposable graph with connected com-
plement. For every x ∈ V  such that G − x is a connected (not necessarily decomposable) 
graph with connected complement, we define �x as the number of vertices in the index 
graph of the canonical decomposition of G − x . For all other x ∈ V  , we set �x ∶= 0.

Lemma 5.3 Let G = (V ,E) be a connected decomposable graph with connected comple-
ment and let T = (W,F) be the index graph of the canonical decomposition of G. Then the 
NTMA-cards of G are exactly the connected cards G − x with connected complement such 
that �x is maximal among the values {�z ∶ z ∈ V} . Therefore, the isomorphism types of the 
NTMA-cards are identifiable in the set of unlabelled cards.

Proof Let G − x be an NTMA-card of G. Then G − x is connected with connected comple-
ment and the index graph of its canonical decomposition is isomorphic to T. Hence, in this 
case, 𝜏x = |W| > 0.

Let G − y be a card of G that is not an NTMA-card and such that �y ≠ 0 . Then all maxi-
mal autonomous sets of vertices in G that do not contain y are still autonomous sets of ver-
tices in G − y . Hence, the index graph of the canonical decomposition of G − y has at most 
|W| − 1 vertices.   ◻

Theorem 5.4 Let G = (V ,E) be a connected decomposable graph with connected comple-
ment and let T = (W,F) be the index graph of the canonical decomposition of G. Then the 
isomorphism type of T is set reconstructible.

Proof By Lemma 5.3, the isomorphism types of the NTMA-cards of G are identifiable in 
the set of unlabelled cards. The result follows, because the index graph of the canonical 
decomposition of an NTMA-card is isomorphic to T.   ◻

6  Lemmas

This section provides lemmas that will be needed for the reconstruction of the isomor-
phism types of the graphs induced on the maximal autonomous sets of vertices. Primar-
ily, we set reconstruct the number of vertices in nontrivial autonomous sets of vertices 
and the number of nontrivial autonomous sets of vertices (see Lemma 6.7). At the end 
of this section, Lemma 6.10 considers the case in which there is exactly one nontrivial 
autonomous set of vertices.
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We start by proving the existence of certain cards for indecomposable graphs.

Lemma 6.1 Let T = (W,F) be an indecomposable graph, let d ∈ W and let m ≥ 2 . Then 
there is an x ∈ W ⧵ {d} such that every nontrivial autonomous set of vertices A of the card 
T − x either contains d or it satisfies |A| ≠ m.

Proof Suppose, for a contradiction that every card T − x with x ≠ d has a nontrivial auton-
omous set of vertices A of size m that does not contain the vertex d.

First consider the case that T has m + 2 vertices. Let t ∈ W ⧵ {d} . Then T − t has an 
autonomous set U of m vertices that does not contain d. This means that d ∼ U or that d is 
not adjacent to any vertex in U. Because we are free to work with the complement, assume 
without loss of generality that d ∼ U . Then, because W = U ∪ {d, t} and T is indecompos-
able, we have d ≁ t . Let u ∈ U . Then T − u has an autonomous set S of m vertices that does 
not contain d. Because T has m + 2 vertices, we infer that S = W ⧵ {d, u} . Now d is adja-
cent to a vertex in U ∩ S ⧵ {u} ≠ � and d ≁ t ∈ S , a contradiction. Thus T has more than 
m + 2 ≥ 4 vertices.

Next note that, if T − d was decomposable, then T would be critically indecomposable 
and, by assumption on d, all but possibly 1 card has an autonomous set of vertices with m 
elements. However, by Theorem 2.2, for all critically indecomposable graphs G = (V ,E) 
with |V| ≥ 5 , all but 2 cards have exactly one nontrivial autonomous set of vertices, which 
happens to have 2 elements, and the remaining cards have exactly one nontrivial autono-
mous set of vertices, which happens to have |V| − 2 > 2 elements. Thus T − d must be 
indecomposable.

Every card of T − d has an autonomous set of vertices with m elements. Because T has 
more than m + 2 vertices, T − d has more than m + 1 vertices, and every card of T − d 
has a nontrivial autonomous set of vertices. Hence, T − d is critically indecomposable. By 
Theorem  2.2, examination of the connected cards of T − d with connected complement 
gives m = 2 . Now the remaining cards of T − d are disconnected (or have a disconnected 
complement) and the (complement’s) components are a singleton and, because m = 2 , a 
2-vertex set. Hence T − d has 4 vertices, which means we can assume that T − d is a path 
with 4 vertices p1 ∼ p2 ∼ p3 ∼ p4.

Now {p1, p2} is the only 2-element autonomous set of vertices in (T − d) − p3 , which 
means it must be the 2-element autonomous set of vertices in T − p3 that does not contain 
d. Similarly, {p2, p4} must be the 2-element autonomous set of vertices in T − p1 that does 
not contain d, and {p4, p3} must be the 2-element autonomous set of vertices in T − p2 that 
does not contain d. Because T is connected, d is adjacent to one of the vertices pi . Because 
of the sets {p1, p2} , {p2, p4} , {p4, p3} are autonomous sets of vertices in subgraphs that con-
tain d, this implies that d ∼ {p1, p2, p3, p4} , which means that T is decomposable, a contra-
diction.   ◻

Lemma 6.2 Let T = (W,F) be an indecomposable graph and let d ∈ W . Then there is 
an x ∈ W ⧵ {d} such that every nontrivial autonomous set of vertices A of the card T − x 
either contains d or it satisfies |A| ≠ 2 . Moreover, for any such x, if the card T − x contains 
an autonomous set of vertices with 2 elements, then it contains exactly one autonomous set 
of vertices with 2 elements.

Proof By Lemma 6.1, there is an x ∈ W ⧵ {d} such that every nontrivial autonomous set of 
vertices A of T − x either contains d or it satisfies |A| ≠ 2 . We are left to prove that, if there 
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is a 2-element autonomous set of vertices in T − x , then there is exactly one such set. Note 
that any 2-element autonomous set of vertices in T − x contains d.

Let {a1, d} and {a2, d} be two autonomous doubletons in T − x and suppose, for 
a contradiction, that a1 ≠ a2 . We claim that {a1, a2, d} is autonomous in T − x : Let 
v ∈ W ⧵ {x, a1, a2, d} be adjacent to one of a1, a2, d . If v ∼ a1 , then, because {a1, d} is 
autonomous in T − x , we have v ∼ d . Similarly, v ∼ a2 implies v ∼ d . Finally, v ∼ d implies 
v ∼ a1, a2 . Hence {a1, a2, d} is autonomous in T − x.

Because {a1, a2} cannot be autonomous in T − x , and because {a1, a2, d} is autonomous 
in T − x , we have that d is adjacent to exactly one of a1 and a2 , say, d ∼ a1 and d ≁ a2 . 
However, then, in case a1 ∼ a2 , we have that {a1, d} is not autonomous in T − x , whereas, 
in case a1 ≁ a2 , we have that {a2, d} is not autonomous in T − x , a contradiction. Thus 
a1 = a2 , that is, if T − x has an autonomous doubleton, then it has exactly one.   ◻

The next proposition is key to showing that orbits (see Definition 6.3 below) of the 
index graph T of a decomposable graph can be matched with each other on NTMA-cards 
of the graph.

Definition 6.3 Let G = (V ,E) be a graph, let M be a subgroup of the automorphism group 
Aut(G) of G and let v ∈ V  . Then the set M ⋅ v ∶= {Φ(v) ∶ Φ ∈ M} is called the orbit of 
v  under the action of M or the M-orbit of v. Explicit mention of v can be dropped when 
specific knowledge of v is not needed. The set of M-orbits is denoted G/M. When no group 
M is explicitly mentioned, we assume by default that M = Aut(G).

Proposition 6.4 Let G = (V ,E) and G� = (V �,E�) be isomorphic graphs and let O ⊆ V  
be an Aut(G)-orbit of G. Then, for any two isomorphisms Φ,Ψ ∶ V → V � , we have that 
Φ−1Ψ[O] = O and, in particular, Ψ[O] = Φ[O].

Proof Because Φ−1Ψ is an automorphism of G and O is an Aut(G)-orbit of G, we conclude 
Φ−1Ψ[O] = O .   ◻

Definition 6.5 For any graph H, we define mH to be the number of vertices of H that are 
contained in nontrivial autonomous sets of vertices in H, and we define nH to be the num-
ber of nontrivial maximal autonomous sets of vertices in H.

Notation 6.6 The following notation will be used throughout the rest of this paper. For the 
remaining lemmas in this section, the items below are the hypotheses, which will not be 
explicitly restated. 

1. G = (V ,E) will be a connected decomposable graph with connected complement.
2. Consistent with Definition 4.2, we let T = (W,F) be the index graph of the canonical 

decomposition of G and we let Pw = (Aw,Ew) be the pieces.
3. To simplify notation, we will assume that {1,… , nG} ⊆ W  and that the indices of the 

nontrivial maximal autonomous sets of vertices Aw are 1,… , nG.
4. For an NTMA-card C = G − v , we let TC =

(
WC,FC

)
 be the index graph of the canoni-

cal decomposition of C and we let PC
w
=
(
AC
w
,EC

w

)
 be the pieces (where w ranges over 

WC).
5. We let ΦC be an isomorphism from TC to T.
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Note that, by Proposition 6.4, for any Aut
(
TC

)
-orbit O, we have that ΦC[O] is independ-

ent of the choice of ΦC.

Lemma 6.7 mG and nG are set reconstructible.

Proof First consider the case that there is an NTMA-card with a nontrivial maximal auton-
omous set of vertices with more than 2 vertices. (Clearly, this case is set recognizable.) Let 
C be an NTMA-card such that mC is maximal among NTMA-cards. Then C was obtained 
by removal of a vertex from a maximal autonomous set of vertices with more than 2 ver-
tices and mG = mC + 1 and nG = nC . For the remainder, we can assume that all maximal 
autonomous sets of vertices on NTMA-cards have at most 2 vertices.

If all NTMA-cards are indecomposable, then nG = 1 and mG = 2 . For the remainder, we 
can assume that all NTMA-cards have a nontrivial maximal autonomous set of vertices.

Under these circumstances, if there is an NTMA-card C that has nC ≥ 2 nontrivial max-
imal autonomous sets of vertices, then all nontrivial maximal autonomous sets of vertices 
of G must have exactly 2 vertices. Hence nG = nC + 1 , mG = 2nC + 2.

The last case to consider is that all NTMA-cards have exactly one nontrivial maximal 
autonomous set of vertices, and, for each NTMA-card, said nontrivial maximal set of ver-
tices has 2 elements. In this case, either nG = 1 and |A1| = 3 or nG = 2 and |A1| = |A2| = 2.

If, in case nG = 2 and |A1| = |A2| = 2 , the indices of A1 and A2 are in different Aut(T)
-orbits O1 and O2 of T, then G has two NTMA-cards C1 and C2 whose nontrivial autono-
mous subset is indexed by an index in Φ−1

C1

[O1] and Φ−1
C2

[O2] , respectively. In case nG = 1 
and |A1| = 3 there is exactly one Aut(T)-orbit O such that, for every NTMA-card K, the 
index of the nontrivial autonomous set of vertices is in Φ−1

K
[O] . Thus the two last cases are 

distinguishable unless the indices of A1 and A2 are in the same Aut(T)-orbit of T, which 
remains the last case to be considered.

When nG = 2 and |A1| = |A2| = 2 and the indices of A1 and A2 are in the same Aut(T)
-orbit of T, then, on every non-NTMA-card of G, the sets A1 and A2 are autonomous sets of 
vertices with 2 elements each. Moreover, the T-neighborhoods of the indices of A1 and A2 
are not equal and, because the indices are in the same Aut(T)-orbit, the T-neighborhoods 
are of the same size. Hence, there are v1, v2 ∈ V  such that v1 ∼ A1 , v1 ≁ A2 , v2 ∼ A2 , and 
v2 ≁ A1 . Therefore, in any card G − v , the set (A1 ∪ A2) ⧵ {v} does not form an autonomous 
set of vertices.

Now consider the situation when nG = 1 and |A1| = 3 . By Lemma 6.1 with d = 1 , there 
is a card T − x with x ≠ 1 of the index graph T such that every nontrivial autonomous set of 
vertices A of T − x either contains 1 or it satisfies |A| ≠ 2.

Let B = {b1, b2} be a 2-element autonomous set of vertices of the non-NTMA-card 
K ∶= G − v(x) . Then {I(b1), I(b2)} is a singleton, which necessarily is {1} , or, {I(b1), I(b2)} 
is the, by Lemma 6.2 with d = 1 , unique 2-element autonomous set of vertices in T − x , 
in which case one of I(b1) and I(b2) is 1. In particular, this means that, when nG = 1 
and |A1| = 3 , all autonomous sets of vertices with 2 vertices of the non-NTMA-card 
K ∶= G − v(x) are contained in the same autonomous set of vertices M, which satisfies 
|M| ∈ {3, 4}.

However, when nG = 2 and |A1| = |A2| = 2 and the indices of A1 and A2 are in the same 
T-orbit, we have already shown that, in any non-NTMA-card G − v , the set A1 ∪ A2 does 
not form an autonomous set of vertices. Hence we can distinguish the last two cases, which 
means we have set reconstructed mG and nG .   ◻
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Lemma 6.8 The set of unlabelled cards of the pairwise disjoint union of the induced sub-
graphs G[A1],… ,G[AnG

] on the nontrivial maximal autonomous sets of vertices is set 
reconstructible.

Proof Let [C1],… , [Ck] be the isomorphism types of the NTMA-cards of G, which are rec-
ognizable in the set of unlabelled cards of G. Let j ∈ {1,… , k} . If 

∑
����
A
Cj
w

����
>1

���A
Cj

w
��� = mG − 1 , 

we let Dj be the graph obtained as the pairwise disjoint union of the graphs Cj

[
A
Cj

w

]
 with 

|||A
Cj

w
||| > 1 . If 

∑
����
A
Cj
w

����
>1

���A
Cj

w
��� < mG − 1 , then 

∑
����
A
Cj
w

����
>1

���A
Cj

w
��� = mG − 2 , and we let Dj be the 

graph obtained as the pairwise disjoint union of the graphs Cj

[
A
Cj

w

]
 with |||A

Cj

w
||| > 1 plus an 

added isolated vertex. Now {[D1],… , [Dk]} is the set of unlabelled cards of the the pair-
wise disjoint union of the induced subgraphs G[A1],… ,G[AnG

] on the nontrivial maximal 
autonomous sets of vertices.   ◻

Lemma 6.9 Let G = (V ,E) be a graph such that V = A1 ∪ A2 , A1 ⧵ A2 ≠ ∅ , A2 ⧵ A1 ≠ ∅ 
and each Aj is an autonomous set of vertices. Then G is disconnected or its complement Gc 
is disconnected.

Proof We will prove that, if G is connected, then the complement of G is disconnected. So 
let G be connected.

In case A1 ∩ A2 = � , the claim is clear: There are a1 ∈ A1 and a2 ∈ A2 such that a1 ∼ a2 . 
Hence a1 ∼ A2 and then A1 ∼ A2.

Now consider the case S ∶= A1 ∩ A2 ≠ � . Without loss of generality, assume that there 
are a2 ∈ A2 ⧵ S and s ∈ S ⊆ A1 such that s ∼ a2 . Then a2 ∼ A1 . Hence A1 ⧵ A2 ∼ a2 and 
then A1 ⧵ A2 ∼ A2 , which completes the proof.   ◻

Lemma 6.10 Let G = (V ,E) be a connected decomposable graph with connected comple-
ment that has exactly one nontrivial maximal autonomous set of vertices A ⊂ V  . 

1. In case |A| ≥ 3 , the graph G is set reconstructible.
2. In case |A| = 2 , the isomorphism type of the induced subgraph G[A] is set reconstruc-

tible.

Proof By Lemma 6.7, graphs G as indicated are set recognizable.
To prove part 1, we first set reconstruct the isomorphism type of G[A]. If G[A] or its 

complement is disconnected, then, because, by Lemma 6.8, the set of unlabelled cards 
of G[A] is set reconstructible, we have that the isomorphism type of G[A] is set recon-
structible by Theorem 7 in [9]. This leaves the case that G[A] is connected with connected 
complement.

Let d be the index of A in the canonical decomposition {Pw ∣ w ∈ W = V(T)} of G. By 
Lemma 6.1, there is an index x ∈ W ⧵ {d} , such that every nontrivial autonomous subset 
B of T − x either contains d or satisfies |B| ≠ mG ≥ 3 . Suppose, for a contradiction, that 
C ∶= G − v(x) , which is a non-NTMA-card, contains two distinct autonomous sets of ver-
tices A1 and A2 with mG elements each such that each C[Ai] is connected with connected 
complement. Then d ∈ I[A1] ∩ I[A2] . By Lemma 6.9 applied to C[A1 ∪ A2] , we obtain that 
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C[A1 ∪ A2] or its complement is disconnected. However, then one of the C[Ai] or its com-
plement is disconnected, a contradiction.

Thus C ∶= G − v(x) , which is a non-NTMA-card, contains exactly one autonomous set 
of vertices B with mG elements such that C[B] is connected with connected complement. 
Now that we have established that such cards exist, let K be any non-NTMA-card that con-
tains exactly one autonomous set of vertices B with mG elements such that K[B] is con-
nected with connected complement. Then B must be A and G[A] is isomorphic to K[B].

Now that we have reconstructed the isomorphism type of G[A], we reconstruct G as fol-
lows. Let H = G − v = (VH ,EH) be an NTMA-card. Let B be the unique nontrivial maxi-
mal autonomous set of vertices of H with mG − 1 > 1 vertices. Then B = A − v . We obtain 
a graph isomorphic to G by replacing the induced subgraph H[B] with an isomorphic copy 
J = (VJ ,EJ) of G[A] such that x ∈ VH ⧵ B satisfies x ∼ VJ iff x ∼H B.

To prove part 2, again, we let d be the index of A in the canonical decomposition 
{Pw ∣ w ∈ W = V(T)} of G. By Lemma 6.1, there is an index x ∈ W ⧵ {d} , such that every 
nontrivial autonomous subset B of T − x either contains d or satisfies |B| ≠ mG = 2 . Thus, 
for any two-element autonomous set of vertices of the non-NTMA-card G − v(x) , at least 
one element’s index is d.

We first consider the case that there is a non-NTMA-card C = G − y of G that has 
exactly one autonomous set B of vertices with 2 elements. In this case, B = A and G[A] is 
isomorphic to C[B].

This leaves the case that every non-NTMA-card of G has at least two autonomous sub-
sets with 2 elements. In this case, the card T − x of T must have a nontrivial autonomous 
set of two vertices that contains d. Now, by Lemma 6.2, the card T − x of T has exactly 
one nontrivial autonomous set with two vertices and this set must contain d. Let {d, z} be 
this set and let {a, b} ∶= A . Then the set {a, b, v(z)} is autonomous in the non-NTMA-card 
G − v(x) , it contains all 2-element autonomous sets of vertices of G − v(x) and it contains 
at least two 2-element autonomous sets of vertices of G − v(x) . A graph on 3 vertices that 
contains more than one autonomous set of vertices with 2 elements is either discrete or 
complete.

Thus, in this case, to set reconstruct the isomorphism type of G[A], we identify a non-
NTMA-card C = G − y that has a 3-element autonomous set of vertices B that contains 
all 2-element autonomous sets of vertices of G − y . If this set B is a clique, then G[A] is a 
complete graph, otherwise G[A] is a discrete graph.

This completes the proof of part 2.   ◻

7  Set reconstructible parameters

We can now set reconstruct the isomorphism types of the graphs induced on the nontrivial 
autonomous sets of vertices. We then proceed to refine this idea and start proving recon-
struction results for certain classes of graphs.

Theorem 7.1 Let G = (V ,E) be a connected decomposable graph with connected comple-
ment. Then the isomorphism types of the induced subgraphs G[A1],… ,G[AnG

] on the non-
trivial maximal autonomous sets of vertices and their multiplicities are set reconstructible.
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Proof If nG = 1 , this is Lemma 6.10. Hence, throughout this proof, we can assume that 
nG ≥ 2.

Let H be the pairwise disjoint sum of the induced subgraphs G[A1],… ,G[AnG
] . Because 

nG ≥ 2 , the graph H is disconnected, which means that, by Lemma 6.8 and Theorem 7 in 
[9], the graph H is set reconstructible from information obtained from the set of unlabelled 
cards of G.

Let [C1],… , [Ck] be the isomorphism types of the NTMA-cards of G, which by Lemma 
5.3 are recognizable in the set of unlabelled cards of G. If there is a j ∈ {1,… , k} such that ∑

����
A
Cj
w

����
>1

���A
Cj

w
��� = mG − 2 , then nCj

= nG − 1 and we let B1,… ,BnG−1
 be equal to the maxi-

mal autonomous sets of vertices of Cj . All of these sets are maximal autonomous sets of 
vertices of G. Otherwise, for all j ∈ {1,… , k} , we have 

∑
����
A
Cj
w

����
>1

���A
Cj

w
��� = mG − 1 . In this 

case, is it possible to choose a j such that there is an ACj

w0
 with at least 2 elements such that 

no other NTMA-card C� has a nontrivial maximal autonomous set of vertices with fewer 
than |||A

Cj

w0

||| vertices. We then let B1,… ,BnG−1
 be equal to the nontrivial maximal autono-

mous sets of vertices ACj

w  of Cj with w ≠ w0 . Again, all of these sets are maximal autono-
mous sets of vertices of G.

Now eliminate from H a subgraph isomorphic to the pairwise disjoint union of 
Cj[B1],… ,Cj[BnG−1

] and call the resulting graph F. Then the isomorphism types (with 
multiplicity) of the induced subgraphs G[A1],… ,G[AnG

] are given by Cj[B1],… ,Cj[BnG−1
], 

and F.   ◻

By Theorems 5.4 and 7.1, one possible avenue towards set reconstruction of decom-
posable graphs G = L{Pw ∣ w ∈ W = V(T)} is to identify, for each index w ∈ W = V(T) 
in the index graph T, the graph G[Pw] . In fact, with an NTMA-card C = G − v , we could 
reconstruct G if we could identify the index I(v) of the removed vertex v. We have already 
seen this idea in the proof of part 1 of Lemma 6.10. By analyzing the automorphism group 
of the index graph T, it is possible to make significant progress regarding determining the 
location of I(v).

Definition 7.2 Let G = (V ,E) be a connected decomposable graph with connected com-
plement. We will call w ∈ W populated iff |Aw| > 1 . An Aut(T)-orbit is called populated 
iff one of its vertices is populated.

Theorem 7.3 Let G = (V ,E) be a connected decomposable graph with connected comple-
ment and mG ≥ 3 . Then, for any NTMA-card C = G − v , the Aut

(
TC

)
-orbit O that contains 

Φ−1
C
(I(v)) , the isomorphism types of the PΦC(o)

 with o ∈ O , as well as the isomorphism type 
of PI(v) can be set reconstructed.

Proof We start by set recognizing whether there is one or more than one populated Aut(T)
-orbit.

Consider the case that there are two distinct populated Aut(T)-orbits O′ and O′′ . Then, 
with w� ∈ O� and w�� ∈ O�� being populated indices, v� ∈ Aw� and v�� ∈ Aw�� , the NTMA-
cards C� ∶= G − v� and C�� ∶= G − v�� satisfy 

∑
o�∈Φ−1

C�
[O�] �AC�

o�
� <

∑
o∈Φ−1

C��
[O�]

���A
C��

o

��� . Sup-
pose, for a contradiction, that there is an isomorphism Ψ from C′ to C′′ . Because Ψ maps 
maximal autonomous sets of vertices to maximal autonomous sets of vertices, Ψ induces 
an isomorphism Ψ from TC′ to TC′′ via Ψ(t) ∶= I

(
Ψ
[
AC�

t

])
 . By Proposition 6.4, Ψ maps 
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Φ−1
C� [O

�] to Φ−1
C�� [O

�] . Thus Ψ maps 
⋃

o�∈Φ−1

C�
[O�] A

C�

o�
 to 

⋃
o∈Φ−1

C��
[O�] A

C��

o
 , which is a contradic-

tion to 
∑

o�∈Φ−1

C�
[O�] �AC�

o�
� <

∑
o∈Φ−1

C��
[O�]

���A
C��

o

��� . We conclude that, when there are two popu-
lated Aut(T)-orbits, G has two nonisomorphic NTMA-cards C′ and C′′ such that there is an 
Aut(T)-orbit O′ such that 

∑
o�∈Φ−1

C�
[O�] �AC�

o�
� <

∑
o∈Φ−1

C��
[O�]

���A
C��

o

��� . We note that these facts are 
set recognizable from the set of unlabelled cards.

On the other hand, in case there is exactly one populated Aut(T)-orbit, either the NTMA 
cards are pairwise isomorphic, or, for any two nonisomorphic NTMA-cards C′ and C′′ and 
any Aut(T)-orbit O, we have 

∑
o∈Φ−1

C�
[O] �AC�

o
� =

∑
o∈Φ−1

C��
[O]

���A
C��

o

��� . Again, the preceding is set 
recognizable from the set of unlabelled cards. Hence, it is set recognizable whether there 
are (at least) two populated Aut(T)-orbits.

Now let C be an NTMA-card.
In case there is exactly one populated Aut(T)-orbit, there is exactly one populated 

Aut(TC)-orbit O and it must contain Φ−1
C
(I(v)) . The non-singleton PΦC(o)

 (where o ∈ O ) 
and their multiplicities are set reconstructible via Theorem 7.1. The number of singleton 
PΦC(o)

 (where o ∈ O ) is the difference between the size |O| of the orbit and the number of 
non-singleton maximal autonomous sets of vertices Aw in G. The isomorphism type of PI(v) 
is the unique isomorphism type for which there are fewer copies among the C[AC

o
] than 

among the PΦC(o)
 (where o ∈ O).

This leaves the case that there are (at least) two populated Aut(T)-orbits O′ and O′′ . The 
Aut(TC)-orbit that contains Φ−1

C
(I(v)) is the unique Aut(TC)-orbit O of TC such that there is 

an NTMA-card D such that 
∑

o∈O �AC
o
� <

∑
o∈O

����
AD

Φ−1
D (ΦC(o))

����
 . The D

[
AD

Φ−1
D (ΦC(o))

]
 are a per-

mutation of the PΦC(o)
 (where o ∈ O ). Again, the isomorphism type of PI(v) is the unique 

isomorphism type for which there are fewer copies among the C[AC
o
] than among the PΦC(o)

 
(where o ∈ O ).   ◻

Corollary 7.4 Let G = (V ,E) be a connected decomposable graph with connected comple-
ment, let T = (W,F) be the index graph of the canonical decomposition of G, let 
O = {o1,… , on} be an Aut(T)-orbit of T, and, for j = 1,… , n , let Aoj

⊂ V  be the maximal 
autonomous set of vertices in G such that I[Aoj

] = oj . If there are a j ∈ {1,… , n} and a 
z ∈ Aoj

 such that |Aoj
| > 1 and G[Aoj

] − z is not isomorphic to any of the G[Aoi
] , i = 1,… , n , 

then G is set reconstructible.

Proof Via Theorem  7.3, because of our hypothesis, we can identify an NTMA-card 
C = G − v that has an Aut

(
TC

)
-orbit O = {o1,… , on} of the index graph TC of the canoni-

cal decomposition of C, such that there is an i ∈ {1,… , n} such that C[Aoi
] is not among 

the G[AΦC(oj)
] , j = 1,… , n . This means that I(v) = ΦC(oi) . We set reconstruct G by replac-

ing C[Aoi
] with PI(v) .   ◻

Corollary 7.4 has a multitude of immediate applications. For example, consider the 
following.

Corollary 7.5 A decomposable graph G with mG ≥ 3 such that the index graph of the 
canonical decomposition has a populated singleton orbit is set reconstructible. In particu-
lar, this means that decomposable graphs with rigid index graph and mG ≥ 3 are set recon-
structible.   ◻
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Recall that the lexicographic product G ∙ H of graphs G and H, which is also called the 
wreath product G ≀ H , is the lexicographic sum of graphs Ht that are isomorphic to H over 
the index graph G = (T ,F).

Corollary 7.6 Let G and H be two finite graphs with more than 1 vertex each. Then the lexi-
cographic (wreath) product G ∙ H ( G ≀ H ) is set reconstructible.

Proof Clearly, G ≀ H is set reconstructible if it or its complement is disconnected. When 
G ≀ H and its complement are connected, because both factors have more than one vertex, 
every vertex of G ≀ H is contained in a nontrivial maximal autonomous set of vertices. We 
can therefore apply Corollary 7.4 with a vertex v that is contained in a nontrivial maximal 
autonomous set of vertices of smallest size.   ◻

8  Interdependent orbit unions

Naively speaking, with Theorem 7.3 in hand, if we could just identify the right o ∈ O such 
that ΦC(o) = I(v) , then, replacing C[AC

o
] with the “lost" PI(v) reconstructs the graph. The 

problem with this idea is that, in general, the right o ∈ O may not be readily identifiable: 
If, for every populated orbit O′ of T, for every o� ∈ O� with non-singleton Po′ , and for every 
v ∈ Po� , there is an o�� ∈ O� such that Po′′ is isomorphic to Po� − v , then Corollary 7.4 can-
not be applied and there is no simple method to distinguish o′ from the o′′ . We proceed by 
using a representation of Aut(T) to make further progress as indicated in Theorem 8.16 
below.

If an induced subgraph H = (VH ,EH) of G = (V ,E) was obtained by removing a union 
of Aut(G)-orbits, then Aut(G)-orbits that are contained in VH can be strictly contained in 
Aut(H)-orbits: The Aut(G)-orbits of the graph G in Fig. 3 are marked by ovals. We can 
see that, for X ∈ {A,B,C,D} , the Aut(G)-orbits X and X̃ are strictly contained in the 
Aut(G − R)-orbit X ∪ X̃ . For this reason (further elaborated later in Remark 8.11 below), 
dictated orbit structures, see Definition 8.2 below, will be useful for the representation of 
Aut(G) in Proposition 8.10.

Definition 8.1 Let G = (V ,E) be a graph, let Φ ∶ V → V  be an automorphism and let 
v ∈ V  . Then Φ ⋅ v ∶= {Φn(v) ∶ n ∈ ℤ} is called the orbit of v under Φ or an orbit of Φ . To 
distinguish these orbits from the ones in Definition 6.3, the automorphism will always be 
mentioned.

Definition 8.2 Let G = (V ,E) be a graph and let D be a partition of V. Then AutD(G) is the 
set of automorphisms Φ ∶ V → V  such that, for every orbit O of Φ , there is a D ∈ D such 

Fig. 3  A graph G = (V ,E) with 
Aut(G)-orbits marked with ovals

A

C

A

C

R

B

D

B

D
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that O ⊆ D . In this context, D is called a dictated orbit structure for G. AutD(P)-orbits 
will, more briefly, be called D-orbits.

The partition of V into its Aut(G)-orbits is called the natural orbit structure of G, 
which will typically be denoted N  . When working with the natural orbit structure, explicit 
indications of the orbit structure, usually via subscripts or prefixes D , will often be omitted.

Clearly, AutD(G) ≠ Aut(G) iff there are an orbit O of G and a D ∈ D such that 
O ∩ D ≠ � and O ⊈ D.

Definition 8.3 Let G = (V ,E) be a graph, let D be a dictated orbit structure for G, and let 
C, D be two D-orbits of G such that there are a c1 ∈ C and a d1 ∈ D such that c1 ∼ d1 . We 
will write C↿⇂DD and say that C and D are directly interdependent iff there are c2 ∈ C 
and d2 ∈ D such that c2 ≁ d2.

Figure 3 shows how (connection through) direct interdependence can allow one orbit to 
restrict the values of automorphisms on many other orbits: In the graph in Fig. 3, we have 
A ↿⇂N B ↿⇂N R ↿⇂N B̃ ↿⇂N Ã and the values of any automorphism on A ∪ B ∪ R ∪ B̃ ∪ Ã are 
determined by the automorphism’s values on A.

It should not be surprising that the transitive closure of ↿⇂D is an equivalence relation.

Proposition 8.4 Let G = (V ,E) be a graph and let D be a dictated orbit structure for G. 
The relation ↭D , defined to be the transitive closure of the union of ↿⇂D and the identity 
relation, is an equivalence relation.

Proof Reflexivity and transitivity are trivial, because ↭D is the transitive closure of a rela-
tion that contains the identity relation.

Symmetry follows from the symmetry of ↿⇂D .   ◻

Definition 8.5 Let G = (V ,E) be a graph and let D be a dictated orbit structure for G. Two 
D-orbits C and D with C ↭D D will be called interdependent. If E is a ↭D equivalence 
class, then we will call 

⋃
E an interdependent D-orbit union.

Definition 8.6 Let G = (V ,E) be a graph, let D be a dictated orbit structure for G, and let 
H = (VH ,EH) be an induced subgraph such that, for all D-orbits D, we have D ⊆ VH or 
D ∩ VH = � . The dictated orbit structure for H induced by D , denoted D|H , is defined to 
be the set of all D-orbits that are contained in VH.

For the natural orbit structure N  for G, the dictated orbit structure for H induced by N  
will be called the naturally required orbit structure N|H.

Proposition 8.7 below now lays the groundwork for representing automorphisms 
through certain automorphisms on the non-singleton interdependent orbit unions in Propo-
sition 8.10.

Proposition 8.7 Let G = (V ,E) be a graph, let D be a dictated orbit structure for G, and let 
U be an interdependent D-orbit union. Then the following hold. 

1. For all x ∈ V ⧵ U and all C ∈ D|G[U] , if there is a c ∈ C such that c ∼ x , then C ∼ x.



21Set recognition of decomposable graphs and steps towards their…

1 3

2. For every Φ ∈ AutD(G) , we have that Φ|U ∈ AutD|G[U](G[U]).
3. Every Ψ ∈ AutD|G[U](G[U]) can be extended to an automorphism ΨG of G by setting ΨG 

equal to Ψ on U and equal to the identity on V ⧵ U.
4. The AutD|G[U](G[U])-orbits are just the sets in D|G[U].

Proof To prove part 1, let x ∈ V ⧵ U and C ∈ D|G[U] be so that there is a c ∈ C such 
that c ∼ x . Let X be the D-orbit of x. Because x ∉ U , we must have X ∕↿⇂D C . Because 
C ∋ c ∼ x ∈ X , we must have that C ∼ X and hence C ∼ x.

Part 2 follows directly from the definitions.

To prove part 3, let ΨG(x) ∶=

{
Ψ(x); if x ∈ U

x; if x ∈ V�U
 . Clearly, ΨG is bijective. To prove 

that ΨG preserves adjacency, let x ∼ y . If x, y are both in U or both in V ⧵ U , we obtain 
ΨG(x) ∼ ΨG(y) . In case x ∈ V ⧵ U and y ∈ U , let Y ∈ D|G[U] be so that y ∈ Y  . Then 
Ψ(y) ∈ Y  . By part 1, we have that x ∼ Y  and hence ΨG(x) = x ∼ Y ∋ ΨG(y) . The case 
y ∈ V ⧵ U and x ∈ U is handled similarly.

Part 4 follows from parts 2 and 3.   ◻

Definition 8.8 Let G = (V ,E) be a graph, let D be a dictated orbit structure for G and let U 
be an interdependent D-orbit union. We define AutG

D|G[U]
(G[U]) to be the set of automor-

phisms ΨG ∈ Aut(G) as in part 3 of Proposition 8.7.

Let G = (V ,E) be a graph, let D be a dictated orbit structure for G and let U,U′ be dis-
joint interdependent D-orbit unions. Then clearly, for ΨG ∈ AutG

D|G[U]
(G[U]) and 

ΦG ∈ AutG
D�|G[U�]

(G[U�]) , we have ΨG◦ΦG = ΦG◦ΨG . Hence the following definition is 
sensible.

Definition 8.9 Let G = (V ,E) be a graph and let A1,… ,Az ⊆ Aut(G) be sets of automor-
phisms such that, for all pairs of distinct i, j ∈ {1,… , z} , all Φi ∈ Ai and all Φj ∈ Aj , we 
have Φi◦Φj = Φj◦Φi . We define ○z

j=1
Aj to be the set of compositions Ψ1◦⋯◦Ψz such that, 

for j = 1,… , z , we have Ψj ∈ Aj.

Proposition 8.10 Let G = (V ,E) be a graph with natural orbit structure N  and let 
U1,… ,Uz be the non-singleton interdependent orbit unions of G. Then 
Aut(G) = ○

z

j=1
AutG

N|G[Uj]
(G[Uj]).

Proof The containment Aut(G) ⊇ ○
z

j=1
AutG

N|G[Uj]
(G[Uj]) is clear.

By part 2 of Lemma 8.7, for every Φ ∈ Aut(G) and every j ∈ {1,… , z} , we have 
Φ|Uj

∈ AutN|G[Uj]
(G[Uj]) . Because Φ fixes all points in P ⧵

⋃z

j=1
Uj , we have 

Φ = Φ|G
U1

◦⋯◦Φ|G
Uz

 . Hence Aut(G) ⊆ ○
z

j=1
AutG

N|G[Uj]
(G[Uj]) .   ◻

Remark 8.11 Although the naturally required orbit structure N|G[U] may look more tech-
nical than natural, it is indispensable for the representation in Proposition 8.10. Consider 
the graph in Fig. 3. The natural orbit unions in this graph are U1 ∶= A ∪ B ∪ R ∪ B̃ ∪ Ã and 
U2 ∶= C ∪ D ∪ D̃ ∪ C̃ . However, G[U2] considered as a graph by itself is transitive, which 
means it has only one orbit. Hence, we cannot use the automorphism groups Aut(G[Uj]) in 
place of their subgroups AutN|G[Uj]

(G[Uj]) in Proposition 8.10.   ◻
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Returning to the set reconstruction of decomposable graphs, we can now record the 
following.

Definition 8.12 Let G = (V ,E) be a connected decomposable graph with connected 
complement, let T = (W,F) be the index graph of the canonical decomposition of 
G and let K ⊆ W . We define the graph G with K collapsed G ↘ K to have the vertex 
set K ∪

⋃
w∈W⧵K Aw and by letting the edges of G ↘ K be the edges induced by G on ⋃

w∈W⧵K Aw , the edges induced by T on K, and by letting there be an edge between k ∈ K 
and v ∈

⋃
w∈W⧵K Aw iff there is an edge in T between k and I(v).

Definition 8.13 Let G = (VG,EG) and H = (VH ,EH) be connected decomposable graphs 
with connected complement and let TG = (WG,FG) and TH = (WH ,FH) be the index 
graphs of the canonical decompositions of G and H, respectively. Let XG and XH be 
unions of interdependent orbit unions in TG and TH , respectively, and let SG ∶=

⋃
w∈XG

Aw 
and SH ∶=

⋃
w∈XH

Aw . (Note that SG = VG and SH = VH are possible.) For any isomor-
phism Φ ∶ SH → SG from H[SH] to G[SG] that maps maximal autonomous sets of verti-
ces in H to maximal autonomous sets of vertices in G, we define the induced isomor-
phism ΦT ∶ XH → XG from the subgraph TH[XH] of the index graph TH to the subgraph 
TG[XG] of the index graph TG by mapping each xH ∈ XH to the unique xG ∈ XG such that 
Φ[AxH

] = AxG
.

Lemma 8.14 Let G = (VG,EG) and H = (VH ,EH) be connected decomposable graphs with 
connected complement and let TG = (WG,FG) and TH = (WH ,FH) be the index graphs 
of the canonical decompositions of G and H, respectively. Let UG be an interdependent 
orbit union in TG and let UH be an interdependent orbit union in TH such that there is 
an isomorphism Φ↘ from H ↘ UH to G ↘ UG that maps UH to UG . Let SG ∶=

⋃
w∈UG

Aw 
and SH ∶=

⋃
w∈UH

Aw . Let ΦS be an isomorphism from H[SH] to G[SG] that maps maximal 
autonomous sets of vertices in H to maximal autonomous sets of vertices in G such that the 
induced isomorphism ΦT

S
 from TH[UH] to TG[UG] maps each Aut(TH)-orbit O in TH[UH] to 

Φ↘[O] , Then the graph H is isomorphic to the graph G.

Proof For x ∈ VH , define

Clearly, Φ is bijective.
Let x, y ∈ VH . If both x and y are in VH ⧵ SH or if both x and y are in SH , then, because 

Φ↘ and ΦS are isomorphisms, we have x ∼ y iff Φ(x) ∼ Φ(y) . By symmetry, this leaves 
the case that x ∈ VH ⧵ SH and y ∈ SH . Let OI(x) and OI(y) be the Aut(TH)-orbits of I(x) 
and I(y), respectively. Then x ∼ y iff I(x) ∼ I(y) iff OI(x) ∼ OI(y) iff ΦT

↘
[OI(x)] ∼ ΦT

↘
[OI(y)] 

iff ΦT
↘
[OI(x)] ∼ Φ↘[OI(y)] iff ΦT

↘
[OI(x)] ∼ ΦT

S
[OI(y)] iff OI(Φ↘(x)) ∼ OI(ΦS(y))

 iff 
I(Φ↘(x)) ∼ I(ΦS(y)) iff I(Φ(x)) ∼ I(Φ(y)) iff Φ(x) ∼ Φ(y) . Hence Φ is an isomorphism.  
 ◻

Definition 8.15 Let G = (V ,E) be a connected decomposable graph with connected com-
plement and let T = (W,F) be the index graph of the canonical decomposition of G. An 
interdependent Aut(T)-orbit union is called populated iff it contains a populated Aut(T)
-orbit.

Φ(x) ∶=

{
Φ↘(x); for x ∈ VH ⧵ SH ,

ΦS(x); for x ∈ SH .
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Theorem 8.16 Let G = (V ,E) be a connected decomposable graph with connected comple-
ment and with two distinct populated interdependent Aut(T)-orbit unions. Then G is set 
reconstructible.

Proof By Theorem 7.3, we can identify two NTMA-cards Cj = G − xj , j = 1, 2 such that 
I(x1) and I(x2) are not in the same interdependent Aut(T)-orbit union in T. For j = 1, 2 , let 
Uj be the interdependent Aut(T)-orbit union that contains I(xj) . By Theorem  7.3, for 
j = 1, 2 , we can identify Φ−1

Cj
[Uj] in TCj.

Let Φ be an isomorphism from TC1 to TC2 . Then, for j = 1, 2 , we have 
Φ
[
Φ−1

C1

[Uj]
]
= Φ−1

C2

[Uj] . Thus, we can identify Φ−1
C2

[U1] on C2 as the Φ-image of the identi-
fied set Φ−1

C1

[U1] in TC1 . Obtain H from C1 by replacing each maximal autonomous set of 
vertices A such that I[A] ∈ Φ−1

C1

[U1] with the subgraph induced by C2 on the maximal 
autonomous set of vertices from C2 whose index is Φ[I[A]].

Then, by Lemma 8.14 with UG = U1 , UH = Φ−1
C1

[U1] , Φ↘ being the natural isomorphism 
from C1 ↘ Φ−1

C1

[U1] to G ↘ U1 and ΦS being the natural isomorphism from H
�⋃

u∈U1
AΦ(u)

�
 

to G
�⋃

u∈U1
Au

�
 , the graph H is isomorphic to G.   ◻

9  Conclusion

By Lemma 6.10, Corollary 7.4 and Theorem 8.16, set reconstructibility of decomposable 
graphs will be established if the class of graphs with exactly two vertices in nontrivial 
autonomous sets of vertices can be set reconstructed, and if we can set reconstruct the con-
nected decomposable graphs G = (V ,E) with connected complement and the following 
properties. 

1. There are at least two nontrivial autonomous sets of vertices,
2. All indices of nontrivial autonomous sets of vertices are contained in the same interde-

pendent orbit union of the index graph T of the canonical decomposition of G,
3. For every populated T-orbit O, every w ∈ O , every nontrivial induced subgraph G[Aw] , 

and every v ∈ Aw , there is a wv ∈ O such that G[Awv
] is isomorphic to G[Aw] − v.

Naturally, if these classes could be deck reconstructed, we would achieve deck reconstruc-
tion of decomposable graphs. Therefore, although set and deck reconstruction of decom-
posable graphs remain open problems, we have a very well-defined set of targets for further 
study.

We should also note that there are simple extensions of the methods presented here. For 
an example, consider the following.

Theorem 9.1 Let G = (V ,E) be a connected decomposable graph with connected comple-
ment, let T = (W,F) be the index graph of the canonical decomposition of G, let P be an 
orbit of T, let O = {o1,… , on} ⊆ P be an orbit of G ↘ P , and let Ao1

,… ,Aon
⊂ V  be the 

maximal autonomous sets of vertices of G indexed by vertices in O. If there are a 
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j ∈ {1,… , n} and a z ∈ Aoj
 such that G[Aoj

] − z is not empty and is not isomorphic to any 
of the G[Aoi

] with i ≠ j , then G is set reconstructible.

Proof (sketch). The proof is a simple extension of the proof of Corollary 7.4. First identify 
the NTMA-cards C = G − v such that I(v) ∈ ΦC[P] . For these NTMA-cards consider the 
orbits of the graphs C ↘ Φ−1

C
[P] , which are isomorphic to G ↘ P . Just as in the proof of 

Theorem 7.3, for each of these C, we can identify the Aut
(
C ↘ Φ−1

C
[P]

)
-orbit Ov such that 

v ∈ ΦC[Ov] . The remainder of the argument is exactly the same as in the proof of Corollary 
7.4.   ◻

Theorem 9.1 and its proof provide information that Corollary 7.4 does not, as we can 
obtain, for example, in the case of discrete orbits, for every NTMA-card C = G − v , the 
isomorphism type of the neighborhood of AI(v) . This further restricts the class of decom-
posable graphs that remain to be reconstructed that was given above. In fact, the idea of 
Theorem 9.1 can be iterated by populating all Aut

(
C ↘ Φ−1

C
[P]

)
-orbits except the orbit Ov 

such that v ∈ ΦC[Ov] . Although, unfortunately, it is not guaranteed that orbits would split 
until set reconstruction is achieved, this process provides a significant amount of additional 
information on the structure of the decomposable graphs with mG ≥ 3 that remain to be 
reconstructed.
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