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Abstract
In this paper, we consider a kind of area-preserving flow for closed convex planar curves 
which will decrease the length of the evolving curve and make the evolving curve more 
and more circular during the evolution process. And the final shape of the evolving curve 
will be a circle as time t → +∞.
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1 Introduction

The classical curve shortening flow equation in a plane is

where X(u, t) = (x(u, t), y(u, t)) ∶ S1 × [0,T) → ℝ
2 is a family of closed planar curves, � 

is the curvature and N is the unit normal vector. Gage and Hamilton [1–3] have studied 
this curve shortening flow and have proved it shrinks to a round point in finite time. Then 
another natural question arises for expanding evolution flow for curves. Chow–Tsai [4] 
have studied the expanding flow such as

where G is a positive smooth function with G′

> 0 everywhere. Andrews [5] and Tsai [6] 
have studied more general expanding flows, especially flows with anisotropic speeds. They 
have obtained deep results too. Later, people began to study curve flow problems preserv-
ing some geometric quantities. Gage [7] has considered an area-preserving flow

(1.1)
�X(u, t)

�t
= �N,

(1.2)
�X(u, t)

�t
= −G

(
1

�

)
N,

Communicated by Herr Cortés.

 * Zezhen Sun 
 826706115@qq.com

1 School of Mathematical Sciences, East China Normal University, Shanghai 200241, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s12188-021-00249-9&domain=pdf


346 Z. Sun 

1 3

where L is the length of the evolving curve, and he proved that the length of the curve 
is non-increasing and finally converge to a circle. In [8], Pan-Yang considered a length-
preserving curve flow

They have proved that the enclosed area of curve is non-decreasing and finally converge to 
a circle.

Motivated by their works, we now investigate a non-local area-preserving curvature 
flow for closed convex planar curves. Let X(u, t) = (x(u, t), y(u, t)) ∶ S1 × [0,T) → ℝ

2 be 
a family of closed planar curves with X(u, 0) = X0(u) being a closed convex initial curve, 
then the evolution problem considered is defined as:

where P = − < X,N > is the Minkowski support function, N is the unit inward pointing 
normal vector, A(t) and L(t) are the enclosed area and the length of the curve, respectively. 
The main result of this paper is the following theorem.

Theorem 1.1 A closed convex plane curve which evolves according to (1.5) remains con-
vex, decreases its length and preserves the enclosed area, becomes more and more circular 
during the evolution process, and finally converges to a finite circle in Hausdorff sense with 
radius 

√
A

�
 as t → ∞.

2  Limits of evolving curves

In this section we first derive a set of evolution equations along (1.5). Since monoto-
nicity formulas are immediate consequences, we prove them in this section while the 
existence and convexity will be proved in the next section. Let s(u, t) be the arc-length 
parameter of X(u, t), then �s

�u
= |Xu|

�

�s
 . Let T = Xs be the unit tangent vector.

Lemma 2.1 Suppose �X
�t

= �N , then the evolution equations for ds, Tand N are

Proof Since ds = |Xu|du one has

By direct computations one has

(1.3)
�X(u, t)

�t
=

(
� −

2�

L

)
N,

(1.4)
�X(u, t)

�t
=

(
L

2�
−

1

�

)
N.

(1.5)
�X(u, t)

�t
=

(
P −

2A

L

)
N,

(ds)t = −��ds, Tt = �sN, Nt = −�sT .

(ds)t =
𝜕|Xu|
𝜕t

du =
< Xu,Xut >

|Xu|
du =< T , (𝜙N)u > du =< T ,𝜙Nu > du = −𝜙𝜅ds.
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Taking time derivative of < T ,N >= 0 we have < Tt,N > + < T ,Nt >= 0 . Note that 
Nt ⟂ N and we get Nt = −�sT  .   ◻

Lemma 2.2 Suppose �X
�t

= �N , then the evolution equations for L(t), A(t) are

Proof The derivative of L(t) is a direct consequence of (ds)t = −��ds . By the Green’s for-
mula we have A = −

1

2
∫ L

0
< X,N > ds , thus

Since X is a closed curve we have ∫ L

0

𝜕

𝜕s
< X,−𝜙T > ds = 0 . Plugging in Xs = T  we get 

the formula for the derivative of A(t).   ◻

Lemma 2.3 If X(u, t) evolves under the equations defined by (1.5), then, during the evolu-
tion process, the length of the evolving curve is decreasing and the enclosed area keeps 
constant.

Proof In (2.1) plug in � = P −
2A

L
 , one has

and

where we have used the facts ∫ L

0
P�ds = L, ∫ L

0
Pds = 2A and the classical isoperimetric 

inequality L2 − 4�A ≥ 0 .   ◻

Corollary 2.4 The length of the evolving curve X(u, t) is given by

𝜕T

𝜕t
=

Xut

|Xu|
−

< Xu,Xut > Xu

|Xu|3

=
1

|Xu|
(
Xtu− < Xtu, T > T

)

=
𝜕

𝜕s
(𝜙N)− <

𝜕

𝜕s
(𝜙N), T > T

= 𝜙sN.

(2.1)
dL(t)

dt
= −∫

L

0

��ds,
dA(t)

dt
= −∫

L

0

�ds.

dA(t)

dt
= −

1

2 ∫
L

0

< Xt,N > + < X,Nt > − < X,N > 𝜙𝜅ds

= −
1

2 ∫
L

0

𝜙+ < X,−𝜙sT > − < X,𝜙Ts > ds

= −
1

2 ∫
L

0

𝜙 +
𝜕

𝜕s
< X,−𝜙T > + < Xs,𝜙T > ds.

(2.2)L
�

(t) = −�
L

0

(
P −

2A

L

)
�ds = −L +

4�A

L
=

4�A − L2

L
≤ 0,

(2.3)A
�

(t) = −∫
L

0

(
P −

2A

L

)
ds = −2A + 2A = 0,
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where L0 is the length of initial curve X0(u) , and therefore L(t) goes to a constant 
√
4�A as 

the time t goes to infinity.

Proof From (2.2), we find that L�

(t) = −L +
4�A

L
 is actually an ordinary differential equa-

tion. Since the area enclosed by the evolving curve is constant A(t) = A0 
(
A0 is enclosed 

area of initial curve X0(u)
)
 , then solving this equation yields (2.4) and therefore L(t) goes 

to a constant 
√
4�A as the time t goes to infinity.   ◻

Lemma 2.5 The isoperimetric deficit L2 − 4�A of the evolving curve is decreasing during 
the evolution process and converges to zero as the time t goes to infinity.

Proof 
Integrating this yields

Therefore, when t → ∞ , there holds L2 − 4�A → 0 .   ◻

By the Bonnesen inequality (see [9])

one gets that the difference between the inner and outer radii decreases to zero. Thus the 
evolving curve converges to a circle in the Hausdorff metric.

3  Existence and convexity

In this section we use Gage-Hamilton’s trick in [3]. Let � be the angle between T and the 
positive direction of the x axis and � = t . With parameters � and � the evolution equation of 
curvature � is

Lemma 3.1 A solution �(�, �) to (3.1) with initial value �0(�) exists for all time. Moreover, 
if 𝜅0(𝜃) > 0 then 𝜅(𝜃, 𝜏) > 0.

Proof By (3.1) and P�� + P =
1

�
 one has

(2.4)L =

√
4�A +

(
L2
0
− 4�A

)
e−2t,

(2.5)
d
(
L2 − 4�A

)

dt
= 2LLt − 4�At = 2L

(
−L +

4�A

L

)
− 0 = −2

(
L2 − 4�A

) ≤ 0.

(2.6)L2 − 4�A =
(
L2
0
− 4�A

)
e−2t.

L2 − 4�A ≥ �2
(
rout − rin

)2
,

(3.1)
��

��
= �2

(
�2

��2

(
P −

2A

L

)
+ P −

2A

L

)
.

��

��
= �2

(
�2

��2

(
P −

2A

L

)
+ P −

2A

L

)

= �2

(
1

�
−

2A

L

)
.
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Set W = (
1

�
−

L

2�
)e� , then we have

Since W(�, 0) =
1

�0
−

L0

2�
 , then we get

Furthermore, we can write explicitly that

combined with (2.4), It can also be expressed as

Now we begin to prove the convexity of evolving curve.
When 1

�0
≥ L0

2�
 . Obviously, in this case, 𝜅 > 0 for all time.

When 1

𝜅0
<

L0

2𝜋
 . Let � = (

1

�0
−

L0

2�
)e−� , � =

√
4�A+(L2

0
−4�A)e−2�

2�
 , respectively. (Clearly, 

𝛽 > 0 ) Then we calculate:

Since 𝜅0 > 0 , then 𝛽2 − 𝛼2 > 0 . Combined with 𝛽 > 0 , we can easily get 𝛽 > 𝛼 . By (3.4), 
then we have 𝜅 > 0 . This completes the proof.   ◻

Furthermore, when � → ∞ , from (3.4), we obtain

Since the radius of curvature � =
1

�
 , then we have lim�→∞ �(�, �) =

√
A

�
.

Next, we study the following curve flow problem that is equivalent to (1.5) and prove 
its existence. To this end, we will deal equivalently with the evolution equation for sup-
port function of the evolving curve.(see [10, 11])

�W

��
=

(
−

1

�2

��

��
−

L�

2�

)
e� +

(
1

�
−

L

2�

)
e�

=

(
2A

L
−

1

�
+

L

2�
−

2A

L

)
+

(
1

�
−

L

2�

)
e� = 0.

(3.2)W(�, �) =
1

�0
−

L0

2�
.

(3.3)�(�, �) =

[(
1

�0
−

L0

2�

)
e−� +

L

2�

]−1
,

(3.4)�(�, �) =
[
(
1

�0
−

L0

2�
)e−� +

√
4�A + (L2

0
− 4�A)e−2�

2�

]−1
.

�2 − �2 =
4�A +

(
L2
0
− 4�A

)
e−2�

4�2
−

(
1

�0
−

L0

2�

)2

e−2�

=
A

�
+

L2
0
e−2�

4�2
−

Ae−2�

�
−

e−2�

�2

0

−
L2
0
e−2�

4�2
+

L0e
−2�

��0

=
1

�0

(
L0

�
−

1

�0

)
e−2� +

A

�

(
1 − e−2�

)
.

lim
�→∞

�(�, �) =

√
�

A
.
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Lemma 3.2 For a solution X(�, �) to (3.5), the evolution equation of the support function 
satisfies

Proof By the definition of the support function P(𝜃, 𝜏) = − < X,−N > and �N
��

= 0 , we get

  ◻

Lemma 3.3 The support function P satisfies

Proof Set U = (P −
L

2�
)e� , then we have

Since U(�, 0) = P(�, 0) −
L0

2�
 , then we get

combined with (2.4), we can complete the proof.   ◻

What’s more, when � → ∞ , from (3.7), we obtain

Lemma 3.4 Suppose P(�, �) ∶ [0, 2�] × [0,∞) → R is the smooth solu-
tion of the Eq. (3.7), the radius of curvature P𝜃𝜃 + P > 0 and the initial curve 
X0 = −P(�, 0)N(�) +

�

��
P(�, 0)T(�).  Then there exist a unique solution X(u,  t) satisfying 

the Eq. (1.5) and the support function of curve is P(�, �).

(3.5)�X(�, �)

��
=

(
P −

2A

L

)
N(�) −

�
(
P −

2A

L

)

��
T(�).

(3.6)
�P

��
=

2A

L
− P.

𝜕P

𝜕𝜏
= − <

𝜕X

𝜕𝜏
,N > + < F,

𝜕N

𝜕𝜏
>

= − <
(
P −

2A

L

)
N −

𝜕
(
P −

2A

L

)

𝜕𝜃
T ,N >

=
2A

L
− P.

(3.7)P(�, �) =

(
P(�, 0) +

L0

2�

)
e−� +

√
4�A +

(
L2
0
− 4�A

)
e−2�

2�
.

�U

��
=

(
P� −

L�

2�

)
e� +

(
P −

L

2�

)
e�

=

(
2A

L
− P +

L

2�
−

2A

L

)
+

(
P −

L

2�

)
e� = 0.

U(�, �) = P(�, 0) −
L0

2�
,

lim
�→∞

P(�, �) =

√
A

�
.
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Proof We know that any convex curve on the plane can be uniquely represented by the sup-
port function, so X̃ ∶ [0, 2�] × [0,∞) can be expressed as:

Because the unit tangent T and the unit normal vector N are independent of time �, then we 
can get:

We make a parameter transformation, let � = �(u, t), � = t , then � satisfies the following 
equation:

We see that �(u, t) is the only solution of the above equation, then we have

This completes the proof.   ◻
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X̃ = −PN +
�P

��
T .

�X̃

��
= −

�P

��
N −

�N

��
P +

�2P

����
T +

�P

��

�T

��

= −
�P

��
N +

�2P

����
T

=

(
P −

2A

L

)
N +

�

��

(
2A

L
− P

)
T .

(3.8)

{
��

�t
= −�

�

��

(
2A

L
− P

)

�(u, 0) = u

�X(u, t)

�t
=

�X̃(�, �)

�t

=
�X̃

��

��

�t
+

�X̃

��

��

�t

=
(
−P�N − PN� + P��T + P�T�

)��
�t

+
�X̃

��

= −
(
−P�N + PT + P��T + P�N

)
�
�

��

(
2A

L
− P

)

+

(
P −

2A

L

)
N +

�

��

(
2A

L
− P

)
T

=

(
P −

2A

L

)
N.
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